
Citation: Mani, H.; Chang, C.-C.;

Hsu, H.-J.; Yang, C.-H.; Yen, J.-H.;

Liou, J.-W. Comparison, Analysis,

and Molecular Dynamics Simulations

of Structures of a Viral Protein

Modeled Using Various

Computational Tools. Bioengineering

2023, 10, 1004. https://doi.org/

10.3390/bioengineering10091004

Academic Editors: Chin-Hung Lai

and Liang Luo

Received: 5 July 2023

Revised: 16 August 2023

Accepted: 22 August 2023

Published: 24 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

bioengineering

Article

Comparison, Analysis, and Molecular Dynamics Simulations
of Structures of a Viral Protein Modeled Using Various
Computational Tools
Hemalatha Mani 1 , Chun-Chun Chang 2,3, Hao-Jen Hsu 4 , Chin-Hao Yang 5, Jui-Hung Yen 6

and Je-Wen Liou 1,3,5,*

1 Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan
2 Department of Laboratory Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation,

Hualien 97004, Taiwan
3 Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 97004, Taiwan
4 Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien 97004, Taiwan
5 Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
6 Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan
* Correspondence: jwliou@mail.tcu.edu.tw

Abstract: The structural analysis of proteins is a major domain of biomedical research. Such analysis
requires resolved three-dimensional structures of proteins. Advancements in computer technology
have led to progress in biomedical research. In silico prediction and modeling approaches have
facilitated the construction of protein structures, with or without structural templates. In this study,
we used three neural network-based de novo modeling approaches—AlphaFold2 (AF2), Robetta-
RoseTTAFold (Robetta), and transform-restrained Rosetta (trRosetta)—and two template-based
tools—the Molecular Operating Environment (MOE) and iterative threading assembly refinement
(I-TASSER)—to construct the structure of a viral capsid protein, hepatitis C virus core protein
(HCVcp), whose structure have not been fully resolved by laboratory techniques. Templates with
sufficient sequence identity for the homology modeling of complete HCVcp are currently unavailable.
Therefore, we performed domain-based homology modeling for MOE simulations. The templates
for each domain were obtained through sequence-based searches on NCBI and the Protein Data
Bank. Then, the modeled domains were assembled to construct the complete structure of HCVcp.
The full-length structure and two truncated forms modeled using various computational tools were
compared. Molecular dynamics (MD) simulations were performed to refine the structures. The
root mean square deviation of backbone atoms, root mean square fluctuation of Cα atoms, and
radius of gyration were calculated to monitor structural changes and convergence in the simulations.
The model quality was evaluated through ERRAT and phi–psi plot analysis. In terms of the initial
prediction for protein modeling, Robetta and trRosetta outperformed AF2. Regarding template-based
tools, MOE outperformed I-TASSER. MD simulations resulted in compactly folded protein structures,
which were of good quality and theoretically accurate. Thus, the predicted structures of certain
proteins must be refined to obtain reliable structural models. MD simulation is a promising tool for
this purpose.

Keywords: homology modeling; AF2; Robetta-RoseTTAFold; trRosetta; MOE; I-TASSER; MD simulation;
HCV core protein

1. Introduction

Deep neural network-based approaches have facilitated studies on in silico protein
structure prediction and protein–protein interactions. These approaches can help to predict
the structures of a wide array of proteins and have been suggested in many cases with
an accuracy similar to that of X-ray crystallography, nuclear magnetic resonance (NMR)
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spectroscopy, and cryogenic electron microscopy [1]. Sequence-based prediction of the
three-dimensional (3D) structures of proteins has been a long-standing challenge. Sev-
eral deep learning-based structure prediction tools have recently been demonstrated to
outperform the traditional approaches for protein structure prediction [2–4]. AlphaFold
(DeepMind) [5,6] is a powerful artificial intelligence tool that predicts the structures of pro-
teins on the basis of their amino acid (AA) sequences. According to the Critical Assessment
of Structural Prediction (CASP), the aforementioned tool exhibits a high accuracy [7–9].
Neural network-based algorithms are typically trained using supervised data obtained
from the Protein Data Bank (PDB) [6,10,11]. Robetta [12] is a three-track deep neural
network-based prediction interface with an accuracy that is close to that of AlphaFold2
(AF2) according to the results of CASP. The network considers the patterns of AA sequences
and the interactions between AA residues to predict the 3D structures of proteins [12,13].
Transform-restrained Rosetta (trRosetta) [14] is a residual convolutional server that adopts
a deep neural network-based approach to predict inter-residue geometries; the predicted
geometries are transformed as restraints to guide structure prediction through direct energy
minimization. In contrast to other approaches, trRosetta can predict geometries such as
inter-residue distances and orientations [14].

A traditional method for in silico structural modeling is template-based homology
modeling, in which suitable laboratory-derived resolved protein structures are used as
templates for structure construction. The guidelines for generating credible models have
been described previously [15]. Structural templates with >40% sequence identity to (and
coverage of) target proteins are required for reliable modeling [16]. Normally, multise-
quence alignments are performed using sequence similarity search tools, such as the PDB
basic local alignment search tool (BLAST), to identify tertiary structural templates. Un-
like traditional methods used for identifying templates for homology modeling, iterative
threading assembly refinement (I-TASSER) [17,18], an automatic template-based platform,
automatically identifies suitable structural templates from the PDB by adopting a multiple
threading approach. I-TASSER predicts protein structures based on a sequence-to-structure-
to-function-based paradigm, and the models are assembled through iterative fragment
simulations [17,19]. In CASP experiments, this tool has exhibited an excellent performance
in predicting protein structures [18,20,21].

The hepatitis C virus (HCV) core protein (HCVcp) is a protein that assembles into
the HCV capsid, which encloses and protects the viral genome [22–25]. In addition to its
principal role, HCVcp alters host inflammatory responses to facilitate viral evasion from
the host immune response and the establishment of persistent liver infection [26]. HCVcp
exhibits both proinflammatory and anti-inflammatory activities [26]. Through its anti-
inflammatory and proinflammatory activities, HCVcp facilitates viral survival and disease
(hepatitis) development, respectively. HCVcp targets various compartments of HCV host
cells [26–28]. Evidence suggests that HCVcp directly interacts with Toll-like receptors
on host cells [29], which play key roles in mediating host inflammatory responses [30].
Prolonged inflammation leads to chronic hepatitis, liver cirrhosis, hepatocellular carcinoma,
and extrahepatic HCV-related diseases [26]. The full-length sequence of HCVcp comprises
191 AAs and can be divided into three domains. Domain 1 (N-terminal AA 1 to AA 116 [31])
is the most hydrophilic HCVcp domain involved in viral genomic RNA binding [22], and
this domain is responsible for viral capsid formation [32]. This domain also interacts with
host cellular proteins [33–35]. Domain 2 (AA 117 to AA 177 [31]) is highly hydrophobic
and possibly mediates the interactions of HCVcp with host lipids, lipid droplets, and
membranes [22]. Domain 3 (AA 178 to AA 191 [31]) is extremely hydrophobic, enhances
intracellular lipid accumulation, and is associated with hepatic steatosis [36,37]. The 3D
structure of this viral protein is required for the comprehensive analyses of the interactions
between HCVcp and host proteins/receptors. Such analyses facilitate the development of
effective strategies for the prevention and treatment of HCV-related disorders. However,
to the best of our knowledge, resolved tertiary structures of HCVcp are still unavailable,
rendering it difficult to perform structure-based investigations of the interactions between
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HCVcp and host proteins. In this study, we constructed 3D structures of HCVcp by
using deep neural network-based de novo structure prediction methods—AF2, Robetta,
and trRosetta—and the automated template-based tool I-TASSER. In addition, suitable
templates were identified through BLAST-based searches. Homology modeling of the
HCVcp structure was performed using the Molecular Operating Environment (MOE). The
structures were modeled using different computational tools and were then compared
and analyzed. Molecular dynamics (MD) simulations of the modeled structures were also
performed for structure refinement. Our findings provide key insights into the applications
and efficiencies of in silico structural modeling methods for constructing protein structures,
which are useful for structure-based biomedical research.

2. Materials and Methods
2.1. Amino Acid Sequence of HCVcp

The AA sequence of HCVcp used in this study was from the HCV genotype 1a
isolate H77 [38] (NCBI reference sequence: YP_009709861; https://www.ncbi.nlm.nih.gov/
protein/YP_009709861, access date: 18 June 2023). The sequence is identical to that with
the UniProt IDs: A0A077D151_9HEPC and B3TKY8_9HEPC.

2.2. Prediction of the Secondary Structures of HCVcp

The secondary structures of HCVcp were predicted using PSIPRED (http://bioinf.cs.
ucl.ac.uk/psipred/, access date: 11 April 2023) [39,40].

2.3. Structural Modeling of HCVcp

The structures of HCVcp Domain 1 (HCVcp 116) and Domains 1 and 2 (HCVcp 177),
as well as that of the full-length protein (HCVcp 191), were modeled using online platforms
or built-in software. The following tools were used for this purpose:

For the AF2-based prediction of the HCVcp structure, we used AlphaFold colab
notebook (version 2.1.0; GitHub; https://colab.research.google.com/github/deepmind/
alphafold/blob/main/notebooks/AlphaFold.ipynb#scrollTo=XUo6foMQxwS2, access date:
30 September 2022). This colab notebook does not require templates for structural modeling;
the prediction is based solely on true de novo structure prediction [6].

For the Robetta-based prediction of the protein structure, the sequences were submit-
ted to the Robetta-RoseTTAFold web server (https://Robetta-RoseTTAFold.bakerlab.org/,
access date: 1 October 2022). The RoseTTAFold algorithm was used for generating the
structural model. The accuracy and reliability of the predictions were continually evaluated
(Continuous Automated Model Evaluation web server) [12].

For trRosetta-based prediction of the protein structure, we used the relevant web
platform (https://yanglab.nankai.edu.cn/trRosetta/, access date: 18 October 2022). AA
sequences were submitted to the platform. A deep residual neural network-based algorithm
was used to predict inter-residue distances and orientations. The resulting 3D models were
finalized through direct energy minimization performed using smooth restraints [14,41,42].

For MOE simulations, the BLAST (National Center for Biotechnology Information;
https://blast.ncbi.nlm.nih.gov/Blast.cgi, access date: 27 October 2022) [43] was used to
search and identify templates with sufficient sequence identity/similarity to the target
protein. Then, the identified templates were aligned to the target protein sequences.
Homology modeling was performed using MOE (Chemical Computing Group, Montreal,
Quebec, Canada) to construct protein structures from the AA sequences.

The HCVcp structure was also modeled by I-TASSER (https://zhanggroup.org/I-
TASSER/, access date: 21 September 2022), which is a hierarchical tool for predicting
protein structures. This tool automatically identifies templates from the PDB through a
multiple threading approach; full-length atomic models are constructed through iterative
template-based fragment assembly simulations.

https://www.ncbi.nlm.nih.gov/protein/YP_009709861
https://www.ncbi.nlm.nih.gov/protein/YP_009709861
http://bioinf.cs.ucl.ac.uk/psipred/
http://bioinf.cs.ucl.ac.uk/psipred/
https://colab.research.google.com/github/deepmind/alphafold/blob/main/notebooks/AlphaFold.ipynb#scrollTo=XUo6foMQxwS2
https://colab.research.google.com/github/deepmind/alphafold/blob/main/notebooks/AlphaFold.ipynb#scrollTo=XUo6foMQxwS2
https://Robetta-RoseTTAFold.bakerlab.org/
https://yanglab.nankai.edu.cn/trRosetta/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://zhanggroup.org/I-TASSER/
https://zhanggroup.org/I-TASSER/
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2.4. Visualization and Analysis of the Predicted Models

MOE version 2020.09 (license manager version 11.17.1) was used for the visualization,
representation, and analysis of the predicted protein structures. In addition, this tool was
used for generating the phi–psi plots, which were used to analyze the geometry of the
predicted models and examine them for unusual or unreasonable features.

ERRAT analysis [44] was performed to analyze structural models; for this, the SAVES
server (version 6.0; https://saves.mbi.ucla.edu/, access date: 3 January 2023) was used.
We also used ProSA-web (https://prosa.services.came.sbg.ac.at/prosa.php, access date:
3 January 2023) [45] for structural evaluations.

2.5. MD Simulations

After structure preparations using MOE, MD simulations were performed using
GROMACS (version 5.1.4) with a GROMOS 54A7 force field [46] for topology generation.
The MD simulation protocols used in this study followed those indicated in our previous
research [47,48]. The GROMOS force field is used in MD simulations for biomolecular
systems such as peptides and proteins, nucleic acids, carbohydrates, and lipids at ambient
temperatures and pressures of liquids, crystals, and solutions. The GROMOS 54A7 force
field is a modified force field in which the stability of proteins has been tested and found
to be in excellent agreement with a range of primary experimental data [49]. In this study,
the three-point single point charge (SPC) water [50–52] was applied as the solvent, with
coordinates from a pre-equilibrated box spc216.gro [51]. These coordinates can also be
applied for other three-point water models, since the small differences between the models
will be eliminated with a short equilibration [53]. The proteins were placed in the defined
solvated water box. The periodic boundary conditions were set by commanding the image
distance cutoff. During the simulation, Berendsen temperature and pressure coupling
were applied. For temperature coupling, a Berendsen thermostat was used to maintain the
system at a reference temperature of 310 K. The temperature coupling time constant was set
to 0.2 ps. For pressure coupling, Berendsen exponential relaxation pressure coupling was
enabled with a time constant of 1.5 ps. The integration time step (dt) was set at 0.002 ps
for each run.

Energy minimization in GROMACS was performed using steepest descent and conju-
gate gradients, as suggested per protocol [54]. After energy minimization, position restrains
were applied to achieve thermal equilibrium in order to ensure unrestricted simulation
and avoid uneven solvent molecule distribution. The energy minimization was performed
using step-by-step position restrains for temperature, pressure, and velocity normalization.
This is to avoid drastic rearrangements of critical parts of the protein during equilibration.
Followed by addition of solvent molecules, Na and Cl ions (concentration of 0.15 M) were
added to the box. Each simulation was run for 200 ns. Details for all simulations in this
study are listed in Supplementary Table S2. Solvated water boxes containing initial HCVcp
model structures for MD simulations are illustrated in Supplementary Figures S2–S6. All
MD simulation trajectory files were analyzed using the GROMACS built-in tools.

The RMSD of backbone atoms was calculated through the least-square fitting of the
query structure to the reference structure; this was performed using the gmx rms command
(t2 = 0) [55].

RMSD(t1, t2) = [
1
M

N

∑
i=1

mi‖ri(t1)− ri(t2)‖2 ]

1
2

(1)

M = ∑N
i=1 mi and ri(t) is the position of atom i at time t after the least-square fitting of

the query structure to the reference structure. The fitting was performed with respect to the
backbones of the query and reference structures.

The Rg value was calculated using the gmx gyrate command to measure the rough
compactness of the structure.

https://saves.mbi.ucla.edu/
https://prosa.services.came.sbg.ac.at/prosa.php
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Rg = (
∑0

i ‖ri‖2 mi
o

∑0
i mi

)

1
2

(2)

where mi is the mass of atom i and ri is the position of atom i with respect to the center
of mass of the molecule. The fitting was performed with respect to the structure of the
main chain.

To calculate atomic fluctuations, the gmx RMSF command was used, which com-
putes the standard deviations of atomic positions in the trajectory after fitting them to a
reference frame.

RMSFi = [
1
T

T

∑
tj=1
‖ri(t1)− ri(t2)‖2 ]

1
2

(3)

where T is the time over which the displacement of particle i was averaged and ri(t2) is the
reference position of particle i. In this study, the RMSF values of Cα atoms were calculated,
and the values were plotted versus residue number i. The RMSF of an atom i was computed
as the time average, and no mass weighting was performed [56,57].

3. Results
3.1. HCVcp Models

We first constructed HCVcp structures with varying lengths by using the deep neu-
ral network-based prediction tools AF2, Robetta, and trRosetta and the template-based
modeling tools MOE and I-TASSER. The modeled structures were then compared and
analyzed. To generate reliable results, structural templates with >40% sequence identity
to the target protein are required for MOE homology modeling [58–60]. Unfortunately,
for HCVcp, MOE could not obtain a template with sufficient sequence identity for struc-
tural modeling. Therefore, we performed homology modeling for each HCVcp domain
and assembled the modeled domains to construct the complete structure of HCVcp. The
PDB codes of the templates used in MOE simulations are presented in Supplementary
Figure S1. I-TASSER automatically selects suitable templates for modeling. The templates
selected by I-TASSER are listed in Supplementary Table S1. HCVcp structures of three
lengths were modeled: HCVcp 116 (sequence: AA 1 to AA 116; comprising Domain 1 only),
HCVcp 177 (sequence: AA 1 to AA 177; comprising Domains 1 and 2), and HCVcp 191 (the
full-length HCVcp). The modeled structures are depicted in Figure 1. The structures mod-
eled using neural network-based tools (AF2, Robetta, and trRosetta) were more extended,
whereas those modeled using the template-based tools (MOE and I-TASSER) were more
compact. We further predicted the secondary structures of HCVcp by using PSIPRED
(http://bioinf.cs.ucl.ac.uk/psipred/, access date: 11 April 2023) [61]. The secondary struc-
ture prediction results are presented in Figure 2. The secondary structure predictions are
considered highly accurate [62,63], and the prediction results in this study were compared
with the modeled 3D structures. According to the secondary structure prediction results,
HCVcp Domain 1 was largely unstructured and contained only two short β-strand struc-
tures; several clear α-helical structures were noted between AA 113 and the C-terminal
of the protein (Domains 2 and 3). These prediction results agreed with the implications
from an experimental study on HCVcp secondary structures using circular dichroism
spectroscopy [64], in which Domain 1 was calculated to be largely unstructured, while
the HCVcp with Domains 1 and 2 contained a large proportion of α-helical structures. As
shown in Figure 1, the models of HCVcp 116 were mostly unstructured. However, helical
structures were observed in the models constructed using Robetta, trRosetta, and MOE.
None of the models contained the β-strand structures noted in secondary structure predic-
tion. In all models of HCVcp 177, helical structures were observed near the C-terminals,
which, to some extent, was consistent with the results of secondary structure prediction.
However, β-strand structures were noted near the C-terminal of the I-TASSER-predicted
model; this prediction varied from those of models predicted using the other tools and
the results of secondary structure prediction. Among the modeling tools used, trRosetta

http://bioinf.cs.ucl.ac.uk/psipred/
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generated a model with two short β-strand structures in the Domain 1 region; this model
exhibited the highest level of agreement with the results of secondary structure predic-
tion. The HCVcp 191 models predicted using the neural network-based tools were similar,
with proximal C-terminal domains. The extent and orientations of α-helices present in
these models were similar and highly consistent with the results of secondary structure
prediction. By contrast, the HCVcp 191 models predicted using template-based tools varied
considerably in terms of folding patterns. Among all predicted models of HCVcp 191, the
model predicted using trRosetta exhibited the highest level of agreement with the results
of secondary structure prediction.
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3.2. Model Ranks and Structure Interpretations

To evaluate the quality of the modeled structures, we analyzed parameters that are
crucial for the quality control of tertiary structures. The ERRAT server (https://www.
doe-mbi.ucla.edu/errat/, access date: 3 January 2023) validates protein models, including
those obtained through X-ray crystallography, by using a quadratic error function to char-
acterize noncovalent interactions [44]. The statistics of nonbonded interactions between
various atoms are evaluated using the error function, which is calculated by comparing the
aforementioned statistics with those of highly refined structures. This method highlights
errors due to the random distributions of atoms, thus facilitating differentiation between
the incorrect and correct regions of a predicted structure on the basis of atomic interactions.
The ERRAT plots for the structural models constructed using different prediction tools
are presented in Figure 3. According to the ERRAT plots, Robetta, trRosetta, and MOE
generated structural models with high quality, with little to no erroneous regions in the
structures. However, the models predicted using AF2 and I-TASSER had many erroneous
regions with error values exceeding the 99% confidence intervals (marked as red bars in
Figure 3), which indicated the poor quality of the models. The ERRAT server also provides
an overall quality factor (OQF), which is a global score for identifying nonbonded atomic
regions [44]. A higher ERRAT score indicates the better quality of the structure and thus
the better reliability of the model. The OQFs for the modeled structures are also presented
in Figure 3. For HCVcp 116, the model constructed using MOE had the best score (OQF:
91.667). For HCVcp 177, the models constructed using Robetta and MOE had the best
scores (OQF: 96.711 and 95.858, respectively). Furthermore, for HCVcp 191, the models con-
structed using Robetta and MOE had the best scores (OQF: 97.268 and 96.175, respectively).
On the basis of OQFs, all models constructed using AF2 and I-TASSER contained errors
(i.e., low OQFs). Therefore, these poor-quality models required structural refinement.

3.3. Results of Stereochemical Analysis

Phi–psi plots (Ramachandran plots) can be used for the evaluation of predicted protein
structures [65–67]. These plots serve as sensitive tools for assessing the torsion angles
of protein backbones, thereby facilitating the unbiased validation of predicted protein
structures. The plots show the phi and psi torsion angles for each residue in the main
chain. In addition, the plots show favored regions corresponding to the conformations
with dihedral angles which are typically observed in α-helices and β-sheets. In protein
models, AA residues are distributed in the most favored regions (core regions), allowed
regions, and disallowed regions. In an ideal protein structure, no residue should be present
in disallowed (or outlier) regions. A higher distribution of residues in disallowed regions
indicates a poorer quality of the protein model. Figure 4 shows the phi–psi plots of all
models constructed in this study. The models constructed using AF2 and I-TASSER had
clusters of residues in disallowed regions, suggesting the poor quality of the models.
Models with poor quality should be remodeled or subjected to energy minimization to
generate structural models with improved stereochemical properties. Notably, Robetta,
trRosetta, and MOE generated models with a satisfactory quality according to the phi–psi
plots. For structural refinement and energy minimization, we further performed MD
simulations of all models constructed in this study.

https://www.doe-mbi.ucla.edu/errat/
https://www.doe-mbi.ucla.edu/errat/
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3.4. Results of MD Simulations

MD simulations can provide information on protein kinetics and thermodynamics [60]
and can refine protein models [68]. In this study, we performed MD simulations to track
conformational changes and protein folding until the constructed protein models reached
a state with the lowest internal free energy. MD simulations (200 ns) of the predicted
structures were performed using the Groningen Machine for Chemical Simulations (GRO-
MACS) [61]. The final frames of the structures after the 200 ns MD simulations are depicted
in Figure 5. All models folded into compact 3D structures were compared with the con-
formations before MD simulations (Figure 1). The structures modeled using the neural
network-based tools exhibited large-scale changes during MD simulations, from relatively
extended states to compact folded states. We further determined the root mean square
deviation (RMSD) of backbone atoms, radius of gyration (Rg), and root mean square fluctu-
ation (RMSF) of Cα atoms (α-carbons) of the structures over 200 ns to analyze the stability
of the predicted models and the compactness of the structures.
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dicted structures were performed using the Groningen Machine for Chemical Simulations 

Figure 4. Phi–psi plots for the HCVcp 116, HCVcp 177, and HCVcp 191 models constructed using
AF2, Robetta, trRosetta, MOE, and I-TASSER. The cyan outline corresponds to most favored regions
(conformations with no steric hindrance). The orange outline corresponds to allowed regions. The
regions outside the orange outline are disallowed regions (sterically forbidden regions).

The MD simulation trajectories of the models are presented in Figure 6. For HCVcp 116,
the models constructed using the neural network-based tools exhibited large structural
changes during MD simulations, as evident from the plots corresponding to the RMSD
of backbone atoms. The RMSD values increased by approximately 3.5 nm during the
first 50 ns and then plateaued, indicating that the structures had reached a stable state.
By contrast, the models constructed using the template-based tools exhibited small-scale
structural changes during MD simulations. The RMSD values increased by approximately
1–1.5 nm, and the structures required approximately 100 ns to reach a stable state. For
HCVcp 177, the model constructed using AF2 exhibited the largest increase (approximately
3 nm) in the RMSD of backbone atoms during MD simulations. The models constructed
using Robetta and trRosetta exhibited an increase of approximately 2 nm in the RMSD of
backbone atoms. This value increased by 1 and 0.5 nm during the MD simulations of the
models constructed using MOE and I-TASSER, respectively. For HCVcp 191, the increases
in the RMSD of backbone atoms during MD simulations were approximately 3, 2.5, and
1.5 nm for the models constructed using Robetta, AF2, and trRosetta, respectively. Notably,
the models constructed using MOE and I-TASSER exhibited relatively small changes in
the RMSD of backbone atoms (an increase of <1 nm). According to the trajectories, all the
HCVcp 191 models reached a stable state within less than 75 ns.
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Figure 5. Final frames of the refined HCVcp 116, HCVcp 177, and HCVcp 191 models. The models
were constructed using AF2 (red), Robetta (blue), trRosetta (yellow), MOE (green), and I-TASSER
(cyan) and subsequently subjected to MD simulations. The positions of the first and last amino acids
from the N-terminal of the protein are indicated. The red arrows indicate β-strands, which were also
observed in the predicted secondary structures.

Rg, the root mean square distance of the parts of an object from either its center of mass
or a given axis, can be used as an indicator of the compression behavior or compactness of
an object. This measure can also be used to determine the compactness of proteins [62]. As
shown in Figure 6, the Rg values of the HCVcp 116 models constructed using AF2, Robetta,
and trRosetta decreased from approximately 4.5 nm to approximately 1.5 nm during MD
simulations, indicating that these models folded from relatively loose structures to compact
ones. The Rg values of both of the models constructed using MOE and I-TASSER were
approximately 1.5 nm, which remained relatively constant throughout MD simulations.
For HCVcp 177, the Rg of the models constructed using AF2 and trRosetta decreased
from approximately 3.5 nm to 1.5 and 2 nm during MD simulations, respectively. Only
a small reduction from 3.5 nm to 3 nm was observed in the Robetta-predicted model
during the simulations. The Rg values of the models constructed using MOE and I-TASSER
remained constant at approximately 1.5 nm during the simulations. For HCVcp 191, the
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Rg values of the models constructed using Robetta, AF2, and trRosetta decreased from
3.5 nm to approximately 1.75 nm, from 3.5 nm to approximately 2 nm, and from 2.5 nm
to approximately 1.75 nm, respectively. By contrast, the models constructed using MOE
and I-TASSER exhibited small changes in Rg values during the simulations. The Rg values
of the models constructed using MOE and I-TASSER remained constant (approximately
1.5–1.75 nm) during the simulations. When the structures of 150, 175, and 200 ns frames in
MD simulations for all models are superimposed, it can be seen that the structures have
reached their stable state in MD simulations (Supplementary Figure S7).
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MD simulations. The red, blue, dark yellow, green, and cyan lines indicate the values for the models
constructed using AF2, Robetta, trRosetta, MOE, and I-TASSER, respectively.
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The RMSF of Cα atoms indicates the fluctuations in each Cα atom of a protein back-
bone; thus, this value can measure the movement of each Cα atom in simulation studies.
The RMSF values of Cα atoms obtained for the models constructed in our study are pre-
sented in Figure 6. Among the models constructed for HCVcp 116, the model predicted
using trRosetta exhibited the highest level of fluctuations along its primary structure in
the simulations, whereas that predicted using I-TASSER exhibited the lowest level of fluc-
tuations. For HCVcp 177, the model predicted using AF2 exhibited the highest level of
fluctuations, whereas those predicted using MOE and I-TASSER exhibited considerably
lower levels of fluctuations. For HCVcp 191, the model predicted using AF2 exhibited the
highest level of fluctuations, whereas those predicted using MOE and I-TASSER exhibited
markedly low levels of fluctuations in Cα atoms.

3.5. Results of Refined Structure Analysis

The ERRAT plots for the refined structures are depicted in Figure 7. For all the models
constructed using AF2, considerable reductions were noted in erroneous regions compared
with the results shown in Figure 3; these reductions indicated substantial improvements
in the quality and reliability of the refined models. The models constructed using MOE
had no region that could be rejected with 99% confidence (no red region), suggesting the
good quality of the models. The HCVcp 116 and HCVcp 177 models constructed using
Robetta and trRosetta still contained a few erroneous regions. Despite refinement-based
improvements, erroneous (red) regions were noted in Domain 1 of the models constructed
using I-TASSER. The most problematic region in the HCVcp 116 model constructed using
I-TASSER was the region between AA 93 and AA 105. For HCVcp 177 and HCVcp 191, the
problematic regions were common and were located between AA 70 and AA 80.

MD simulations also improved the quantitative scores of the modeled structures. The
scores are presented in Figure 7. Compared with the corresponding pre-refinement scores,
substantial improvements were noted in most OQF scores of the HCVcp 116, HCVcp 177,
and HCVcp 191 models constructed using AF2, Robetta, trRosetta, and I-TASSER. The
largest increase in ERRAT scores after MD simulations was observed for the models
constructed using AF2. All three AF2-constructed refined models had an ERRAT OQF
score > 90. However, even after refinement, the HCVcp 116 models constructed using
trRosetta and I-TASSER had an OQF score < 80.

Phi–psi plots were generated for the refined models (Figure 8). The HCVcp models
constructed using AF2 and I-TASSER initially had poor quality. However, after MD
simulations, the phi–psi plots indicated considerable improvements in the quality of all
three models constructed using these two tools. The number of AAs in the disallowed
region decreased significantly. Most AAs of the structures were found in the most favored
regions of the phi–psi plots.

3.6. Results of Structural Validation

The Protein Structure Analysis (ProSA)-web [45] is a tool for identifying potential
errors in the 3D models of proteins. The ProSA-web z-score of a structure indicates the
overall model quality and measures the deviation of the structure’s total energy from
the energy distribution derived from random conformations. The overall quality score
for a query structure analyzed using ProSA-web is displayed in a plot, which shows the
scores of all available PDB protein structures determined experimentally through X-ray
crystallography and NMR spectroscopy [45,69]. Protein structures with z-scores outside the
range for typical protein characteristics are regarded as erroneous structures. The ProSA-
web scores of the initial and refined models are presented in Figure 9. Even before MD
simulations, all models had z-scores (Supplementary Table S3) within the range of scores
typically observed for native proteins of similar size. After MD simulations, improvements
were noted in the scores of the refined models (Supplementary Table S4). The z-scores of
the refined models, except the HCVcp 116 model predicted using MOE, moved toward the
center of the z-score range of native proteins of similar size.
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Figure 7. ERRAT plots for the refined HCVcp 116, HCVcp 177, and HCVcp 191 models. The models
were predicted using AF2, Robetta, trRosetta, MOE, and I-TASSER and subsequently subjected to
200 ns MD simulations. The plots show two lines (on the error axis), which indicate the confidence
level at which regions exceeding the error value can be rejected. The regions that can be rejected at
the 95% confidence level are in yellow, whereas those that can be rejected at the 99% confidence level
(99% confidence in being erroneous) are in red. OQF, overall quality factor.
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after (lower panels) MD simulations. The ProSA-web z-scores of all available PDB protein structures
determined through X-ray crystallography (light blue) or NMR spectroscopy (dark blue) with respect
to length. The black, yellow, and red crosses indicate the z-scores of the HCVcp 116, HCVcp 177, and
HCVcp 191 models, respectively. ProSA, Protein Structure Analysis.
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4. Discussion

The 3D structures of biomolecules are essential for the analysis of basic biological
functions, structural changes in mutant proteins, interactions between biomolecules, and bi-
ological complex assembly. Knowledge obtained through the structural analysis of proteins
may be directly applied to the development of effective treatment strategies for various
diseases. Traditionally, the 3D structures of proteins have been obtained experimentally
using techniques such as X-ray crystallography, NMR spectroscopy, and cryogenic electron
microscopy. However, the determination of protein structures using these techniques may
not always be successful. X-ray diffraction data can only be obtained from high-quality
crystals [70], but not all proteins can be successfully crystallized. NMR spectroscopy has
drawbacks such as a sensitivity to experimental conditions, the need for highly soluble
samples, and signal overlaps [71,72]. In the absence of suitable samples and conditions,
protein structures cannot be obtained. The major limitations of electron microscopy are
its dependence on large quantities of purified protein samples, which can be difficult to
obtain for some proteins, and the difficulty in interpreting the obtained images [73,74].
With advancements in computer technology, in silico methods have emerged as powerful
tools in biomedical research. Computational methods such as molecular docking and MD
simulations have enabled studies on protein–protein and ligand–receptor interactions, thus
advancing research on drug development. Computational tools have been developed for
the efficient modeling of protein structures from their AA sequences without the need
for performing wet-laboratory experiments. The traditional method for computing the
structures of target proteins is called homology modeling, which requires experimentally
resolved template structures of the target protein’s homolog. To generate reliable pro-
tein structures, structural templates with >40% sequence identity to the target protein are
needed [60]. However, for some proteins, particularly viral proteins, suitable templates for
homology modeling are not available. Thus, tools that predict protein structures without
the requirement for templates are crucial. According to Anfinsen’s dogma, the native struc-
ture of a protein is determined solely on the basis of its AA sequence [75,76]. Therefore,
structural models of proteins can be constructed directly from their AA sequences. Tools
have been developed for this purpose. These tools often adopt neural network-based deep
learning approaches [77], in which the systems are trained with data from the PDB. In
the present study, we used both neural network-based tools (AF2, Robetta, and trRosetta)
and template-based tools (MOE and I-TASSER) to construct 3D models corresponding to
varying lengths of HCVcp. The models constructed using different tools were compared
and analyzed. Considering the lack of suitable templates for modeling the entire HCVcp
structure, for template-based MOE modeling, we modeled HCVcp domains/segments
separately and then assembled them to obtain the complete structure of the protein. Ac-
cording to ERRAT analysis results, the models constructed using Robetta exhibited the
highest quality, followed by those constructed using trRosetta (Figure 3). By contrast, the
quality of the initial models predicted using AF2 was poor. Regarding template-based
modeling tools, MOE outperformed I-TASSER. The satisfactory quality of the models
constructed using Robetta, trRosetta, and MOE was also reflected by the corresponding
phi–psi plots (Figure 4). However, the phi–psi plot analysis provided poor results for the
models predicted using AF2 and I-TASSER. The results of secondary structure prediction
revealed that HCVcp Domains 2 and 3 contain several α-helices. These α-helices were
observed in all HCVcp 177 and HCVcp 191 models, except for those constructed using
I-TASSER. Secondary structures, which are mainly formed through hydrogen bonding,
are relatively easy to predict. AAs can be grouped into categories that are likely to form
α-helices, β-strands, turns, and coils. Predicted secondary structures often exhibit high
levels of consistency with high-resolution experimental structures [78–80]. Therefore, the
secondary structures of proteins can be used to validate predicted 3D models. Interest-
ingly, although the ERRAT scores of the trRosetta models were lower than those of the
Robetta and MOE models, the β-strand structures in HCVcp Domain 1 were only predicted
using trRosetta. Some of the predicted structures were not acceptable according to the
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validation results; thus, further refinement was performed. MD simulation is a feasible
strategy for the refinement of protein structures [68,81]. Therefore, all models constructed
in our study were subjected to MD simulations. The fundamental theory is that given
sufficient time, a protein structure will reach a stable state with the lowest free energy. All
models constructed using the neural network-based tools folded into relatively compact
structures during the simulations (Figure 5). After refinement, the models predicted using
trRosetta exhibited the highest levels of agreement with the results of secondary structure
prediction (Figures 2 and 5). In ERRAT analysis, a score of >75 was obtained for all refined
models, and a score of >90 was obtained for 11 of 15 models (Figure 7). On the basis of the
ERRAT analysis results, the models constructed using AF2, Robetta, and MOE exhibited the
highest quality: with a score of >90 being obtained for all predicted structures. After MD
simulations, the models constructed using AF2 exhibited considerable improvements, as
evident from the results of ERRAT and phi–psi plot analyses. These findings indicate that
structural refinement through energy minimization can enhance the reliability of structural
models predicted using AF2.

Efficient tools for the construction of protein models directly from their AA sequences
are crucial for ensuring advances in biomedical research and for accelerating the develop-
ment of cost-effective treatment strategies for various diseases. Substantial progress has
recently been made in protein structure predictions, particularly de novo template-less
predictions. This progress can mostly be attributed to the application of deep learning
techniques, which have become indispensable approaches for improving the accuracy of
protein structure predictions. In this study, we compared three popular neural network-
based techniques, AF2, Robetta, and trRosetta, in terms of their efficiency for predicting the
structures of varying lengths of a viral protein. AF2 exhibited an excellent performance
in CASP experiments; this tool accurately predicted the structures of most proteins in the
assessment [9]. However, in our study, AF2 performed poorly in the initial predictions.
Robetta and trRosetta outperformed AF2. Similar differences between these tools have been
observed in other studies. Lee et al. [13] compared the protein structures predicted using
AF2, RoseTTAFold, and a template-based modeler with the crystal structure of rhodopsin
bound to visual arrestin (PDB 5W0P); the structure predicted using AF2 varied considerably
from those predicted using the other tools, which exhibited high levels of agreement with
the crystal structure. Azzaz et al. [82] predicted the structures of several proteins using
computational tools and compared the obtained models with the corresponding crystal
structures; they found that Robetta was generally more accurate than AF2. Together with
our results, these findings suggest that structural refinement is required to improve the
quality of the models predicted using AF2. Regarding template-based tools, we found
that MOE, for which templates were selected manually, outperformed I-TASSER, which
automatically selected the suitable templates. We performed 200 ns MD simulations to
refine the predicted models. The models reached stable states within 100 ns. After refine-
ment, considerable improvements were noted in the scores of the models predicted using
AF2 and I-TASSER; the refined structures became theoretically reasonable according to
the results of ERRAT and phi–psi plot analyses. Post-refinement improvements in model
quality were also indicated by the ProSA-web analysis [45], which calculated the energy
values of the models, and the values were compared with those of typical native folded
protein structures (Figure 9). Therefore, structural refinement through thermodynamic
stabilization may be essential for the construction of reliable protein models. Furthermore,
MD simulation is a feasible approach for this purpose.

It is worth noting that for proteins with intrinsically disordered regions, such as
HCVcp [83], obtaining theoretically correct structures without a steric clash is just the
first step. It is challenging for these in silico predicted structural models with disordered
regions to be validated without directly relevant data from experimental techniques, such
as X-ray crystallography and NMR. For structure-based investigations, the unvalidated
predicted structural models of disordered-region-containing proteins should be used with
caution. Further works can be performed by using Markov state modeling [84] and
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enhanced sampling MD simulation methods [85], such as replica exchange MD [86] and
metadynamics [87], to sample different protein conformations for describing the proteins
as structural ensembles, in particular for proteins containing disordered regions.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/bioengineering10091004/s1, Supplementary Figure S1: Pictorial alignment
of NCBI-BLASTp results used for MOE-based structure prediction; Supplementary Table S1: Top
ten templates automatically selected by I-TASSER for HCVcp structural modeling; Supplementary
Table S2: Summary of the simulation systems in this study; Supplementary Figure S2: Water
boxes containing AF2 predicted HCVcp 116, HCVcp 177, or HCVcp 191 structures for MD sim-
ulations; Supplementary Figure S3: Water boxes containing Robetta predicted HCVcp 116, HCVcp
177, or HCVcp 191 structures for MD simulations; Supplementary Figure S4: Water boxes con-
taining trRosetta predicted HCVcp 116, HCVcp 177, or HCVcp 191 structures for MD simulations;
Supplementary Figure S5: Water boxes containing MOE modeled HCVcp 116, HCVcp 177, or HCVcp
191 structures for MD simulations; Supplementary Figure S6: Water boxes containing I-TASSER
modeled HCVcp 116, HCVcp 177, or HCVcp 191 structures for MD simulations; Supplementary
Figure S7: Superimposed structures of 150, 175, and 200 ns frames in MD simulations for all the
models; Supplementary Table S3: Validation of the predicted HCVcp structures; Supplementary
Table S4: Validation of the predicted HCVcp structures subjected to a 200 ns MD simulation.
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