Table 5.
Model | Best Epoch | Epoch Time (s) | Train_loss | Train_acc | Val_loss | Val_acc |
---|---|---|---|---|---|---|
Tiny-SGD | 97 | 59 | 2.638 | 0.489 | 2.381 | 0.539 |
Tiny-RMSprop | 97 | 62 | 0.310 | 0.917 | 0.261 | 0.932 |
Tiny-Adam | 44 | 58.5 | 0.133 | 0.968 | 0.104 | 0.976 |
Tiny-Lion | 55 | 54.9 | 0.136 | 0.966 | 0.098 | 0.976 |
Small-SGD | 38 | 62.2 | 5.791 | 0.008 | 5.793 | 0.014 |
Small-RMSprop | 26 | 59.1 | 0.141 | 0.962 | 0.091 | 0.977 |
Small-Adam | 67 | 58.5 | 0.111 | 0.972 | 0.090 | 0.978 |
Small-Lion | 36 | 59 | 0.090 | 0.976 | 0.077 | 0.981 |
Medium-SGD | 89 | 60.5 | 5.803 | 0.007 | 5.804 | 0.011 |
Medium-RMSprop | 97 | 60.2 | 0.265 | 0.937 | 0.371 | 0.907 |
Medium-Adam | 51 | 65.3 | 0.138 | 0.968 | 0.231 | 0.944 |
Medium-Lion | 22 | 65.1 | 0.131 | 0.968 | 0.256 | 0.942 |
Train_loss—training loss; Train_acc—training accuracy; Val_loss—vValidation loss; Val_acc—validation accuracy.