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Simple Summary: Gut microbiomes can influence host health and fitness. Pollutants, including
antibiotics, tend to alter microbiomes. We examined the role of an undisturbed gut microbiome on
tadpole health and morphology in the Rio Grande Leopard frog, Rana berlandieri. We exposed tadpoles
to four treatments (1) control: clean water, (2) Roundup®: the active ingredient is glyphosate, the
main herbicide used in the United States, (3) antibiotic cocktail, to disrupt the natural microbiome of
the tadpoles, and (4) combination: Roundup and antibiotic cocktail. We found that the gut microbial
community significantly changed across treatments. Tadpoles in the antibiotic and combination
treatments were least active and the smallest compared to the other treatments. Our results provide
evidence that the gut microbial communities of tadpoles are sensitive to herbicides and antibiotics,
which may have an impact in host phenotype and fitness via altered behavior and growth. This study
provides important insights for conservation of amphibians and into the consequences of current
agricultural practices.

Abstract: The gut microbiome is important for digestion, host fitness, and defense against pathogens,
which provides a tool for host health assessment. Amphibians and their microbiomes are highly
susceptible to pollutants including antibiotics. We explored the role of an unmanipulated gut micro-
biome on tadpole fitness and phenotype by comparing tadpoles of Rana berlandieri in a control group
(1) with tadpoles exposed to: (2) Roundup® (glyphosate active ingredient), (3) antibiotic cocktail
(enrofloxacin, sulfamethazine, trimethoprim, streptomycin, and penicillin), and (4) a combination of
Roundup and antibiotics. Tadpoles in the antibiotic and combination treatments had the smallest
dorsal body area and were the least active compared to control and Roundup-exposed tadpoles,
which were less active than control tadpoles. The gut microbial community significantly changed
across treatments at the alpha, beta, and core bacterial levels. However, we did not find significant
differences between the antibiotic- and combination-exposed tadpoles, suggesting that antibiotic
alone was enough to suppress growth, change behavior, and alter the gut microbiome composition.
Here, we demonstrate that the gut microbial communities of tadpoles are sensitive to environmental
pollutants, namely Roundup and antibiotics, which may have consequences for host phenotype and
fitness via altered behavior and growth.
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1. Introduction

Animals support microbial communities, providing a unique ecosystem for microor-
ganisms with complex microbiome-host interactions [1]. The microbiome community can
be shaped by host and environmental factors, such as environmental surfaces, exposure
to pathogens, and horizontal/vertical bacterial transmission [2–4] and may impact host
fitness and health [5]. The diversity of these microbial communities influences the host’s
metabolism, immunity, and nutrient uptake [1,6–8]. Disruption of the gut microbiome
community via environmental pollutants can lead to metabolic disorders and greater risk
of bacterial infections [9–11].

The host-associated gut microbiota helps regulate development and growth [12–14]
and is especially important during growth in juvenile stages [15,16]. An undisturbed gut
microbiome can promote growth through improved digestion and metabolism [17,18]. In
addition, microbes can manipulate host behavior [19] to their own advantage [20] and
microbes influence the production or synthesis of signaling molecules that control both
food consumption and food choice [1]. Changes in the microbiome influence host food
selection and grooming; reproduction may also control the abundance and composition of
the microbiome [21,22]. Together, these factors affect overall fitness and growth.

Exploring the core microbiome community (i.e., the prevalent taxa dominating the
microbiome) among host organisms of the same species provides insights into the naturally
occurring communities and eco-evolutionary dynamics [11,23,24]. Microbial communities
associated with amphibian skin and gut interact with the environment and provide defense
against parasites and pollutants [25]. The capacity of a host to harbor certain bacterial com-
munities may vary with the ecological environment, because there is a strong relationship
between the host condition and environmental interaction with the microbial community
residing within the host [1]. Indeed, host microbiomes are different from environmental mi-
crobiomes [26,27], and the microbiome can transition if the host’s environment is disturbed.
Therefore, studies focusing on the responses to environmental shifts of both the host and
their microbiomes are needed to understand the active role microbial communities play in
host health and fitness [28].

A vast array of contaminants reach aquatic environments, where amphibians inhabit,
breed, and develop, modifying the microbiota and altering amphibian susceptibility to
parasites [29–31]. Two common contaminants include pharmaceuticals (e.g., antibiotics)
from humans and livestock and pesticides from farming and other human uses [11,32].
These environmental stressors result in dysbiosis of host microbiomes, leading to loss
of microbial community diversity, higher abundance of pathogenic species, and loss of
beneficial bacteria [33–35]. In amphibians, the functional change of the gut microbiota
may be more sensitive to environmental disturbance than the amphibian hosts them-
selves [36], and because their gut and skin microbiota are habitat-specific, environmental
factors might be mediating bacterial community structure [37]. Glyphosate, the active
ingredient in Roundup® herbicides, is the main herbicide component used in the United
States, and its use has increased worldwide [32,38]. This herbicide inhibits the synthase of
5-enolpyruvylshikimate-3-phospate, an enzyme found in plants and bacteria. Glyphosates
and other herbicides alter the microbiota of many animals [39,40]. Glyphosate significantly
changes the skin microbiota in cricket frog larvae, Acris blanchardi [41], however not much is
known about how glyphosate and antibiotics affect the gut microbiome of amphibians [42].
Understanding of the initial core microbiome composition and functionality of the nat-
urally occurring microbiomes is useful to understand amphibian declines [28,43] and to
potentially relating findings to other species, including humans exposed to these pollutants.

We explored how disturbance via Roundup, and in combination with antibiotics,
alters gut bacterial community composition. Cuzziol et al. [42] found that Rhinella are-
narum tadpoles exposed to glyphosate-based herbicides had greater taxa diversity whereas
tadpoles exposed to Ciproflaxin antibiotics had decreased intestinal bacterial diversity.
We hypothesized that a low, yet environmentally relevant, concentration of Roundup (in
Roundup ® Ready-to-use weed and grass killer III) and/or exposure to antibiotics would
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alter the community composition of the gut microbiome of Rio Grande Leopard frog, Rana
berlandieri, tadpoles. The gut microbiome of R. berlandieri larvae has not been studied.
Studies of gut microbiomes in Leopard frogs, Rana pipiens, found that the dominant genus
is Proteobacteria and Firmicutes in tadpoles [44] and Bacteroides in adults [45,46]. They
also found anaerobic bacteria such as butyrogenic and acetogenic, protozoans and sev-
eral ciliates [46]. Negative effects of Roundup exposure in tadpoles of the Rana genus
have been reported by Relyea [47–49], including larval toxicity, lethality, and growth of
deeper-tails suggesting an activation of developmental pathways used for antipredator re-
sponses. Similarly, Gabor et al. [50] found deeper tails in Roundup-exposed Rana berlandieri
tadpoles. We hypothesized that tadpoles with disturbed microbiome (via exposure to
Roundup, antibiotic, and combination treatments) would show differences in activity,
growth, food consumption, and mortality than those that were not exposed. Exploring
the gut microbiome of anuran populations provides insights into the fitness trade-offs
between survival and growth, owing to detrimental alterations to the environment caused
by anthropogenic factors.

2. Materials and Methods

We collected three egg clutches of Rana berlandieri on 24 February 2020 from a stream lo-
cated in Spring Lake Reserve, San Marcos, Texas (first egg clutch: 29◦54′02.9′′N, 97◦56′36.1′′ W;
second and third egg clutches: 132 cm apart, 29◦54′01.4′′ N, 97◦56′39.7′′ W); leaving half of
each clutch undisturbed at the site. Rana berlandieri, the Rio Grande Leopard frog, inhabits
streams, rivers, side pools, pools along arroyos, springs, and stock tanks in several environ-
ments such as grasslands, semiarid areas, mountainous regions, and woodlands [51].

We brought egg clutches into the laboratory at Texas State University and housed
them in 3 L plastic tanks with 2.7 L of stream water collected from the site until the eggs
hatched. When tadpoles were free-swimming (approximately one week after collection), we
haphazardly mixed tadpoles from each egg clutch and reared them in 32–6 L plastic tanks
filled with 2.7 L of spring water, following Gabor et al. [50]. They were left undisturbed
under a natural light cycle (via a large window) at room temperature (24 ◦C). We fed
tadpoles ad libitum with agar food blocks (a mixture of spirulina powder and fish flakes
(ISO flake food TetraMin) in an agar medium); four food block squares were added every
four days and any uneaten food was removed. We monitored tadpoles daily and changed
water once a week and as needed. We reared the tadpoles until Gosner stage 25 [52] and
then randomly assigned them to new 3 L treatment tanks (n = 6 tadpoles per tank, 8 tanks
per treatment). We allowed tadpoles to acclimate to the new tanks for two days before
exposing them to the treatments.

We exposed R. berlandieri tadpoles (n = 192) to four treatments for three weeks:
(1) Roundup treatment (environmentally relevant concentration of 1.47 mg a.e/L of
glyphosate in Roundup ®), (2) antibiotic treatment (to alter the natural microbiome from
the tadpoles): spring water with antibiotic cocktail (30 mg/L enrofloxacin, 13.3 mg/L
sulfamethazine, 2.67 mg/L trimethoprim, 5000 µg/L streptomycin, and 5000 I.U./L of
penicillin), and (3) combination treatment: same concentrations as above of Roundup and
antibiotic cocktail, and a (4) control group of tadpoles in spring water. For the Roundup and
combination treatments, we mixed 45 L spring water with 1.14 mL of Roundup®, doubling
the concentration reported by Gabor et al. [50]. We housed the tanks with tadpoles inside
a sterilized incubator. The antibiotic cocktail was used by Knutie et al. [53] to disrupt
the early-life microbiota of Cuban tree frog tadpoles (Osteopilus septentrionalis) and did
not present lethality. We wore new gloves for each tank throughout the experiment to
avoid cross contamination. Temperature (24 ◦C) and light cycle (12 h light/12 h darkness)
remained constant through the exposure period inside the incubator. On day 10, we
performed a complete water change for all treatments and re-dosed with the same quantities
described above.

We photographed of each tadpole at the beginning, end, and every fourth day of
exposure. To do this, we gently caught all tadpoles per tank at once in a clean net and took
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a picture at the water surface level, with a ruler for scale. We measured the dorsal body
area, as this provides a good estimate of body condition [54]. Therefore, we use dorsal body
area as an assessment of fitness. Dorsal body area was determined using ImageJ [55]. We
counted the number of consumed agar food blocks, removed sediment and uneaten food,
and added four new agar food blocks per tank every four days. On day 11 of exposure,
we placed the tanks on a white surface with web cameras mounted above each tank, to
measure tadpole activity. We acclimated tadpoles for 20 min after we moved them to the
white surface, and then recorded them for 60 min. We quantified activity (total distance
moved cm) from the videos using Noldus ® EthoVision.

We collected the guts of two tadpoles per treatment tank (n = 16/treatment) after three
weeks of exposure to the treatments. We euthanized tadpoles by placing them on an ice
bath for an hour. We removed the abdominal plate of each larvae using sterile bistoury
blades and forceps. We placed each sample in individual sterile Eppendorf tubes and
stored them at −20 ◦C. DNA extraction, PCR, purification, quantification, and sequencing
of gut samples follow the methods described below.

To explore longer term (four months) recovery from the treatments, we used four
tadpoles from each tank (n = 32/treatment) that we did not dissect after the exposure period
ended. First, we thoroughly rinsed the tanks with deionized water to ensure no treatments
remained in the tanks and added new spring water. Then tadpoles were kept under the
same laboratory conditions previously described. We also continued to measure their
dorsal body area during the recovery period, record the amount of food consumed, and
mortality per tank. We changed tank water every 15 days. Once tadpoles reached Gosner
stage 40, we euthanized them with a 1% benzocaine overdose. We stored the specimens
in 75% ethanol. After four months of recovery, we euthanized all tadpoles that had not
reached Gosner stage 40.

2.1. Microbiome Assay

We performed total DNA extraction for 16S rRNA gene amplicon. We analyzed
samples following Gontang et al. [56] and Gabor et al. [57] for gut microbiome analysis.
In summary, we extracted DNA from the samples by using Pure Link™ Microbiome
DNA Purification Kit. We then performed two rounds of PCR to obtain DNA fragments
with specific primers for barcode analysis. We confirmed amplification by using gel
electrophoresis with a Thermo Scientific GeneRuler 1kb Plus DNA Ladder. We conducted a
PCR purification with ExoSap–IT PCR Product Cleanup kit, and a final DNA concentration
measure with Qubit dsDNA BR assay kit. For sequencing, we diluted samples to obtain
40ng/µL and combined them in one sterile Falcon tube. Amplicon libraries were sequenced
with the paired-end Illumina MiSeq platform at the Texas State University.

2.2. Statistical Analysis: Dorsal Body Area, Food Consumption, and Death Rates through Exposure
and Recovery Periods

We calculated the mean dorsal body area from the pictures. Because variances were
not equal across treatments, we performed a repeated measures nested ANOVA with a
rank transformation on dorsal body area as the response variable, treatment, and day of
exposure as fixed factors, and tank number as a random factor nested in day of exposure.
We used the residual maximum likelihood (REML) method and calculated Tukey-adjusted
comparisons (alpha = 0.05) to detect which treatments were significantly different. We then
plotted dorsal body area across treatments through the different time points. We performed
the same analysis with rank transformation using the exposure measurements, recovery
measurements, consumed food during exposure, and death rates during recovery. We
analyzed the dorsal body area from the starting point of the experiment versus the final
measurements of the exposure period by performing the same analysis but with a logarith-
mic transformation of dorsal body area (cm2) because it was not normally distributed. We
performed the same analysis for consumed food during the recovery period.
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2.3. Behavior Analysis

Using Noldus EthoVision® software, we analyzed tadpole activity using distance
moved (cm) which was not normally distributed, so we performed a logarithmic trans-
formation. We conducted a mixed effects linear model with treatment as a fixed factor,
and tadpole nested into tank number as a random factor. We used an ANOVA to test for
differences across treatments.

2.4. Microbiome Analysis

We analyzed the FASTA sequencing results by following the DADA 2 [58] pipeline in
R for sample filtering and identification. We used the SILVA 138.1 database [59] to assign
taxonomy to the filtered bacterial amplicon sequence variants (ASVs). All samples were
processed together. We removed samples under 1000 sequencing reads. We rarefied the
relative abundance data (seed: 999, permutations: 999) and conducted a permutated redun-
dancy analysis (RDA) to analyze the differences in composition and relative abundance
between treatments. Using the rarefied data, we calculated alpha diversity indexes using
Hill numbers (with the vegetarian package in R, [60] and created an Alpha diversity profile.
We also calculated community turnover between treatments using rarefied Hill numbers.
Alpha diversity is best described by Hill numbers [61–65].

We used the Microbiome package in R [66] to describe the core microbiome of the treat-
ments (prevalence 50%) and the average most relative abundant phylum and genera that
characterizes each microbiome. We performed a multivariate analysis with linear models
to analyze differences in microbial genus found per treatment using the Galaxy platform
1.01. We further analyzed these data by individual Kruskal-Wallis tests to determine which
treatments differ.

3. Results
3.1. Dorsal Body Area and Food Consumption

There were no significant differences in the dorsal body area of tadpoles exposed to our
treatments at the beginning of the exposure (ANOVA: F1,28 = 1.81, p = 0.17, Figure 1A day 0).
However, at the end of the three weeks of exposure, there were significant differences in
the dorsal body area of the tadpoles across treatments (Rm nested ANOVA: F1,148 = 7.33,
p < 0.0001, Figure 1A). Control (p < 0.001) and tadpoles exposed to Roundup® (p < 0.001)
grew the largest compared to antibiotic- and combination-exposed tadpoles. Control- and
Roundup-exposed tadpoles did not differ significantly (p = 0.07) neither did antibiotic-
and combination-exposed tadpoles (p = 0.64). None of the tadpoles died during the
exposure period.

There were significant differences in the number of consumed agar food blocks across
treatments (Rm nested ANOVA: F3,124 = 4.02, p = 0.009, Figure 1B). More specifically,
tadpoles in control treatment consumed more food than tadpoles in Roundup (p = 0.001),
antibiotic (p < 0.0001), and combination (p < 0.0001) treatments. Antibiotic- and combination-
exposed tadpoles did not consume significantly different amounts of food blocks compared
to each other (p = 0.56).

There were significant differences in dorsal body area at the end of the recovery period
across treatments (Rm nested ANOVA: F3,853: 9.10, p < 0.001, Figure 1C). Tadpoles that
were previously in the control and Roundup treatments presented the greatest dorsal body
area, but these two treatments were not significantly different from each other (p = 0.73).
Tadpoles in the combination and antibiotic treatment had the smallest dorsal body area
but were not significantly different from each other (p = 0.11). Because of an incubator
malfunction, all tanks were reared outside the incubator for the last month (20 July–19
August 2020), at ~24 ◦C with a natural light cycle. Nine control tadpoles and nine Roundup-
exposed tadpoles reached Gosner stage 40, whereas four tadpoles from the combination
treatment and one from the antibiotic treatment reached this stage (out of 48 tadpoles per
each treatment). We found no significant differences in survival across treatments during
this period (Rm nested ANOVA: F3,853 = 0.05, p = 0.99).
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Figure 1. Mean (A) dorsal body area (cm2 ± SE), (B) number of consumed agar blocks during
the exposure window of three weeks, and (C) dorsal body area (cm2 ± SE) during the recovery
window of four months of Rana berlandieri tadpoles. There were significant differences in the
number of consumed agar food blocks across treatments during the recovery period (Rm nested
ANOVA: F3,853 = 82.45, p < 0.0001). There were no significant differences in the number of food blocks
consumed between control and Roundup-exposed tadpoles (mean ± SE consumed blocks: control:
2.35 ± 0.17, Roundup: 1.94 ± 0.17, p = 0.34), neither between antibiotic- and combination-exposed
tadpoles (mean ± SE consumed blocks: antibiotic: 1.10 ± 0.15, combination: 1.36 ± 0.15, p = 0.44).
However, control tadpoles consumed more food than antibiotic- and combination-exposed tadpoles
(p < 0.0001, p = 0.001, respectively).

3.2. Behavior

There were significant differences across treatments in tadpole activity during expo-
sure (ANOVA: F3,139 = 83.62, p < 0.0001, Figure 2). Control tadpoles were the most active
(Linear mixed model fit by REML: t-value = 13.02, p < 0.0001); followed by Roundup-
exposed tadpoles (t-value = 9.94, p < 0.0001). There were no significant differences between
the activity of combination- and antibiotic-exposed tadpoles (t-value = 1.10, p = 0.27). How-
ever, antibiotic-exposed tadpoles were the least active compared to control and Roundup
(t-value = 90.26, p < 0.0001).

3.3. Gut Microbiome

From Rio Grande Leopard frog tadpole gut microbiome samples (n = 60), 16S rRNA
amplicon sequencing resulted in 1,091,946 sequences and 813 unique ASVs. After filtering
and trimming the sequences, two gut samples (from the combination-exposed tadpoles)
were removed from the data. There were significant differences in the gut microbiome
composition and relative abundance across all combination of treatments (RDA: F29 = 7.523,
p = 0.001, R2 = 0.25, Table 1).
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Table 1. Pairwise comparisons of permutated redundancy analysis (RDA) to analyze the differ-
ences in composition and relative abundance of microbiome in the guts of Rana berlandieri tadpoles
between treatments.

Treatment Comparison F p Adjusted R2

Control–Roundup 5.725 0.001 0.14
Control–Antibiotic 9.986 0.001 0.23

Control–Combination 12.49 0.001 0.30
Roundup–Antibiotic 4.643 0.001 0.13

Roundup–Combination 7.896 0.001 0.20
Antibiotic–Combination 4.114 0.001 0.10

We plotted the alpha diversity profile across treatments (Figure 3). We did not find sig-
nificant differences in the species richness across treatments (ANOVA: q = 0: F29.50 = 0.876,
p = 0.459). We found significant differences in the number of common species (q = 1) and
number of very abundant species (q = 2) across treatments (ANOVA: q = 1: F29,50 = 6.184,
p = 0.01; q = 2: F29,50 = 8.343, p = 0.0001), more specifically between control and antibiotic
tadpoles (q = 1: p = 0.01; q = 2: p = 0.0001), and antibiotic- and Roundup-exposed tadpoles
(q = 1: p = 0.007; q = 2: p = 0.001). We found community turnovers across treatments
(Table S1).

We described the detection threshold by the core gut microbiome of tadpoles from
each treatment (Figure 4A–D). The most prevalent ASV per group were classified to the
genus level when possible. The number of genera constituting each core gut microbiome
varied: control (n = 18), Roundup (n = 16), combination (n = 16), and antibiotic (n = 2).
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abundance. Cell colors range from blue (low prevalence) to yellow (high prevalence) based on
the detection threshold (x axis). We plotted most relative abundant phylum (Figure 5A) and gen-
era (Figure 5B) presented in average across treatments. We identified 18 ASVs that significantly
changed in relative abundance across treatments (Table S2). Proteobacteria and Firmicutes were the
most abundant across all treatments. Unknown phyla were found in combination and antibiotic
treatments in high relative abundance. For the genera, most noticeable is the high relative abun-
dance of Legionella in the Roundup treatment compared to the others (Kruskal-Wallis X2

3 = 29.137,
p = 2.10 × 10−6, Table S2), as well as the low relative abundance of Xanthobacter in combination
and antibiotic treatments (Kruskal-Wallis X2

3 = 38.42, p = 2.30 × 10−8, Table S2). Prevotella_9 was
found in high abundance only in the combination-exposed tadpoles (Kruskal-Wallis X2

3 = 32.63,
p = 3.91 × 10−7, Table S2).
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4. Discussion

Anthropogenic pollutants alter the microbial communities on the skin and in the gut
of amphibians [67–70]. However, more research is needed to understand how altered
microbial communities affect fitness, phenotype, and behavior. Both Roundup and an
antibiotic cocktail altered the composition and relative abundance of the gut microbiome,
as well as the growth and behavior of Rio Grande Leopard frog tadpoles. Similar to other
studies of vertebrates including amphibians, the most abundant phyla of intestinal bacteria
were Proteobacteria and Firmicutes [71–73]. The higher abundance of more pathogenic
bacteria, Bacteroidota and Firmicutes, in the combination treatment is associated with the
breakdown of organic matter and could result in these tadpoles being most susceptible to
lower health via altered immune systems owing to the lower quality bacterial communities.
Tadpoles exposed to Roundup had a higher relative abundance of pathogenic bacteria (such
as Legionella sp, see below) in their gut microbiome compared to the control tadpoles and
were less active than control tadpoles. Antibiotic- and combination-exposed tadpoles were
the smallest and slowest compared to control tadpoles and did not present pathogenic bac-
teria in high relative abundance but had low relative abundance of Xanthobacter. Prevotella_9
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was found in high abundance only in the combination-exposed tadpoles. These results
support the hypothesis that gut microbial communities of anuran larvae are sensitive to
environmental pollutants such as Roundup and more so when their gut bacteria were
already disrupted, and this in turn, can affect amphibian health.

Glyphosate alone negatively affects anuran fitness, specifically by altering growth
and development [68,74]. Despite finding significant differences in dorsal body area
between control and antibiotic groups, we did not find significant differences in dorsal
body area between control and Roundup-exposed R. berlandieri tadpoles. Roundup induced
mortality and growth changes in other tadpole species [75–77], though we did not observe
this in our study. Even though we did not find significant growth differences between
Roundup-exposed and control tadpoles, we observed a trend of tadpoles being exposed to
Roundup being smaller, suggesting that Roundup exposure might delay metamorphosis.
Slower growth and smaller body size at metamorphosis has long term fitness effects [78,79]
and might also affect overwintering survival and later life stages fitness [79,80]. Given
that there is a trade-off between survival and growth in tadpoles, our results suggest
that tadpoles prioritize allocating more energy in survival than in growth. Despite not
observing any significant size differences, we did find that tadpoles exposed to Roundup
were significantly less active than control tadpoles. Tadpole activity can be used as a
biomarker for toxicity evaluation [81], since a decrease in activity increases predation risk,
reduces feeding, and correlates with slower growth [82]. With the observed difference in
activity and the trend of smaller growth, our findings suggest that at higher levels than we
used, but still environmentally relevant, Roundup can affect the fitness of anurans tadpoles.

Antibiotics and pharmaceuticals are known to reach aquatic ecosystems, potentially
causing long-term risks to aquatic and terrestrial organisms associated with such ecosys-
tems [83–85]. In fact, one of the antibiotics we used, enrofloxacin, is one of the most used
antibiotics in human and veterinary medicine [86], and although it has not been found
to cause significant mortality in Rhinella arenarum tadpoles [86], it can cause growth and
development suppression (in doses higher than 10µg/L) in R. arenarum tadpoles [86]. One
mechanism by which antibiotics reduce growth and development is by inducing neurotoxi-
city in tadpoles, which is associated with reduced food intake and reduced activity [86].
Antibiotic-exposed tadpoles consumed the least amount of food during exposure and recov-
ery periods in our study. Another proposed mechanism is that the natural gut microbiome
could be directly altered by the antibiotic, inducing significant short-term changes to the
microbial community and host health [86]. Therefore, the role of the microbiome in hosts’
energetic gain and the direct relation to body size might change if antibiotic is present in
the environment [87,88]. A disturbed gut microbiome could lack symbiotic microbes that
produce essential amino acids, vitamins, and short-chain fatty acids which are a pivotal
part of host metabolism and nutrient processing, allowing for endocrine pathways that
regulate growth [13].

We predicted that tadpoles with disturbed microbiomes would be smaller, because
an undisturbed microbiome produces greater concentrations of bacterial metabolites that
allow an increase in somatic growth rates and fat storage [8]. Here, there were differences
in activity, growth, and microbial composition in antibiotic-exposed tadpoles compared to
control tadpoles, suggesting that the differences in growth due to antibiotic exposure occurs
by a combination of both pathways, through behavioral and microbial community changes.
Overall, we did not find significant differences in activity, growth, and gut microbial
composition between combination- and antibiotic-exposed tadpoles, suggesting that the
effects of the antibiotic cocktail alone were enough to suppress growth, change behavior,
and decrease food consumption in R. berlandieri tadpoles.

While our results suggest that Roundup and antibiotic exposure altered amphibian
gut microbial communities, further studies are needed to understand if the effects in
phenotype and fitness are due to this alteration or to the host’s response to the treatments.
The differences in the alpha diversity profile between control- and antibiotic-exposed
tadpoles are more noticeable in a high ASV richness, and a high number of abundant ASVs
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in the antibiotic treatment. Several studies only use diversity in microbial research as a
parameter of a stable and healthy microbial community [10], however, Coyte et al. [88]
found that a greater richness tends to have a destabilizing effect, suggesting that the
changes in the community composition are more relevant than just the diversity of bacteria.
This is evident in antibiotic and combination groups because there is a greater bacterial
richness comprising the core microbiome of these exposed tadpoles and a high community
turn over compared to control tadpoles. The disruption of the natural occurring bacterial
communities by Roundup and antibiotics might have facilitated certain bacteria to colonize
the gut microbiome and to shift the community structure [87] compared to the control group.
We present a clear example of this in the Roundup-exposed tadpoles, where a disrupted
microbiome allowed for higher relative abundance of Legionella in this treatment only.
Legionella in tadpoles has been identified in farmland frogs and associated with infectious
disease-related pathogens [71]. This genus is associated with the gut microbiome of frogs
with diseases, for example diarrheic captive Rana dybowskii [89]. Another example of this is
in the high relative abundance of Bosea and Xanthobacter in the Roundup-exposed tadpoles
compared to the other treatments. These two genera are in the gut microbiome of Rana
chensinensis tadpoles exposed to octylphenol, an endocrine-disruptive chemical [90]. These
changes provide evidence that the disruption of the natural occurring gut microbiome in
R. berlandieri tadpoles by Roundup allows for colonization of pathogenic bacteria that might
influence the overall health and development of anuran larvae. Despite not finding a high
relative abundance of pathogenic bacteria in the antibiotic and combination treatments,
these treatments presented the highest ASV evenness. Since we found differences in body
condition and behavior, we suggest that a high richness in the bacterial community may be
associated with a negative effect in fitness and behavior in anuran tadpoles.

The microbiome contributes to metabolism, energy uptake from food, and defense
against pathogens [7,91,92], amongst many other well-documented functions. Because there
were differences in the microbial composition and relative abundance across treatments,
we can suggest that the growth and behavior differences found in Roundup, antibiotic,
and combination treatments compared to control tadpoles, are associated with either a
disturbed microbial community and/or to Roundup alone. We monitored changes in the
gut microbiome through taxonomic diversity, however functional diversity analyses to
monitor the changes in microbial functions after exposure are needed to further understand
the effects Roundup and a disturbed microbiome have on the host behavior, growth,
and survival.

5. Conclusions

A disturbed microbiome has impacts on host health and fitness of Rana berlandieri
tadpoles. From a management perspective, our results indicate that even low levels of
Roundup should not be used during amphibian breeding and larval periods to protect the
natural gut microbiome, normal growth rate, and typical behavior in R. berlandieri tadpoles.
In this study, we did not observe an interaction between antibiotic-induced changes and
Roundup exposure. This could have been driven by the relatively high concentration
used in our antibiotic cocktail. Future studies should use another antibiotic cocktail or
target specific members of the core microbiome of the study species to test the effects of a
disturbed microbiome in host health and fitness.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/biology12091171/s1, Table S1: Permuted community turn over between
gut microbiome exposed to four treatments using Hill numbers; Table S2: Distinct microbial commu-
nity members per treatment.
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