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Abstract

Open-source, publicly available neuroimaging datasets—whether from large-scale data collection 

efforts or pooled from multiple smaller studies—offer unprecedented sample sizes and promote 

generalization efforts. Releasing data can democratize science, increase the replicability of 

findings, and lead to discoveries. Partly due to patient privacy, computational, and data 

storage concerns, researchers typically release preprocessed data with the voxelwise time series 

parcellated into a map of predefined regions, known as an atlas. However, releasing preprocessed 

data also limits the choices available to the end-user. This is especially true for connectomics, as 

connectomes created from different atlases are not directly comparable. Since there exist several 
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Connectomes created from different atlases are not directly comparable, limiting generalization efforts
We introduce cross Atlas Remapping via Optimal Transport (CAROT)
CAROT reconstructs connectomes from different atlases without needing raw data
Reconstructed connectomes are highly similar to the original connectomes
Reconstructed connectomes behave the same in downstream analyses
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atlases with no gold standards, it is unrealistic to have processed, open-source data available 

from all atlases. Together, these limitations directly inhibit the potential benefits of open-source 

neuroimaging data. To address these limitations, we introduce Cross Atlas Remapping via Optimal 

Transport (CAROT) to find a mapping between two atlases. This approach allows data processed 

from one atlas to be directly transformed into a connectome based on another atlas without the 

need for raw data access. To validate CAROT, we compare reconstructed connectomes against 

their original counterparts (i.e., connectomes generated directly from an atlas), demonstrate the 

utility of transformed connectomes in downstream analyses, and show how a connectome-based 

predictive model can generalize to publicly available data that was processed with different atlases. 

Overall, CAROT can reconstruct connectomes from an extensive set of atlases—without needing 

the raw data—allowing already processed connectomes to be easily reused in a wide range of 

analyses while eliminating redundant processing efforts. We share this tool as both source code 

and as a stand-alone web application (http://carotproject.com/).

Keywords

functional connectivity; brain-behavior associations; dataset harmonization; optimal transport

1. Introduction

A connectome—a matrix describing the connectivity between any pair of brain regions—is 

a popular approach used to model the brain as a graph-like structure (Sporns et al., 2004; 

Bassett and Bullmore, 2006; Bullmore and Sporns, 2009). They are created by parcellating 

the brain into distinct areas using an atlas (i.e., the nodes of a graph) and estimating the 

connections between these regions (i.e., the edges of a graph). A wide range of works 

demonstrates the value of connectomics in studying individual differences in brain function 

(Elliott et al., 2019; Dubois and Adolphs, 2016), associating brain-behavior associations (Sui 

et al., 2020; Jiang et al., 2019; Beaty et al., 2018), and understanding brain alterations in 

neuropsychiatric disorders (Yan et al., 2019). Overall, connectomes have high potential as a 

biomarker of various phenotypic information.

Nevertheless, the need for an atlas to create a connectome hinders comparisons across 

studies and replication and generalization efforts. Different atlases divide the brain into 

different regions of varying size and topology. Thus, connectomes created from different 

atlases are not directly comparable. In other words, simply comparing the results from two 

independent studies that use different atlases is challenging. Further, several atlases exist 

with no gold standards (Arslan et al., 2018), and more are being developed yearly. Currently, 

no solutions exist to extend previous results and potential biomarkers to a connectome 

generated from a different atlas, limiting the broader use of potential connectome-based 

biomarkers.

Transforming an existing connectome into one generated from a different atlas would 

help these efforts and increase the utility of existing connectomes. For example, large-

scale projects—like the Human Connectome Project (HCP) (Van Essen et al., 2013), the 

Adolescent Brain Cognitive Development (ABCD) study (Casey et al., 2018), and the UK 
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Biobank (Sudlow et al., 2015)—share fully processed connectomes. However, the released 

connectomes for each project are based on different atlases, preventing these datasets from 

being combined without reprocessing data from thousands of participants. Smaller labs 

might not have the resources to store and reprocess these data from scratch (Horien et al., 

2021). Finally, due to privacy concerns of being able to identify a participant based on 

unprocessed data, some datasets are only released as fully processed connectomes (Yan et 

al., 2019). Critically, in this case, it is not possible to go to the data to create connectomes 

from another atlas. Thus, algorithms to map and transform connectomes have applications 

for preserving participant privacy and democratizing data access, as well as improving the 

generalizability of scientific findings.

To this aim, we propose Cross Atlas Remapping via Optimal Transport (CAROT), which 

uses optimal transport theory, or the mathematics of converting a probability distribution 

from one set to another, to find an optimal mapping between two atlases. CAROT is 

designed for functional connectomes based on functional magnetic imaging (fMRI) data. 

It allows a connectome constructed from one atlas to be directly transformed into a 

connectome based on a different atlas without needing to access or preprocess the raw 

data. We define raw data as data in any form other than fully preprocessed timeseries from 

an atlas, which is the final form of the data used to create a connectome. Fully preprocessed 

timeseries from an atlas have several benefits over other intermediate forms derived from a 

connectomic processing pipeline. As these data consist of only 200 – 500 timeseries, they 

require less storage than voxel-wise or vertex-wise preprocessed data in common space (1 

– 3 MB compared to 500 – 1000 MB per individual). These data are also not identifiable if 

privacy concerns exist.

First, in a training sample with fMRI time series data from two different atlases, we find 

a mapping by solving the Monge–Kantorovich transportation problem (Kantorovich, 1942). 

Then, by employing this optimal mapping, time series data based on the first atlas (from 

individuals independent of the training data) can be reconstructed into connectomes based 

on the second atlas without ever needing to be preprocessed. To validate CAROT, we 

compare reconstructed connectomes against their original counterparts (i.e., connectomes 

generated directly from an atlas), demonstrate the utility of transformed connectomes 

in downstream analyses, and show how a connectome-based predictive model can be 

generalized to publicly available data preprocessed with different atlases. Overall, CAROT 

can reconstruct connectomes from an extensive set of atlases without ever needing the raw 

data—enabling comparison across connectome-based results from different atlases and the 

reuse of already processed connectomes in a wide range of downstream analyses.

This work builds upon two conference papers presented at the 2021 and 2022 International 

Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) 

(Dadashkarimi et al., 2021, 2022). The conference papers present our initial results using 

optimal transport to map and transform connectomes from different atlases. We expand our 

previous results by presenting an extensive set of validation studies, increasing the number 

of atlases and datasets tested, and sharing this tool as source code and a stand-alone web 

application (http://carotproject.com/).
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2. Theory and calculations

2.1. Optimal transport

The optimal transport problem solves how to transport resources from one location α to 

another β while minimizing the cost C (Tolstoi, 1930; Hitchcock, 1941; Koopmans, 1949; 

Gangbo and McCann, 1996). It has been used for contrast equalization (Delon, 2004), image 

matching (Li et al., 2013), image watermarking (Mathon et al., 2014), text classification 

(Huang et al., 2016), and music transportation (Flamary et al., 2016). Optimal transport is 

one of the few methods that provides a well-defined distance metric when the supports of the 

distributions are different. Other mapping approaches, such as Kullback–Leibler divergence, 

do not make this guarantee.

The original formulation of the optimal transport problem is known as the Monge problem. 

Assuming we have some resources x1, …, xn in location α and some other resources y1, …, ym

in location β, we specify weight vectors a and b over these resources and define matrix C
as a measure of pairwise distances between points xi ∈ α and comparable points T xi . The 

Monge problem aims to solve the following optimizing problem (Monge, 1781):

min
T

∑
i

C xi, T xi :T♯α = β , (1)

where the push forward operator ♯ indicates that mass from α moves towards β assuming that 

weights absorbed in bj = ∑T xi = yj ai. An assignment problem when the number of elements 

in the measures is not equal is a special case of this problem, where each point in α can be 

assigned to several points in β.

As a generalization of the Monge problem, the Kantorvich relaxation solves the mass 

transportation problem using a probabilistic approach in which the amount of mass located 

at xi potentially dispatches to several points in the target (Kantorovich, 1942). An admissible 

solution for Kantorvich relaxation is defined as T ∈ ℝ+
n × m indicating the amount of mass 

being transferred from location xi to yj by Ti, j:

U(a, b) = T ∈ ℝ+
n × m:T1m = a, TT1n = b , (2)

where 1 represents a vector of all 1’s. An optimum solution is obtained by solving the 

following problem for a given C ∈ ℝn × m (Rubner et al., 2000):

Lc(a, b) = min
T ∈ U(a, b)

< C, T > = ∑
i, j

Ci, jTi, j . (3)

While a unique solution is not guaranteed (Peyré et al., 2019), an optimal solution exists (see 

proof in Birkhoff (1946); Bertsimas and Tsitsiklis). Kantorovich and Monge’s problems are 

equivalent under certain conditions (see proof in Brenier (1991)).
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2.2. Cross Atlas Remapping via Optimal Transport (CAROT)

CAROT operates by transforming time series data from one atlas (labeled the source atlas) 

into time series from an unavailable atlas (labeled the target atlas). This transformation is a 

spatial mapping between the two atlases. Next, the corresponding functional connectomes 

can be estimated using standard approaches (e.g., full or partial correlation). Transforming 

the time series data rather than connectomes themselves has two benefits. First, this results 

in a lower dimensional mapping, which is more robust to estimate. Second, connectomes can 

be constructed with standard methods (like correlation), guaranteeing properties like semi-

positive definite. Direct mapping between connectomes may not guarantee this property.

Formally, let us assume we have training time series data consisting of T  time points from 

the same individuals but from two different atlases (atlas Pn with n regions and atlas Pm

with m regions). Additionally, let μt ∈ ℝn and vt ∈ ℝm to be the vectorized brain activity at 

single time point t based on atlases Pn and Pm, respectively. We normalize these vectors, to 

sum up to one using the softmax function, as we are only concerned about the mass. For a 

fixed cost matrix C ∈ ℝn × m, which measures the pairwise distance between regions in Pm

and Pn, we aim to find a mapping T ∈ ℝn × m that minimizes transportation cost between μt

and vt:

Lc μt, vt = min
T

CTT s.t, AT = μt

vt
, (4)

in which T ∈ ℝnm is vectorized version of T such that the i + n(j − 1)’s element of T is 

equal to Tij and A is defined as:

(5)

T represents the optimal way of transforming the brain activity data from n regions into 

m regions. Thus, by applying T to every timepoint from the time series data of the source 

atlas, we can estimate the time series data of the target atlas. As solving this large linear 

program is computationally hard (Dantzig, 1983), we use the entropy regularization, which 

gives an approximation solution with the complexity of O n2log(n)η−3  for ϵ = 4log(n)
η  Peyré 

et al. (2019), and instead solve the following:
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Lc μt, vt = min
T

CTT − ϵH(T) s.t, AT = μt

vt
. (6)

Specifically, we use the Sinkhorn algorithm—an iterative solution for Equation 6 (Altschuler 

et al., 2017)—to find T. For training data with S participants and K time points per 

participant, first, we estimate the optimal mapping Ts, k, independently, for time point k
for a given participant s using Equation 6. Next, we average Ts, k overall time points 

and participants to produce a single optimal mapping T in the training data (e.g., 

T = 1
S K ∑s = 1

S ∑k = 1
K Ts, k).

For the cost matrix C, we used a distance metric (labeled functional distance) that is based 

on the similarity of pairs of time series from the different atlases:

C = 1 −
ρ U1, . , N1, . … ρ U1, . , Nn, .

⋮ ⋱ ⋮
ρ Um, . , N1, . … ρ Um, . , Nn, .

∈ ℝm × n
(7)

where Ux and Nx are time series from Pm and Pn and ρ Ux, Ny  is Spearman correlation 

between them. To increase a reliable estimation of C, we calculate the time series correlation 

independently for each individual in the training data and average over these correlations. 

The functional distance was used over Euclidean distance between nodes for two main 

reasons: (i) functional distance does not require having access to the atlas or node locations, 

which provides greater flexibility should an unknown and unavailable atlas be used, and (ii) 
spatial proximity in the brain does not guarantee a similar function. For example, the medial 

prefrontal nodes of the default mode network are more correlated with nodes in the posterior 

cingulate cortex than other nodes in the frontal lobe. Nevertheless, we formally compare the 

performance of functional and Euclidean distances.

3. Material and methods

3.1. Evaluation datasets

We evaluated CAROT on six prominent functional atlases from the literature using three 

datasets, the Human Connectome Project (HCP), the REST-Meta-MDD Consortium, and the 

Yale Low-Resolution Controls Dataset.

3.1.1. Atlases—The Shen atlas (Shen et al., 2013) was created using functional 

connectivity data from 45 adult participants. The 268-node atlas was constructed using a 

group-wise spectral clustering algorithm (derived from the N-cut algorithm) and covers 

the entire cortex, sub-cortex, and cerebellum. The Craddock atlas (Craddock et al., 2012) 

was created using functional connectivity data from 41 adult participants. The 200-node 

atlas was constructed using an N-cut algorithm and covers the entire cortex, sub-cortex, 

and cerebellum. The Schaefer atlas (Schaefer et al., 2018) was created using functional 

connectivity data from 744 adult participants from the Genomics Superstruct Project 

(Holmes et al., 2015). The 400-node atlas was constructed using a gradient-weighted 
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Markov Random Field (gwMRF) model, covering only the cortex. The Brainnetome atlas 

(Fan et al., 2016) was created using structural connectivity data from 40 adult participants 

from the HCP. The 246-node atlas was constructed using a tractography-based approach 

and covers the cortex and sub-cortex. While it was created with structural connectivity, 

the Brainnetome atlas is suited for functional studies. The Dosenbach atlas(Dosenbach et 

al., 2010) was created from meta-analyses of task-related fMRI studies and consists of 

160 nodes that cover the cortex, cerebellum, and a few sub-cortical nodes. The Power 

atlas (Power et al., 2011) was created by combining the meta-analytical approach of the 

Dosenbach atlas with areal boundary detection based on functional connectivity data. The 

264-node atlas covers the cortex, sub-cortex, and cerebellum.

3.1.2. HCP participants—We used behavioral and functional imaging data from this 

data set as previously described (Gao et al., 2019). We restricted our analyses to those 

subjects who participated in all nine fMRI conditions (seven tasks, two rest), whose mean 

frame-to-frame displacement was less than 0.1mm and whose maximum frame-to-frame 

displacement was less than 0.15mm, and for whom IQ measures were available (n=515; 

241 males; ages 22–36+). The HCP minimal preprocessing pipeline was used on these 

data, which includes artifact removal, motion correction, and registration to common space 

(Glasser et al., 2013). All subsequent preprocessing was performed in BioImage Suite 

(Joshi et al., 2011) and included standard preprocessing procedures, including removal of 

motion-related components of the signal; regression of mean time courses in white matter, 

cerebrospinal fluid, and gray matter; removal of the linear trend; and low-pass filtering.

3.1.3. REST-meta-MDD—Fully processed data was downloaded from http://rfmri.org/

REST-meta-MDD. Full details about the dataset have been previously published elsewhere 

(Yan et al., 2019). We used data from 21 of the 24 sites. Two sites were removed due 

to a large imbalance between male and female participants (i.e., < 30% male or female; 

sites 2 and 12). One site was removed as self-reported sex was not provided (site 4). 

Briefly, the data was processed as follows. First, the initial 10 volumes were discarded, 

and slice-timing correction was performed. Then, the time series of images for each subject 

were realigned using a six-parameter linear transformation. After realignment, individual 

T1-weighted images were co-registered to the mean functional image using a six-degrees-of-

freedom linear transformation without re-sampling and then segmented into gray matter, 

white matter, and cerebrospinal fluid. Finally, transformations from individual native space 

to MNI space were computed with the Diffeomorphic Anatomical Registration Through 

Exponentiated Lie algebra (DARTEL) tool. To minimize head motion confounds, the Friston 

24-parameter model was regressed from the data. Scrubbing (removing time points with 

FD>0.2mm) was also utilized to verify results using an aggressive head motion control 

strategy. Other sources of spurious variance (global, white matter, and CSF signals) were 

also removed from the data through linear regression. Additionally, linear trend were 

included as a regressor to account for drifts in the blood oxygen level dependent (BOLD) 

signal. Temporal bandpass filtering (0.01–0.1Hz) was performed on all time series.

3.1.4. Yale participants—In addition, we used resting-state data collected from 

100 participants at the Yale School of Medicine. This dataset included 50 females 
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(age=33.3±12.3) and 50 males (age=34.9±10.1) with eight functional scans (48 minutes 

total). The dataset and processing details can be found in (Scheinost et al., 2014). Briefly, 

standard preprocessing procedures were applied to these data. Structural scans were skull 

stripped using an optimized version of the FMRIB’s Software Library (FSL) pipeline. 

Slice time and motion correction were performed in SPM8. The remainder of image 

preprocessing was performed in BioImage Suite. The data was cleaned by regressing 

nuisance variables (motion parameters, drift terms, and the mean time courses of the 

white matter, cerebrospinal fluid, and gray matter signals) and band-pass filtering) and was 

nonlinearly registered to the MNI template.

3.1.5. Generating connectomes—After processing, the Shen, Schaefer, Craddock, 

Brainnetome, Power, and Dosenbach atlases were applied to the preprocessed fMRI data 

to create mean time series for each node. For each atlas and dataset, connectomes were 

generated by calculating the Pearson’s correlation between each pair of these mean 

time series and then tasking the Fisher transform of these correlations. Connectomes 

reconstructed by CAROT were also generated using Pearson’s Correlation.

3.2. Evaluation overview

We performed several evaluations of CAROT. First, we performed a baseline evaluation 

of CAROT, investigating the similarity of the original and reconstructed connectomes, 

the impact of free parameters (e.g., the number of participants used to train CAROT), 

and the number of available source atlases. Second, we investigated how reconstructed 

connectomes perform in standard downstream analyses (i.e., do reconstructed connectomes 

give similar neuroscience results as the original connectomes?). Finally, we present a real-

world evaluation of how CAROT can generalize a preexisting connectome-based predictive 

model when data from the required atlas is unavailable.

3.3. Baseline evaluation of CAROT

3.3.1. Similarity between the original and reconstructed connectomes—We 

compared reconstructed connectomes to their original counterparts using HCP data. We 

partitioned our data into a 25/75 split, where 25% of the individuals are used to estimate 

the optimal mapping T and 75% are used to evaluate the reconstructed connectomes. 

Reconstructed connectomes were created using single and multiple source atlases. To 

evaluate the similarity between CAROT-reconstructed and original connectomes, the 

upper triangles of the connectomes were vectorized and correlated with Spearman’s rank 

correlation. We also present the mean square error (MSE) and the Forbenius norm between 

CAROT-reconstructed and original connectomes.

3.3.2. Comparison with k-nearest neighbor mapping—Given the similarities 

between the optimal transport problem and the k-nearest neighbor problem, we compared 

CAROT to a simplified approach based on mapping the atlas pairs using k-nearest 

neighbors, where k = 1 and k = 5. We tested Euclidean and functional distances for this 

approach.
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3.3.3. Evaluation of free parameters—We investigated the sensitivity of CAROT to 

the number of time points and number of participants used to find the mappings and the 

value of ϵ in the Sinkhorn approximation. Using the same 25/75 split of the HCP participants 

for training and testing as above, we varied the number of time points used from 100 to 1100 

in increments of 100, the number of participants from 100 to 515 in increments of 100, and ϵ
from 0.01 to 10 in increments of 1.

3.3.4. Extending CAROT for multiple atlases—A vital drawback of the single-

source optimal transport is that it relies on a single pair of source and target atlases (i.e., 

one source atlas and one target atlas), which ignores additional information when multiple 

source atlases exist. As preprocessed data is often released with time series data from 

multiple atlases (Yan et al., 2016), we investigated using these additional data to better 

reconstruct connectomes from an unavailable atlas. Previously, in a conference proceeding 

(Dadashkarimi et al., 2022), we combined information from multiple source atlases by using 

a larger cost matrix generated from stacking the set of region centers in each source atlas. 

In general, assume we have paired time-series, from the same person, but from k different 

source atlases with a total of ns regions (where ns = n1 + n2 + .. + nk from source atlas Pn1 with 

n1 regions, Pn2 with n2 regions, .., Pnk with nk regions) and a target atlas Pm with m regions, 

lets define μt ∈ ℝns and vt ∈ ℝm to be the distribution of brain activity at single time point t
based on atlases Ps and Pm:

μs
* =

μ1

μ2

⋮
μk

∈ ℝns, vt ∈ ℝnt, C* =
C1, 1 … C1, m

⋮ ⋱ ⋮
Cns, 1 … Cn, m

∈ ℝns × m
(8)

, and Ci, j is based on the similarity of pairs of time series from nodes i and j from different 

atlases. Equation 6 can then be solved using this new cost matrix C.

However, this approach is time-consuming to solve. Instead, we applied CAROT to 

transform time series data from N source atlases into the time series data for the target 

atlas. This process results in N different estimates of the target atlas’s time series data. 

Next, the transformed time series data were averaged across all source atlases, improving 

the estimated time series data of the source atlas. Finally, a single connectome for the target 

atlas was created (Fig. 1). Further, we investigated the impact of using a smaller number of 

source atlases by only including k random source atlases when creating a connectome for 

the target atlas. This process was repeated with 100 iterations over k = 2 − 6.

3.3.5. Generalizing mappings across datasets—We investigated if CAROT 

mappings trained in one dataset generalize to other datasets. In other words, we tested 

if CAROT can be trained once (for example, using the HCP) and then applied to any 

new datasets without the need to rerun CAROT (for example, the Yale dataset). First, we 

trained CAROT using only the HCP dataset. Then, we reconstructed connectomes using the 

Yale dataset using these T’s. Spearman’s rank correlation between the upper triangles of 
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the connectomes was used to assess the similarity between the reconstructed and original 

connectomes.

3.4. Evaluation of downstream analyses

3.4.1. Consistency of aging results—We tested whether the reconstructed 

connectomes produced consistent neuroscience results compared to the original 

connectomes. First, we used 25% of the HCP participants to train CAROT. Next, using 

the original and reconstructed connectomes for the remaining 75% of participants, we 

calculated the association between connectomes and age using mass uni-variate, edge-wise 

correlations. Results were thresholded at P < 0.05, corrected for multiple comparisons using 

the Network-based Statistic (NBS) (Zalesky et al., 2010). To assess whether the overlap 

of the significant edges found using the original and reconstructed connectomes was 

statistically significant (i.e., edge-level), we calculated the probability of the overlap being 

due to chance using the hypergeometric cumulative distribution:

F = ∑
i = 0

K
K
i

M − K
N − i
M
N

,

where F  is the probability of drawing up to i of a possible K items in N drawings without 

replacement from a group of M objects. The p-value for the significance of overlap is 

then calculated as 1 − F . We also assess the similarity of results at the node-level by 

summing over all significant edges for a node (i.e., the network theory measure degree) and 

correlating these maps for results from the original and reconstructed connectomes.

3.4.2. IQ prediction—To show that meaningful brain-phenotype association are retained 

in reconstructed connectomes, we used reconstructed connectomes to predict fluid 

intelligence using connectome-based predictive modeling (CPM) (Shen et al., 2017). We 

partitioned the HCP dataset into three groupings: g1, consisting of 25% of the participants; g2, 

consisting of 50% of the participants; and, g3, consisting of the final 25% of the participants. 

In g1, we trained CAROT for each source and target atlas pair. We then applied the learned T
on g2 and g3 to estimate connectomes for each target atlas, resulting in seven connectomes for 

each atlas (five reconstructed connectomes based on a single source atlas, one reconstructed 

connectome based on all source atlases, and the original connectome). Finally, we trained a 

CPM model of fluid intelligence for each set of connectomes using g2 and tested this model 

in g3. Fluid intelligence was quantified using a 24-item version of the Penn Progressive 

Matrices test. Spearman correlation between observed and predicted values was used to 

evaluate prediction performance. This procedure was repeated with 100 random splits of the 

data into three groups.

3.4.3. Identification rate—We investigated if the individual uniqueness of connectomes 

is retained in reconstructed connectomes by identifying individuals scanned on repeated 

days (Finn et al., 2015). As mentioned above, we used the HCP data and a 25/75 split 

to create reconstructed connectomes based on all available source atlases. In an iterative 
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process, one individual’s connectome was selected from the target set and compared against 

each of the connectivity matrices in the database to find the matrix that was maximally 

similar. Spearman correlation between the target connectome and each in the database was 

used to assess similarity. A score of 1 was assigned if the predicted identity matched the 

true identity, or 0, if it did not. Each target connectome was tested against the database in 

an independent trial. Connectomes generated from the day 1 resting-state data were used 

as the target set, and connectomes generated from the day 2 resting-state data were used as 

the database. We performed this identification procedure for the original and reconstructed 

connectomes independently. We used permutation testing to generate a null distribution 

to determine if identification rates were achieved at above-chance levels. Specifically, 

participants’ identities were randomly shuffled and identification was performed with these 

shuffled labels. Identification rates obtained using the correct labels were then compared to 

this null distribution to determine significance.

3.5. Real-world evaluation

In this evaluation, we generalized a sex classification model (using 100 adults collected 

at the Yale School of Medicine and created with the Shen atlas) to the REST-Meta-MDD 

dataset (Yan et al., 2016), which only provides preprocessed time series data from the 

Dosenbach, Power, and Craddock atlases. First, we trained the sex classification model 

using the Yale dataset’s resting-state data from 100 individuals (50 males). We trained a 

ℓ2-penalized logistic regression model with 10-fold cross-validation to classify self-reported 

sex. Then, we used T estimated from the HCP to transform the publicly available 

preprocessed data (i.e., time series data from the Dosenbach, Power, and Craddock atlases) 

from the REST-Meta-MDD dataset into the Shen atlas. Data from each source atlas were 

combined to create a single connectome based on the Shen atlas for the 1005 (585 females) 

health controls. Finally, the sex classification model created in the Yale dataset was applied 

to these reconstructed Shen connectomes.

3.6. Data availability

All datasets used in this study are open-source: HCP (ConnectomeDB database, https://

db.humanconnectome.org), REST-meta-MDD (http://rfmri.org/REST-meta-MDD), and Yale 

dataset (http://fcon_1000.projects.nitrc.org/indi/retro/yale_lowres.html). BioImage Suite 

tools used for processing can be accessed at (https://bioimagesuiteweb.github.io/). bCAROT 

and associated canonical mappings are on GitHub (https://github.com/dadashkarimi/carot). 

The Python Optimal Transport (POT) toolbox is available at https://pythonot.github.io/.

4. Results

4.1. Baseline evaluation of CAROT

4.1.1. Reconstructed connectomes are similar to original connectomes—As 

shown in Table 1, the correlation between the reconstructed connectomes and their original 

counterparts depends on the atlas pairing, with more similar atlases appearing to have higher 

correlations. For instance, a strong correlation is seen while transforming data from the 

Craddock atlas to the Shen atlas (ρ = 0.48, p < 0.001). Both atlases are based on clustering 

time series fMRI data using variants of the N-cut algorithm. In contrast, a weaker correlation 
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exists for transforming data from the Dosenbach atlas (which was constructed based on a 

meta-analysis of task activations) to the Shen atlas (ρ = 0.24, p < 0.001). Table S1 and Table 

S2 shows the similarity between reconstructed and original connectomes using MSE and the 

Frobenius norm. Finally, the similarity between the reconstructed and original connectomes 

was much lower when using Euclidean distance (Fig. S1)

4.1.2. Comparison with k-nearest neighbor mapping—Results using a k-nearest 

neighbor mapping with k = 1 are shown in Table for Euclidean distance and Table functional 

distance. Results using a k-nearest neighbor mapping with k = 5 are shown in Table for 

Euclidean distance and Table functional distance. In all cases, results are worse than 

CAROT.

4.1.3. Using multiple atlases improves CAROT—Overall, we observed a 

considerable improvement when including data from multiple source atlases. In every case, 

using all available data produced more similar connectomes to their original counterparts (all 

ρ’s > 0.50; Fig. 2). For most atlases, explained variance is more than tripled using CAROT 

with multiple source atlases compared to using a single source atlas. As shown in Fig. 

2, while the similarity between reconstructed and original connectomes increases as the 

number of source atlases increases, strong correlations (e.g., ρ > 0.6) can be observed with 

as little as two or three source atlases, suggesting that a small number of atlases may be 

sufficient for most applications. Results from averaging time series data were similar to the 

procedure presented in (Dadashkarimi et al., 2022). Fig. S2 and Fig. S3 shows the similarity 

between reconstructed and original connectomes using MSE and the Frobenius norm.

4.1.4. CAROT is insensitive to parameter choices—No clear pattern of 

performance change was observed across the tested parameter range, suggesting that 

CAROT is not affected by the number of frames and participants, and the range of ϵ’s
(Fig. S4 ). However, using only 100 participants and 100 time points significantly reduced 

the processing time from 2,975 s to 467s (p < 0.05).

4.1.5. Mappings generalize across datasets—When applying the mapping trained 

in the HCP dataset to the Yale dataset, we observed a strong correspondence between the 

reconstructed connectomes and their original counterparts with ρ’s > 0.50 (Shen: ρ = 0.59; 

Schaefer: ρ = 0.66; Craddock: ρ = 0.71; Brainnetome: ρ = 0.54; Power: ρ = 0.50; Dosenbach: 

ρ = 0.54). Notably, these correlations are in the same range as those observed when we 

applied these mappings to the HCP data (i.e., the same dataset used for training the 

mappings). Together, these results exhibit that mappings can be trained in one dataset and 

applied to another.

4.2. Evaluation of reconstructed connectomes in downstream analyses

4.2.1. Similar patterns of aging are found with reconstructed connectomes—
At the edge level, the reconstructed connectomes for all atlases produced aging results that 

significantly overlapped with the results from using the original connectomes (p < 0.00001). 

Similarly, node-level correlations were all significant (r′s > 0.60, p′s < 0.001). Fig 3 shows 
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a representative example of node-level results between the reconstructed and original 

connectomes for the Shen atlas.

4.2.2. Reconstructed connectomes predict IQ—In all cases, connectomes 

reconstructed using all source atlases performed as well in prediction (i.e., similar 

correlations between observed and predicted values) as the original connectomes (Fig 4A). 

The reconstructed connectomes using all source atlases performed better than the original 

connectomes for the Schaefer and Power atlases. As these atlases displayed the lowest initial 

prediction (see the red vertical line in Fig 4A), incorporating information from atlases that 

better predict IQ increases the ability of the reconstructed Schaefer and Power atlases to 

predict IQ. Similar to other analyses, connectomes reconstructed from a single atlas varied 

in prediction performance depending on the combination of source and target atlases.

4.2.3. Reconstructed connectomes are unique to an individual—For all 

analyses, the identification of individuals from their connectomes demonstrated a high 

success rate that was significantly greater than chance (5%; p < 0.001; based on permutation 

testing). (Fig. 4B). Reconstructed connectomes performed slightly better than the originals 

(original connectomes: mean rate=79%; reconstructed connectomes: mean rate=90%). 

Overall, these results suggest that the reconstructed connectomes retain similar levels of 

individual differences as their original connectome counterparts.

4.3. CAROT facilitates external validation of connectome-based predictive models

Overall, the sex classification model demonstrated significant classification accuracy in the 

Yale dataset (Accuracy=60.5% 6%; Naive model accuracy=50%; χ2 = 5.8; p = 0.03). and 

the REST-Meta-MDD dataset (Accuracy=66.5%; Naive model accuracy=52.3%; χ2 = 13.9; 

p = 0.0002) when using the reconstructed connectomes. To better contextualize this result, 

we created connectomes for the Dosenbach, Power, and Craddock atlases in the Yale dataset, 

created a sex classification model for connectome type, and generalized these models to 

the REST-Meta-MDD dataset. The generalization accuracy of reconstructed connectomes 

(Shen: 66.5%) was numerically superior to the generalization accuracies based on original 

connectomes (Dosenbach: 59.6%, Power: 59.0%, and Craddock: 64.5%), suggesting that 

using CAROT and reconstructed connectomes perform as well as original connectomes in 

generalizing a preexisting predictive model.

4.4. Software availability and implementation

To facilitate open science and the broader adoption of CAROT, we have created http://

carotproject.com/. This web application allows end-users to convert time series data from 

the Shen, Schaefer, Craddock, Brainnetome, Power, and Dosenbach atlases to connectomes 

for any of the other atlases. As a web application, it works without software installation and 

across multiple platforms (e.g., Windows, Linux, MacOS, Android). The only requirement 

is a modern web browser, such as Google Chrome. Please note that any data used on http://

carotproject.com/ remains on the local computer and is never uploaded or stored on a remote 

server. In addition, we provide the CAROT software and associated canonical mapping as 

opensource at https://github.com/dadashkarimi/carot/.
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Specifically, we provide functionality: (i) to generate the cost matrix based on the functional 

distance for time series data from two different atlases; (ii) to generate the mapping T
between two atlases based on the cost matrix defined above; and (iii) to convert time series 

data from one or more source atlases to connectomes based on a target atlas. In addition, 

we provide canonical mappings based on the HCP data to map between every pair of the 

Shen, Schaefer, Craddock, Brainnetome, Power, and Dosenbach atlases. Based on the results 

present here, these mappings should work in other datasets, saving researchers the need 

to regenerate these mappings for themselves. We will look to provide mappings between 

additional atlases as they become available. CAROT is implemented in Python 3, building 

on the Python Optimal Transport (POT) toolbox (Flamary and Courty, 2017).

5. Discussion and conclusions

Neuroimaging is at a crossroads, facing a need to increase replication efforts and use 

larger-than-ever samples (Yarkoni, 2009; Szucs and Ioannidis, 2020; Marek et al., 2022). 

These are tough challenges for functional connectomics, where connectomes created from 

different atlases are incomparable. As such, processed connectomes or connectomic results 

from different atlases must be reprocessed from raw data. Here, we introduced and validated 

CAROT, a method that will allow us to overcome the limitation of not being able to combine 

connectomes and results from different atlases. CAROT allows functional connectomes 

from different atlases to be transformed into a standard atlas and combined in downstream 

analyses. CAROT relies on optimal transport to find a frame-to-frame mapping of fMRI 

time series data used to create functional connectomes for a missing atlas. We show 

that these reconstructed connectomes are highly similar to the original ones and perform 

similarly in downstream analyses. Specifically, reconstructed connectomes retain sufficient 

individual differences to predict IQ and uniqueness to identify individuals. Finally, we 

provide a real-world example of how a connectome-based predictive model (based on the 

Shen atlas) can be generalized to open-source, preprocessed data that was not processed with 

the Shen atlas.

Critically, the mappings between connectomes are general to the dataset used to create the 

mappings. As such, a single set of canonical or gold-standard mappings can be trained 

with one dataset and distributed to work in new datasets without retraining the mappings. 

Accordingly, we have released initial mappings based on the HCP data to map between 

every pair of the Shen, Schaefer, Craddock, Brainnetome, Power, and Dosenbach atlases as 

part of our software. We hope that CAROT and http://carotproject.com/ will save researchers 

time and effort by eliminating data reprocessing and increasing the ease of performing 

mega-analysis and external validation efforts.

Across analyses, we show that CAROT produces reconstructed connectomes that achieve 

similar results in IQ prediction and fingerprinting as connectomes created directly from 

the data. This observation holds across a range of atlases that differ in their construction 

and constituent brain regions. While atlas pairs that are more similar in terms of their 

construction and coverage produced better pair-wise mappings (e.g., the Craddock and Shen 

atlases were created with N-cut algorithms and cover the cortex, sub-cortex, and cerebellum 

(Shen et al., 2013; Craddock et al., 2012) ), using multiple source atlases is even better. 
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Likely, combining transformed time series averages out the minor idiosyncrasies in the 

individual mappings between atlas pairs, producing more stable results. Overall, when using 

multiple source atlases, CAROT is robust to differences between the source and target 

atlases.

While including all available data generated the most similar connectomes, a strong 

correspondence between reconstructed and original connectomes was observed when as few 

as 2 or 3 different source atlases were used. This suggests that an exhaustive list of every 

possible atlas does not need to be released but rather only including a few different atlases 

could vastly increase the utility of any released preprocessed data. Balancing the utility of 

released data and the effort to release it is a delicate task. If the data is not in a convenient 

form for end-users, it will not be used and if the effort is too high to share data, data will not 

be shared. We believe that CAROT can help balance these considerations by increasing the 

utility of the shared data with only a slight increase in effort for sharing the data.

Given that multiple source atlases produce more robust results, we encourage future studies 

to release preprocessed data from a few atlases. Not only does this increase the chances that 

the needed atlas is available for an end-user, but it also better facilitates the use of the data 

when the needed atlas is unavailable. Some open-source datasets release data from multiple 

atlases (e.g., REST-Meta-MDD). That CAROT performs better with multiple altases may 

be relevant for large-scale projects, like ABCD and UK Biobank, that share raw data and 

curated releases. Given that these datasets range in the several thousands of participants, 

curated data from multiple atlases further facilitates the use of this data by smaller labs and 

research groups with a more expansive range of atlases and tools. Additionally, CAROT 

may help with connectome-based meta analyses, of which there are few, by allowing results 

to be pooled across studies. Coordinate-based meta analyses are popular for task activation 

and brain morphometry studies (Laird et al., 2005; Yarkoni et al., 2011; Eickhoff et al., 

2009) and are possible as most neuroimaging studies rely on a common template (i.e., the 

MNI template). This common template allows for spatial comparisons and pooling of results 

across different studies.

There are a few notable strengths and limitations of CAROT. First, CAROT appears to be 

robust to the choices of algorithmic parameters such as the number of fMRI frames, the 

sample size used for training, the choice of cost matrix, and the equation used to solve 

the optimal transport problem. We showed that the method is not sensitive to parameter 

search in part due to the large amount of spatial and temporal autocorrelation in fMRI data 

(Shinn et al., 2021), which allows something as complex as a connectome to be compactly 

parameterized. In an earlier MICCAI work (Dadashkarimi et al., 2022), we solved more 

complex joint optimization problems across all atlases. In this work, we instead average 

the resulting time series from CAROT. The averaging approach is less time-consuming and 

produces similar results. The main use case of CAROT is to harmonize connectomes across 

shared data. While there are some scenarios where CAROT would be useful for labs using 

their own datasets (e.g., the voxel/vertice-wise processed data is lost or delete), most will be 

able to directly calculate a connectome from the raw data.
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Future work includes generalizing CAROT to other functional time series data—such 

as electroencephalography (EEG), functional near-infrared spectroscopy (fNIRS), or even 

widefield CA2+ imaging data in mice (Lake et al., 2020)—where spatial and temporal 

autocorrelation patterns will be different. One limitation is that since CAROT is based 

on time series data, it is only appropriate for functional connectomes. Nevertheless, 

the ”missing atlas” problem also exists for structural connectomes, for which no solution 

exists. Hence, the problem still exists for studies looking to uncover structure-function 

relationships at the connectome level. However, perhaps CAROT based on Euclidean 

distance rather than functional distance may be a reasonable approach to map between 

atlases used to create structural connectomes as well as map between different atlases 

used in morphometric analyses (such as the Desikan-Killiany and Destrieux atlases used in 

FreeSurfer). While we tested CAROT with an extensive range of atlases, we could not test 

CAROT in every functional atlas, as there are many. Nevertheless, given the range in atlas 

size (200–500 nodes) and atlas coverage (whole-brain and cortical only), we expect CAROT 

to work well for modern atlases not tested here and look to update CAROT when a new 

generation of brain atlases emerges.

In sum, CAROT allows a connectome generated based on one atlas to be directly 

transformed into a connectome based on another without needing raw data. These 

reconstructed connectomes are similar to and, in downstream analyses, behave like the 

original connectomes created from the raw data. Using CAROT on preprocessed open-

source data will increase its utility, accelerate the use of big data, and help make 

generalization and replication efforts easier.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: 
Schematic of CAROT: A) During training, CAROT transforms time series fMRI data 

from multiple source atlases to a target atlas to obtain transportation mappings. Mappings 

between the source and target atlases are found by employing optimal transport and solving 

Monge–Kantorovich transportation problem using the Sinkhorn approximation. The solution 

provides a transformation that maps the brain activity parcellated using the source atlas 

to brain activity parcellated based on the target atlas. B) During testing, for each pair of 

source and target atlases and a single time point in the time series data, the offline solutions 

are used, and time series and functional connectomes accordingly will be reconstructed 

in the desired target atlas. Results from several pairs of source and target atlases can be 

combined to improve the quality of the final reconstructed connectome. C) A standard image 

preprocessing pipeline to create functional connectomes.
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Fig. 2: 
Using multiple source atlases improves the similarity of reconstructed connectomes. A) 

The Spearman’s rank correlation between the reconstructed connectomes and connectomes 

generated directly with the target atlases are shown for each pair of source and target atlas 

as well as reconstructed connectomes using all of the source atlases. Using all source atlases 

produces higher-quality reconstructed connectomes for each target atlas. Error bars are 

generated from 100 iterations of randomly splitting the data into 25% for training and 75% 

for testing. B) For each target atlas, increasing the source atlases increases the similarity 

of reconstructed and original connectomes. For most atlases, a Spearman’s correlation of 

ρ > 0.60 (red line) can be achieved by using fewer than five source atlases (i.e., all available 

source atlases). Circle size represents the variability of the correlation over 100 iterations of 

splitting the data into training and testing sets.
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Fig. 3: 
Reconstructed connectomes give similar aging results as the original connectomes. The 

top row shows the nodes with the largest number of edges significantly associated with 

age for original connectomes from the HCP created with the Shen atlas. The bottom row 

shows the same but using reconstructed Shen connectomes. These spatial maps correlate at 

r = 0.61, suggesting that analyses with the reconstructed connectomes produce comparable 

neuroscientific insights as analyses with the original connectomes.
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Fig. 4: 
Reconstructed connectomes behave the same as original connectomes in downstream 

analyses. A) The reconstructed connectomes retain sufficient individual differences to 

predict IQ using connectome-based predictive modeling. In all cases, reconstructed 

connectomes based on all available source atlases (bottom circle) predicted IQ with a similar 

or better correlation between the observed and predicted values than the original connectome 

(red line). Size of the circle represents the variance of prediction performance of 100 

iterations of 10-fold cross-validation. B) The reconstructed connectomes retain sufficient 

individual uniqueness to identify individuals using the reconstructed connectomes.
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