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Abstract

Background: Silent cerebral infarcts (SCI) in sickle cell anemia (SCA) are associated with 

future strokes and cognitive impairment, warranting early diagnosis and treatment. Detection of 

SCI, however, is limited by their small size, especially when neuroradiologists are unavailable. We 

hypothesized that deep learning may permit automated SCI detection in children and young adults 

with SCA, as a tool to identify the presence and extent of SCI in clinical and research settings.

Methods: We utilized UNet, a deep learning model, for fully automated SCI segmentation. 

We trained and optimized UNet using brain MRIs from the Silent Infarct Transfusion (SIT) 

Trial. Neuroradiologists provided the ground truth for SCI diagnosis, while a vascular neurologist 
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manually delineated SCI on FLAIR and provided the ground truth for SCI segmentation. UNet 

was optimized for the highest spatial overlap between automatic and manual delineation (Dice 

Similarity Coefficient, DSC). The optimized UNet was externally validated using an independent 

single-center prospective cohort of SCA participants. Model performance was evaluated through 

sensitivity and accuracy (% correct cases) for SCI diagnosis, DSC, intra-class correlation 

coefficient (ICC, metric of volumetric agreement), and Spearman’s correlation.

Results: The SIT Trial (N=926, 31% with SCI, median age 6.8 y) and external validation (N=80, 

50% with SCI, age 11.5 y) cohorts had small median lesion volumes of 0.40 mL and 0.25 mL, 

respectively. Compared to the neuroradiology diagnosis, UNet predicted SCI presence with 100% 

sensitivity and 74% accuracy. In MRIs with SCI, UNet reached a moderate spatial agreement 

(DSC 0.48) and high volumetric agreement (ICC 0.76, Rho=0.72, P<0.001) between automatic 

and manual segmentations.

Discussion: UNet, trained using a large pediatric SCA MRI dataset, sensitively detected small 

SCI in children and young adults with SCA. While additional training is needed, UNet may be 

integrated into the clinical workflow as a screening tool, aiding in SCI diagnosis.

Graphical Abstract

INTRODUCTION

Individuals with sickle cell anemia (SCA) are at risk for developing silent cerebral infarcts 

(SCI), starting from infancy.1 By age 32, over 50% of adults with SCA demonstrate SCI on 

MRI.2,3 The presence and the absolute volume of SCI are associated with neurocognitive 
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impairment,4 contributing to poor school performance in children and unemployment in 

adults.5,6 Additionally, children with SCI are at an elevated risk for overt strokes,7 which can 

cause even greater long-term disability and loss of independence. Early SCI detection may 

lead to an escalation in treatment strategy to prevent infarct recurrence and may prompt an 

assessment for individualized education plan for school-aged children.8,9

Several barriers prevent the timely detection of SCI in children with SCA. SCI are not 

associated with acute neurological symptoms or deficits detectable on bedside examinations. 

The majority of SCI can only be identified on MRIs, which may be difficult to obtain 

in young children due to the need for sedation and in certain geographical areas due 

to limited healthcare resources.10,11 Additionally, SCI are small and are defined as a 

minimum of 3 mm in diameter, measuring on average less than 0.50 mL.12 Thus, given 

their small size and varying degrees of signal intensity on MRI, SCI may be missed or 

misclassified by clinicians unfamiliar with MRI findings in individuals with SCA.11,13 

Furthermore, in certain clinical settings with limited resources, while MRIs may be 

performed, neuroradiologists may not be on-site to review the scans.14 Recent American 

Society of Hematology guidelines recommend a minimum of one screening MRI in 

individuals with SCA to evaluate for the presence of SCI.11 As more clinicians incorporate 

screening MRIs as a part of routine care, clinicians may benefit from automated methods, 

which may sensitively and efficiently detect SCI.

Over the past decade, the role of machine learning in lesion detection has expanded across 

several clinical and research settings. Various semi-automated methods have been optimized 

for white matter hyperintensity (WMH) segmentation on T2 FLAIR brain MRI.15 These 

existing models, however, may not be suitable for SCI segmentation given SCI are typically 

markedly smaller than WMHs caused by sporadic, age-related cerebral small vessel disease. 

Thus, we utilized a deep learning benchmark model based on convolutional neural networks 

(UNet) and trained UNet on a large, existing pediatric SCA MRI dataset, which included 

patients with and without SCI. UNet has offered fully automated lesion segmentation in 

neurological diseases such as multiple sclerosis, ischemic stroke, and cerebral small vessel 

disease with success.16,17 We hypothesized that UNet could be optimized to detect the 

presence of SCI on MRI and to accurately delineate infarcts, serving as a potential clinical 

and research tool in children and young adults with SCA.

METHODS

We followed the reporting guideline on the use of machine learning predictive models in 

biomedical research.18

Data availability

The data that support the findings of this study are available from the corresponding author 

upon reasonable request.

Study populations

We utilized two independent study populations. The population used for UNet model 

training and optimization consisted of participants from the Silent Infarct Transfusion 
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(SIT) Trial. The SIT Trial was a multicenter, international, randomized clinical trial 

(NCT00072761) aimed to determine the efficacy of regular blood transfusions for SCI 

prevention in children with SCA.8,12 Participants were recruited from December 2004 to 

May 2010 and underwent screening brain MRIs. Participants with a history of overt infarcts 

were excluded. Additional inclusion and exclusion criteria were listed elsewhere.8,12 The 

SIT Trial was approved by the institutional review board at each of the 29 participating sites.

The second independent study population was utilized for external UNet model validation. 

This cohort consisted of both children and young adults enrolled in a longitudinal brain MRI 

study at Washington University School of Medicine. Inclusion criteria were participants 

with hemoglobin SS (HbSS), HbS β-thalassemia, or hemoglobin SC (HbSC) genotype. 

Exclusion criteria were a history of stem cell transplantation, chronic transfusion therapy, 

overt stroke, or intracerebral hemorrhage. Institutional Review Board approved the study. 

Written informed consent was obtained from all participants.

For both study populations, laboratory studies including venous hemoglobin, and capillary 

gel electrophoresis to quantify the percentage of Hb isoforms and vital signs including 

oxygen saturation by pulse oximetry (SpO2) and systolic blood pressure were obtained 

before each MRI.

MRI protocol and image processing

The MRI protocol for the SIT Trial was described elsewhere.12 In brief, the majority of 

scans (>99%) were performed on 1.5 Tesla scanner, < 1% were performed on 3.0 Tesla 

scanner. Only the axial Fluid-attenuated Inversion Recovery (FLAIR) sequence was used 

for model training, with an in-plane resolution of ~1 × 1 mm and 5mm slice thickness. For 

the external validation cohort, all participants underwent a 3.0 Tesla brain MRI (Siemens, 

Erlangen, Germany). T1 MPRAGE (echo time [TE]/repetition time [TR] = 2.95/ 1,800 ms, 

inversion time [TI] = 1,000 ms, flip angle = 8°, resolution = 1.0 × 1.0 × 1.0 mm) and FLAIR 

(TE/TR=93/9000 ms, TI=2500 ms, resolution=1.0 × 0.9 × 5.0 mm for children, 1.0 × 0.9 × 

3.0 mm for adults) were acquired.

FLAIR images were skull-stripped and corrected for gain variation using the FMRIB 

Software Library (fmrib.ox.ac.uk/fsl, v6.0).19 For deep learning-based SCI segmentation, 

the FLAIR image intensity was further normalized with z-score like transformation using the 

mean image intensity within the brain region and twice the standard deviation to normalize 

the image intensity within the range [−1, 1].

Defining ground truth for SCI presence and SCI segmentation

SCI adjudication and manual infarct delineation for the SIT Trial were described 

previously8,12 and served as the ground truth for UNet training. Briefly, SCI presence 

and SCI segmentation were defined through a two-step process. First, baseline MRIs 

were evaluated and adjudicated by the SIT neuroradiology committee. An agreement 

between two out of three study neuroradiologists was required to determine the presence 

of SCI within each MRI. A SCI was defined as a MRI signal abnormality at least 

3 mm in one dimension and visible in two planes on FLAIR images. Second, in 

MRIs adjudicated to have SCI, a board-certified vascular neurologist (A.L.F) manually 
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delineated SCI on axial FLAIR images using the Medical Image Processing Analysis 

and Visualization (https://mipav.cit.nih.gov/) application. The application offers a semi-

automatic approach to delineate infarct lesions and create lesion masks for model training. 

For the external validation cohort, the ground truth for SCI presence was determined by 

a single neuroradiologist (M.R). Lesions were manually delineated by a board-certified 

vascular neurologist.

Deep learning segmentation model training

UNet consisted of a down-sampling contracting path and a symmetric up-sampling 

expansive path, allowing context capture and precise localization (Figure 1).20 For our study, 

the input of UNet was a 2D axial FLAIR image. The final output was a binary segmentation 

map indicating the probability of SCI per voxel for that axial image. A representative case of 

UNet SCI segmentation is shown in Figure 2.

Available screening MRIs from the SIT Trial were randomly divided into 90% for model 

training (“training” dataset) and 10% for model optimization (“optimization” dataset, 

Supplemental Figure 1). First, through the training dataset, we initiated model training using 

a pre-trained UNet model, previously optimized to detect white matter hyperintensities in 

adults with cerebral small vessel disease.17 Using the optimization dataset, we chose the 

UNet model that performed the best in lesion segmentation, achieving the maximal Dice 

Similarity Coefficient (DSC). DSC is a spatial overlap index that evaluates image similarity 

between UNet segmentation and manual delineation. It ranges from 0, indicating no spatial 

overlap, to 1, indicating perfect overlap. A DSC of 0.7 or greater is considered excellent 

agreement.21

Due to the relative scarcity of voxels positive for SCI compared to voxels negative for SCI, 

UNet could have easily achieved high accuracy by classifying all voxels as negative for 

SCI, yet at the expense of high false negatives. As a solution, using weighted binary cross 

entropy, we assigned a range of weights (1, 10, 100, and 1000) to SCI positive class to 

boost its weight relative to SCI negative class. A weight of 10, or SCI positive voxels set to 

10 times the weight of SCI negative voxels, achieved the highest DSC in the optimization 

dataset.

Performance evaluation

The optimized UNet model was applied to our external validation cohort to assess model 

performance and generalizability. To assess UNet performance at detecting SCI presence, 

sensitivity, specificity, and accuracy of UNet performance were calculated. Accuracy is the 

proportion of correct cases, either true positive or true negative, identified by UNet. We 

categorized a MRI as positive for SCI if the UNet predicted volume was greater than 0 mL. 

UNet SCI detection was compared against the “ground-truth” SCI presence as adjudicated 

by a neuroradiologist.

To assess the ability of UNet to accurately delineate the location and the extent of SCI, 

DSC was used to evaluate spatial (i.e. voxel-wise) agreement, while intra-class correlation 

coefficient (ICC, two-way mixed effect, absolute agreement) and bivariate correlations were 

used to evaluate volumetric agreement between UNet and manual segmentations.
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Statistical analysis

Data were reported as percentages for categorical data and median with interquartile range 

for continuous data. The normality of the distribution was assessed by the Shapiro-Wilk 

test. Clinical characteristics and laboratory measures were compared between the SIT Trial 

cohort and the external validation cohort using Mann Whitney U. Chi square or Fisher’s 

exact test was used for categorical variables.

Bivariate correlations between UNet estimated volume and ground-truth volume were 

performed using Spearman’s rank correlation (ρ). ICC was also performed to assess Unet 

predicted and ground-truth volume agreement. Bland-Altman plots were generated to assess 

data variability and the agreement between estimated and ground-truth volumes. Mean 

bias, and lower and upper limits of agreement (LOA, ±1.96 *standard deviation), were 

calculated. One Sample t-Test was performed to evaluate if the mean bias was statistically 

different from zero. Linear regression analysis was performed to evaluate if the bias between 

the estimated and ground-truth volumes (Y-axis of Bland-Altman plot) was independent 

of the ground-truth SCI volume (X-axis of Bland-Altman plot). Statistical analyses were 

performed using SPSS version 26 (IBM Corp, Armonk, NY).

RESULTS

Clinical characteristics of the training, optimization, and external validation cohorts

The clinical characteristics of 926 pediatric participants who underwent MRI screening in 

the SIT Trial are shown in Table 1. The MRIs were partitioned into 90% for model training 

and 10% for model optimization. The 90% “training dataset” included N=833, of which 258 

MRIs (31%) contained SCI. The 10% “optimization dataset” included N=93, of which 29 

MRIs (31%) contained SCI. UNet was externally validated using an independent “external 

validation cohort” which consisted of 80 children and young adults with SCA, of whom 40 

participants (50%) had SCI.

Compared to the SIT Trial cohort, the external validation cohort was older in age (The 

SIT Trial median age: [IQR] 8.9 [6.8, 11.0] years; the external validation cohort median 

age: 11.5 [8.3, 19] years, p<0.001). Median infarct volume within participants with SCI 

was small at 0.40 mL and 0.25 mL for the SIT Trial and the external validation cohorts, 

respectively (p=0.03). Additional baseline clinical characteristics are presented in Table 1.

UNet performance for automated detection of silent cerebral infarcts

We aimed to use UNet as a screening tool for SCI with maximal sensitivity. To minimize 

false negative cases while allowing for false positive cases, we categorized a MRI as 

positive for SCI if UNet-predicted volume was greater than 0 mL. The presence of SCI as 

adjudicated by a neuroradiologist served as the ground-truth. In the optimization dataset, 

UNet had a sensitivity of 90%, specificity of 63%, and accuracy of 71%, with three false 

negative cases.

By comparison, in the external validation cohort, UNet had a sensitivity of 100%, specificity 

of 48%, and accuracy of 74%, with zero false negative cases and 21 false positive cases. 
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While false negative cases were rare, occurring only in the optimization dataset, false 

positive cases were more common in both groups, and as expected given the goal to 

maximize sensitivity, at the expense of specificity. Representative examples of false negative 

cases from the optimization dataset and false positive cases for the external validation cohort 

are shown in Figure 3.

Of the false positive cases in the external validation cohort, UNet erroneously segmented 

portions of cortical or deep gray matter (8 cases, Figure 3B) and CSF pulsation artifact (2 

cases, Figure 3C) as SCI lesions. UNet also segmented white matter FLAIR hyperintensities 

smaller than 3mm in diameter (3 cases, Figure 3D), which fell below the size threshold 

for radiological definition of a SCI, and non-specific symmetrical periventricular white 

matter hyperintensities (4 cases, Figure 3E). Head motion accounted for the rest of the false 

positive segmentations.

UNet performance for spatial and volumetric accuracy of silent cerebral infarcts

UNet performance for spatial agreement was evaluated on a subset of MRIs positive for 

SCI, excluding MRIs without SCI. The median infarct volume for the optimization dataset 

and external validation cohort was small at 0.42 mL and 0.25 mL, respectively. In the 

optimization dataset, UNet achieved moderate spatial agreement on MRIs with SCI only 

(median DSC [IQR]: 0.48 [0.25, 0.60]). In the external validation cohort, UNet achieved 

similar spatial agreement on MRIs with SCI only (0.48 [0.30, 0.58]). Notably, DSC was not 

measured for all MRI scans. On a SCI negative MRI, DSC could only be 1 or 0, depending 

on whether UNet correctly segmented zero voxels (DSC=1) or incorrectly segmented one 

or more voxels (DSC=0). Thus, inclusion of MRIs without SCI may falsely over- or under-

estimate median DSC values, since these two extreme values would be included.

We next examined the volumetric correlation of estimated volume relative to ground-truth 

volume (Figure 4A, B). In the optimization dataset, median UNet estimated and ground-

truth volumes were 0.30 (0.09, 1.76) mL and 0.42 (0.29, 2.31) mL, respectively. In the 

external validation cohort, median UNet and ground-truth volumes were 0.33 (0.16, 0.57) 

mL and 0.25 (0.13, 0.72) mL, respectively. UNet volume was highly correlated with ground-

truth volume within the optimization dataset (ρ = 0.70, p < 0.001, Figure 4A) and within the 

external validation cohort (ρ = 0.74, p < 0.001, Figure 4B). UNet also demonstrated high 

volumetric agreement in the optimization dataset (ICC 0.73 [98% CI, 0.43–0.87]) and the 

external validation cohort (ICC 0.76 [98% CI, 0.55–0.87]).

To evaluate for the presence and direction of bias between estimated and ground-truth SCI 

volumes, Bland-Altman plots were created (Figure 4C, D). In the optimization dataset, 

UNet, on average, underestimated SCI volume by 0.86 mL, trending significance (p = 0.08). 

There was a proportional bias where UNet had greater underestimation of SCI volume as 

ground-truth volume increased (p < 0.001). In contrast, in the external validation cohort, 

there was no proportional bias in UNet predicted volumes as ground-truth volume increased 

(p = 0.34). The averaged difference between UNet and ground-truth was not statistically 

different from zero (mean bias 0.13 mL, p = 0.11).
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DISCUSSION

Our results demonstrate proof-of-concept that deep learning may serve as a tool for SCI 

identification and spatial delineation in children and young adults with SCA. Traditionally, 

a major barrier for accurate SCI detection has been their small size and varying signal 

intensity and contrast with surrounding white matter.11,13 Infarcts are typically singular and 

less than 0.5 mL.12 Thus, to non-neuroradiologists, identifying SCI on MRI may be likened 

to “finding a needle in a haystack” and can be complicated by differentiating SCI from 

radiological mimics of SCI.13 To aid in SCI detection, we trained and optimized UNet using 

one of the largest pediatric SCA MRI datasets available, including nearly 1000 children with 

and without SCI. We applied our best performing UNet model to an independent cohort 

and found that, not only did UNet offer high sensitivity at diagnosing SCI, but also UNet 

had excellent volume correlation and moderate spatial agreement between automated and 

manual segmentations. By demonstrating external validity with high sensitivity for detecting 

SCI, deep learning may be considered as a tool to augment clinical workflow for the general 

SCA population.

American Society of Hematology has recently recommended a minimum of one screening 

MRI in individuals with SCA to evaluate for SCI.11 This guideline will likely increase 

the need for neuroradiologists, specifically pediatric subspecialists, who are trained 

to recognize SCI and its mimics,11 as well as certain MRI findings such as focal 

white matter hyperintensities that are considered “normal” in older adults, but not in 

children. In underserved clinical care settings, where pediatric neuroradiologists are scarce, 

incorporating deep learning into clinical workflow may alleviate demand and assist in SCI 

detection. This UNet model yielded excellent sensitivity and good accuracy in pediatric and 

young adult SCA populations. By maximizing sensitivity, at the expense of yielding false 

positive cases, we aimed to minimize false negative cases on initial screening (Figure 3A), 

as a missed diagnosis might delay a patient’s access to important medical therapy for future 

SCI prevention and neuropsychological testing.8,9,11 To prevent a patient from being falsely 

diagnosed with SCI, radiologists would still be needed to review MRIs that initially screen 

positive for SCI.

Some literature has supported separate radiological definitions of SCI for children and 

adults with SCA.11 The pediatric definition of SCI, ≥ 3 mm in diameter and visible in 

two planes on FLAIR, was set by the SIT Trial12 and correlated with cognitive impairment 

and increased risk of new SCI and future overt strokes. The adult definition of SCI was 

based on, now outdated, imaging characteristics of lacunar stroke, a hyperintense lesion ≥ 

5 mm on FLAIR with corresponding T1 hypointensity.22,23 As image resolution and signal-

to-noise improve, with 3D acquisition becoming increasingly available, we are likely to 

visualize smaller and more subtle FLAIR hyperintensities.11 However, we need to evaluate 

if these subtle FLAIR hyperintensities are predictive of new cerebral infarcts or cognitive 

impairment before attributing them as clinically important. The association of SCI burden 

with cognitive impairment is dependent on lesion size.24 For example, the association 

between SCI presence and increased cognitive impairment was no longer detected when 

the more restrictive adult definition of SCI was applied to children from the SIT Trial.24 

In the false positive SCI cases from our validation cohort, some cases were erroneous 
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segmentations of gray matter (Figure 3B) and ventricular CSF pulsation artifact (3C), while 

other cases were segmentations of FLAIR hyperintensities < 3 mm (3D) and symmetrical 

periventricular hyperintensities that are considered non-specific in adults but of unclear 

clinical significance in children (3E). Further studies are needed to examine the clinical 

significance of these FLAIR hyperintensities that are not categorized as SCI under current 

radiological definitions. When implementing automated SCI detection in older adults with 

SCA, additional training would be required to ensure detection of additional MRI findings 

associated with aging and non-SCA cerebrovascular risk factors, such as lacunar strokes.

Automated SCI segmentation and volume quantification in patients with silent infarcts 

have potential to revolutionize research applications, especially within large, multi-center 

datasets in which manual lesion delineation is time-prohibitive, taking hundreds of hours 

and specialized training, and at risk for variability in lesion delineation due to user error and 

differing imaging quality. In contrast, deep learning algorithms can obtain both the volume 

and the location of a lesion in minutes. Thus, detection of new lesions and quantification of 

progressive lesion growth can be easily performed and serve as valuable imaging endpoints 

for many trials designed to prevent SCI and understand their cognitive ramifications. 

Additionally, unlike human raters, machine learning does not produce variability on repeated 

measurements. Thus, longitudinal assessments of SCI growth may be more accurate through 

automated approaches.

Our current UNet model demonstrated high volumetric agreement (ICC 0.76) and moderate 

spatial agreement (DSC 0.48) in the external validation cohort. The accuracy of UNet 

estimated volume, however, may be influenced by lesion size. UNet was mainly trained 

on SCI less than 0.5 mL from the SIT Trial training dataset. As a result, UNet markedly 

underestimated lesions greater than 10 mL in the optimization dataset and was overall less 

accurate at measuring lesions over 3 mL (Figure 4C, D). In the optimization dataset, UNet 

was less accurate at segmenting the larger lesions, thus skewing the mean bias, resulting in 

the mean bias to exceed the average ground-truth infarct volume. Additional model training 

is needed to improve SCI volume quantification over a wide range of lesion sizes.

Direct comparison of the UNet model with other machine learning models is limited by a 

lack of published research on automated SCI segmentation in SCA. In WMH segmentation 

of participants with non-SCA cerebral small vessel disease, various deep learning models 

have obtained similar to higher spatial agreement, with DSC ranging from 0.5 to 0.8.16 

Variations in model performance may be explained by the significant size difference 

between SCI and cerebral small vessel disease-related WMH, which is often 30–40 times 

larger than SCI, but recent algorithms have improved detection of even smaller WMH 

lesions.17 A previous study has shown that spatial agreement was positively associated with 

lesion volume in a large MRI database of WMH caused by various neurological diseases.16 

As the quality of image acquisition improves over time, minimizing the effects of artifacts, 

additional model development will likely allow improved automated segmentation of very 

small lesions.

Our study has several strengths. We used the largest pediatric SCA MRI database of nearly 

1000 children to train our deep learning model. Next, we externally validated our trained 
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model in a cohort independent from the SIT Trial. Despite key demographic, clinical, and 

MRI protocol differences between the SIT Trial and the external validation cohort, we 

achieved an excellent sensitivity and good accuracy at identifying SCI in our validation 

cohort, which had a very small median SCI volume of 0.25 ml. Thus, deep learning has 

the potential to be applied to a broader SCA population in clinical practice and in research 

settings. Our study has several limitations. First, the prevalence of SCI in our external 

validation cohort was higher than previously reported.3 Potential causes include having 

defined SCI as ≥ 3 mm in diameter on 2D axial FLAIR, without confirmation on coronal 

FLAIR. We also utilized 3 Tesla MR for all participants in the external validation cohort, 

whereas previous studies, including the SIT Trial, utilized 1.5 Tesla for the majority of the 

scans. Due to differences in SCI definition and better image quality, we detected smaller 

SCIs and a higher proportion of SCI-positive MRIs. To accommodate the differences in 

SCI definition, we only utilized 2D axial FLAIR images when training and optimizing 

UNet, thus potentially lowering model performance. Additional studies are needed to 

evaluate if improving spatial resolution or signal to noise ratio by incorporating coronal 

sections or 3D FLAIR will improve model performance. Secondly, given the difficulty at 

times visualizing small and faint SCI that are around 3 mm and the user subjectivity in 

identifying and outlining SCI, the “ground-truth” may not always be correct. False positive 

cases predicted by UNet may be true positives in some instances. As a result, the “true” 

specificity and accuracy of our UNet model may be higher than reported. Furthermore, 

not all hyperintensities on FLAIR are SCI. Radiographical mimics of SCI include terminal 

zones of myelination and periventricular leukomalacia.13 Likewise, head motion and CSF 

pulsation produce artifacts on FLAIR also lower model specificity. Additional model 

training is needed to differentiate SCI from SCI mimics and artifacts. Thirdly, we optimized 

UNet to be very sensitive in detecting voxels positive for SCI in order to avoid false 

negative classifications, but at the expense of producing false positive ones. A tiered training 

approach, first focusing on SCI detection and then lesion segmentation, may be needed 

to improve overall accuracy. Lastly, while UNet is currently the deep learning benchmark 

model for medical image segmentation, we will explore other network structures in the 

future for better segmentation performance.

In conclusion, we developed and tested a deep learning approach to automate SCI detection 

and delineation in children and young adults with SCA. Our findings demonstrate that, with 

additional model development, deep learning may aid clinical SCI diagnosis and imaging 

endpoint quantifications in a research setting, improving the overall care of individuals with 

SCA.
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ABBREVIATIONS

DSC Dice Similarity Coefficient

ICC Intra-class correlation coefficient

SCI Silent cerebral infarcts

SCA Sickle cell anemia

SIT Silent Infarct Transfusion

UNet Convolutional neural network

WMH White matter hyperintensity
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Figure 1. Schematic of UNet architecture.
The UNet is a deep learning network that is increasingly utilized for automatic medical 

image segmentation (A). It is comprised of a contracting path (green boxes), an expanding 

path (blue boxes), and a bridge that connects the two paths (orange box). The contracting 

path is a feature extractor and learns an abstract representation of the input 2D axial 

FLAIR image through a sequence of the contraction layers. Four layers are depicted in 

the figure. Within each layer, UNet goes through convolutions, which are linear operations 

that multiplies a set of image pixel values to two-dimensional weights (filter, B). Repeated 

overlapping application of this filter creates a two-dimensional output array known as a 

feature map. Each value in the feature map is then passed through a nonlinearity activation 

function to improve network learning. Finally, the spatial dimensions (height and width) 

of the feature maps are reduced by half between each contraction layers to reduce the 

computational time by decreasing the number of trainable parameters.

The expanding path projects the abstract representation of the image in the form of lower 

resolution discriminative, abstract features learnt during the contracting path, onto the 

higher resolution voxel space to eventually generate an output segmentation mask. This 

is carried out within the expansion layers through upsampling which restores the condensed 

feature maps to the original size of the input image by expanding the feature dimensions, 

and combining with skip connection (gray arrow) feature maps from the corresponding 

expansion layers. These skip connections ensure conservation of features from earlier layers 

to preserve learning. This design allows the UNet to learn increasingly complex features 

at multiple scales without sacrificing spatial information. Finally, the feature maps are 

converted to an output probability map indicating the probability of each image voxel 

being a SCI, with spatial dimensions corresponding to the original FLAIR image. The 

UNet-estimated SCI volume was calculated as the product of [the number of SCI positive 

voxels with a probability >=0.5] and [the volume of each voxel].
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Figure 2. Representative UNet segmentation of SCI.
The original FLAIR map, manual segmentation mask, and UNet segmentation mask are 

shown. To determine spatial agreement, the manual segmentation was overlaid onto the 

UNet segmentation (combined). A region containing SCI, before and after segmentations, 

was enlarged for better visualization (boxes). Manual segmentation was defined as the 

“ground truth”. False negative, false positive, and accurate segmentations are shown in 

green, red, and yellow, respectively. In this example, UNet achieved a Dice Similarity 

Coefficient of 0.48.

Chen et al. Page 14

Stroke. Author manuscript; available in PMC 2024 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. SCI misclassification by UNet.
For demonstration purposes, false negative SCI case examples were selected from the 

optimization dataset as no false negatives were present in the external validation cohort. 

In the optimization dataset, UNet failed to segment small and faint SCI lesions in the 

subcortical white matter (arrow, A). In false positive SCI case examples from the external 

validation cohort, UNet erroneously segmented portions of cortical gray matter (arrow, 
B) and CSF pulsation artifact adjacent to the lateral ventricle (arrow, C) as SCI lesions. 

UNet also segmented white matter FLAIR hyperintensities smaller than 3mm in diameter 

(arrow, D), which fell below the size threshold for radiological definition of SCI, and 

symmetrical periventricular white matter changes (arrow, E) that are non-specific in adults 

and of unknown significance in children.
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Figure 4. UNet SCI volume estimation in optimization and external validation cohort.
Simple correlations between UNet volume vs ground-truth volume in the optimization 

dataset (A) and external validation cohort (B) are shown. UNet volume was strongly and 

highly correlated with ground-truth volume. Linear regression line (solid line) with 95% 

confidence interval (dashed lines) are shown. On Bland-Altman plots, in the optimization 

dataset, there was a proportional bias where UNet systematically underestimated SCI 

volume (p < 0.001, C). On average, UNet underestimated SCI volume by 0.86 mL, trending 

significance (p = 0.08, C). In contrast, in the external validation cohort, there was no 

proportional bias in UNet predicted volumes compared to ground-truth volumes (p = 0.34, 

D). Its averaged difference between UNet and ground-truth volumes was not statistically 

different from zero (mean bias 0.13 mL, p = 0.11). The mean bias (solid line) and the lower 

and upper limits of agreement (LOA, ±1.96 *standard deviation, dashed lines) are shown. 

A negative difference on the Y-axis represents under-estimation by machine learning. A 

positive difference represents over-estimation by machine learning. *One Sample t-Test. † 

Linear regression.
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Table 1.

Baseline clinical characteristics of Silent Infarct Transfusion (SIT) Trial and external validation cohort

SIT Trial WashU Cohort

P value*
Training dataset (N=833) Optimization dataset (N=93) External validation (N=80)

Median (IQR) or N (%) Median (IQR) or N (%) Median (IQR) or N (%)

Age, y 8.8 (6.8, 10.9) 9.4 (7.1, 11.9) 11.5 (8.3, 19) <0.001

Male, N (%) 417 (50) 49 (43) 40 (50) 1.0

African American, N (%) 788 (94.6) 86 (92.5) 80 (100) 0.03

Hemoglobin, g/dl 8 (7.4, 8.9) 8 (7.5, 8.7) 8.4 (7.7, 9.5) 0.002

Hemoglobin F, % 10 (6, 17) 11 (5, 16) 9.2 (3.2, 21.4) 0.46

Hemoglobin S, % 84 (78, 89) 85 (77, 88) 74 (59.4, 84.0) <0.001

White blood cell, 106/μL 12 (10, 14.8) 12.9 (10, 14.7) 10.5 (8.2, 13.0) <0.001

SpO2, % 97 (95, 99) 96 (94, 98) 98 (95, 99) 0.32

Systolic blood pressure, mmHg 108 (101, 115) 107 (101, 114) 116 (110, 122) <0.001

SCI present, N (%) 258 (31) 29 (31) 40 (50) <0.001

SCI volume, mL 0 (0, 0.13) 0 (0, 0.23) 0.01 (0, 0.25) 0.005

SCI volume, within participants 
with SCI, mL 0.40 (0.18, 1.00) 0.42 (0.29, 2.32) 0.25 (0.13, 0.72) 0.03

Abbreviations: SIT, Silent Infarction Transfusion; SCI, silent cerebral infarct; SpO2, peripheral oxygen saturation

*
Comparison between the SIT Trial cohort and the external validation cohort
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