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Abstract

Research shows that geographic disparities in life expectancy between leading and lagging states 

are increasing over time while racial disparities between Black and White Americans have been 

going down. In the 65+ age strata morbidity is the most common cause of death, making 

differences in morbidity and associated adverse health-related outcomes between advantaged and 

disadvantaged groups an important aspect of disparities in life expectancy at age 65 (LE65). 

In this study, we used Pollard’s decomposition to evaluate the disease-related contributions 

to disparities in LE65 for two types of data with distinctly differing structures: population/

registry and administrative claims. To do so, we analyzed Pollard’s integral, which is exact by 

construction, and developed exact analytic solutions for both types of data without the need for 

numerical integration. The solutions are broadly applicable and easily implemented. Applying 

these solutions, we found that the largest relative contributions to geographic disparities in LE65 

were chronic lower respiratory diseases, circulatory diseases, and lung cancer; and, to racial 

disparities: arterial hypertension, diabetes mellitus, and cerebrovascular diseases. Overall, the 

increase in LE65 observed over 1998–2005 and 2010–2017 was primarily due to a reduction in 

the contributions of acute and chronic ischemic diseases; this was partially offset by increased 

contributions of diseases of the nervous system including dementia and Alzheimer’s disease.
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1. Introduction

Persistent disparities in health outcomes1 between sex, race/ethnicity, and geographic area-

specific subgroups in the United States are an important barrier to improving total life 

expectancy (LE)2. Attempts at reducing such disparities have met with limited success3-5, 

and the mechanisms by which health disparities develop and propagate are not fully 
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understood2,6,7. In the 65+ age strata morbidity is the most common cause of death, 

making differences in associated adverse health-related outcomes between advantaged and 

disadvantaged groups an important aspect of disparities in life expectancy at age 65 (LE65). 

However, isolating the effects of individual diseases/disease groups is not straightforward 

due to the need to balance estimate accuracy, type and number of methodological 

assumptions, range of included diseases, and the statistical power of the available data.

Methods of decomposition in demography can provide important insight into the causes of 

the differences in aggregate measures (such as LE) between well-defined population groups. 

As we will demonstrate shortly, Pollard’s decomposition8,9 is the method of choice for 

representing cause-of-death-specific contributions to disparities in LE10-12. The difference 

in LEs for two subpopulations is represented through an integral of age-functions of 

subpopulation-specific survival functions, LEs, and cause-specific hazard functions. For 

LE65, the integration is performed over age intervals from 65 to the maximal age in a 

specific dataset. This means that all functions in the integrand have to be well-defined 

and computable from available data. This is not trivial for cause-specific hazard functions. 

Many commonly used data sources report/update information at random age points (e.g., 

the age and time that a medical insurance claim was submitted to an administrative 

claim database) or aggregated across a fixed time interval (e.g., calendar-year-specific data 

on cause-specific mortality aggregated over fixed time periods, usually single-year age 

groups, in registry datasets). In the first case (administrative data), cause-specific survival 

functions can be evaluated using the Kaplan-Meier product-limit estimator13. This estimator 

is discontinuous, however, and results in infinite hazards at exact times or ages of death 

and zero hazards at all other age/time points. Mathematically, this requires us to deal 

with discontinuous and generalized functions. Although Pollard's decomposition extends (in 

theory) to discontinuous and generalized functions, numerical integration of such functions 

is not possible, restricting its use in such applications. In the second case (registry data), 

cause-specific survival functions and LEs can be evaluated using the life table approach. 

The life table approach also yields estimates of cause-specific hazards aggregated (or 

integrated) over discrete age intervals. No comparable life table approach has yet been 

proposed for cause-of-death decomposition using Pollard’s integral, the result being that 

practitioners (e.g., ref.14) continue to use Pollard’s midpoint approximation8 (eqn. 14) 

without considering the associated uncertainties and/or biases.

Pollard’s decomposition is generally applied to aggregated mortality data, allowing the 

inputs to be obtained from the associated life tables14,15. Evaluations of Pollard’s 

decomposition that require assumptions affecting how the input measures are obtained 

from data, or that use numerical approximations for integration over age-intervals, can 

introduce bias into the resulting cause-specific decompositions. Systematic biases are 

generally not considered in such analyses. Pollard’s decomposition has never been applied 

to administrative data in a way that exploits the additional information provided by 

having the exact dates of death. In order to address these limitations, we determined how 

Pollard’s decomposition8,9 could be adapted for use with administrative claims records and 

population/registry data. We used a product-limit estimator for left-truncated (or delayed 

entry) censored administrative data16 and a life table approach for registry/population 

data; we developed an exact representation of Pollard’s decomposition for discrete age 
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intervals that does not require numerical integration and does not require an assumption of 

independence among the causes of death selected for use in the decomposition.

Pollard’s decomposition is exact in continuous time—i.e., the sum of all relative 

contributions over all causes of death is exactly 1.0, or 100% of the difference in life 

expectancy. The property of additivity is a major advantage of Pollard’s decomposition; 

without it, distinguishing small cause-specific contributions to disparities from accumulated 

uncertainties due to methodological assumptions could be a challenge. The additivity 

property of Pollard’s decomposition continues to hold exactly in our solutions shown in 

eqns. (8) and (9), even after applying the multiple operations necessary to solve Pollard’s 

integral for the two types of data used in this study.

The assumption of independence of cause-specific forces of mortality is not required for 

our approach; in contrast, independence is required by alternative approaches such as 

proposed by Beltrán-Sánchez et al.12. Our method is more broadly applicable because 

we do not have to limit its use to sets of causes for which independence is a reasonable 

approximation. This allows us to deal with any specified set of causes without having 

to consider joint dependence on common risk factors such as diet, exercise, smoking, 

environmental exposures, etc. Indeed, Mokdad et al.17 proposed that such variables were 

not just risk factors but were in fact actual causes for close to half the deaths in the 

U.S in 2000. This suggests that dependencies between cause-specific contributions to the 

differences in life expectancy may be explained by common causes that are amenable to 

behavioral modifications or other forms of intervention. For example, diabetes mellitus, 

hypertension, and atherosclerosis all increase the risk of death from cerebrovascular disease 

and cardiovascular disease. The existence of such major dependencies is one reason to 

further emphasize that Pollard’s decomposition as well as the adaptations performed in this 

study do not require an assumption of independence of causes of death.

This paper is structured as follows: Section 2.1 provides preliminary results demonstrating 

that Pollard’s decomposition8,9 is the method of choice for representing cause-specific 

contributions to disparities in LE10-12. Section 2.2 provides a description of our 

methodological development. Section 2.3 provides the derivation of the explicit formulas 

for Pollard’s decomposition for administrative and population registry data. Section 3 

applies the method to Multiple Cause of Death (MCD) data and Medicare administrative 

claims, to identify the relative contributions of high-impact morbidities to disparities in 

LE65 between i) Black and White Americans, ii) the top and bottom eight U.S. states 

by LE65, and iii) the 1998–2005 and 2010–2017 time-periods. Extensive discussions of 

methodologic and substantive developments including detailed comparisons of our approach 

and other decomposition approaches available in the literature, are presented in Section 4. 

Our conclusions are in Section 5.

2. Methods

2.1 Pollard’s decomposition is the method of choice

Our refinements to Pollard’s decomposition8,9 are premised on the proposition that Pollard’s 

decomposition is the method of choice for calculating cause-of-death-specific contributions 
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to differences in LE between two life tables, two populations, or the same population 

at two time points. Support for this proposition was published in this journal by Beltrán-

Sánchez and Soneji18 who conducted an extensive review of the relevant literature, 

including prior work by Beltrán-Sánchez et al.12 that established a close connection between 

Pollard’s decomposition and cause-elimination life table techniques—the former dealing 

with observed changes, the latter dealing with hypothetical changes. This close connection 

is the key to understanding why the Pollard decomposition is the method of choice for the 

pairwise comparisons noted above.

Our literature review indicated that the close connection between Pollard’s decomposition 

and the standard cause-elimination methods could have been noted prior to Beltrán-

Sánchez’s papers in 2008 and 2011. For example, it could have been noted by Pollard 

in his 1982 and 1988 papers8,9. At that time, however, the question of the day was how 

Pollard’s (1982) method differed from that of Arriaga19 (1984) whose method was gaining 

popularity among demographers because it was easy to use. Pollard (1988) resolved the 

question9: the methods were equivalent. Arriaga’s (1984) and later (1989) method19,20 

was a discrete time formulation of Pollard’s continuous time method. This equivalence, 

combined with the close connection between Pollard’s decomposition and cause-elimination 

methods, simplifies our presentation substantially and makes our results accessible without 

dependence on the extensive subsequent literature.

Our development relies on two papers by Makeham21,22 that extended life table theory to 

include cause-specific forces of mortality (same as hazard rates) that are additive over any 

set of independent causes of death. More than three-quarters century later, Greville23 (1948; 

p. 288) considered the gain in life expectancy at age x that would occur if deaths from 

cause i were eliminated under Makeham’s theory. He published the following formula for 

computing such change:

e
∘

x
( − i) − e

∘

x = ∫
0

∞

tpx μx + t
i e

∘

x + t
( − i) dt (1)

where the left side is the difference between the initial LE at age x, denoted e
∘

x, and the new, 

higher LE after eliminating deaths from cause i, denoted e
∘

x
( − i), where the superscript (−i) is 

an indexing symbol, not an exponent. The integrand on the right side has three factors. The 

first is the probability of surviving from age x to age x + t in the initial life table; the second 

is the force of mortality at age x + t due to cause i in the initial life table; the third is the LE 

at age x + t in the new life table. By setting x = 0, one can obtain the formula for the gain in 

LE at birth due to elimination of deaths from cause i. Thus, Greville’s equation (1) can be 

rewritten as:

e
∘

0
( − i) − e

∘

0 = ∫
0

∞

μt
i

tp0 e
∘

t
( − i) dt (2)

where the first two factors in the integrand were interchanged.

Akushevich et al. Page 4

Theor Popul Biol. Author manuscript; available in PMC 2024 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Pollard9 (1988; eqn. (6) presented the following formula for the change in LE at birth 

between any two life tables, indexed by the superscripts 1 and 2:

e
∘

0
2 − e

∘

0
1 = ∫

0

∞

(μt
1 − μt

2) tp0
1 e

∘

t
2 dt . (3)

Comparing eqns. (2) and (3) term-by-term, one can see that life table 1 corresponds to 

Greville’s initial life table, and life table 2 corresponds to the life table with deaths from 

cause i eliminated. The probability of surviving from age 0 to age t is indexed to life table 

1; the new, higher LE is indexed to life table 2. The change in the force of mortality at 

age t between the two life tables corresponds to the force of mortality due to cause i in 

Greville’s initial life table, i.e., (μt
1 − μt

2) μt
i. Thus, Greville’s cause-elimination formula (2) 

and Pollard’s decomposition formula (3) can be matched term-by-term to reveal the formal 

equivalence between them.

Greville’s formula (2) represents the increase in LE that would hypothetically occur upon 

elimination of deaths from cause i ; Pollard’s formula (3) represents the change in LE that 

actually occurs upon replacement of the force of mortality in life table 1 with the force of 

mortality in life table 2. This replacement is typically thought of as reductions in the force 

of mortality at all ages, but this is not required by Pollard’s formula (3); there may be ages 

where the force of mortality increases.

Moreover, using the additivity of the cause-specific forces of mortality in Makeham’s 

theory21,22, Pollard’s decomposition can be rewritten in the form:

e
∘

0
2 − e

∘

0
1 = ∫

0

∞

∑
i = 1

I
(μt

i1 − μt
i2) tp0

1 e
∘

t
2 dt . (4)

By setting μt
i2 = 0 for some i and μt

j2 = μt
j1 for all j ≠ i, one can reproduce the right side of 

Greville’s formula (2) for elimination of deaths from cause i with e
∘

0
2 = e

∘

0
( − i) and e

∘

0
1 = e

∘

0.

The above analysis could have been done in 1982 by Pollard when publishing his paper8, 

or by any reader familiar with Greville23. Greville’s formula (2) was well-known; it 

formed the basis of the cause-elimination life tables published by the National Center for 

Health Statistics beginning with the U.S. Decennial Life Tables for 1959–196124. Arriaga’s 

formulas19,20 were also well-known; they formed the basis of the cause decomposition 

tables published by the National Center for Health Statistics beginning with calendar years 

1984–198925. The equivalence of Arriaga’s19,20 and Pollard’s8,9 formulas were known in 

1988 but their relationship to Greville’s formula23 were not recognized until much later. 

Arriaga19,20 made no mention of the concurrent work by Pollard8,9 or prior work by 

Greville23.
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Pollard8,9 further observed that the order of superscripts 1 and 2 used to index the two life 

tables is arbitrary; they can be interchanged in eqn. (4) to yield, after a change in signs:

e
∘

0
2 − e

∘

0
1 = ∫

0

∞

∑
i = 1

I
(μt

i1 − μt
i2) tp0

2 e
∘

t
1 dt , (5)

which, although equal to the formula above, may differ when separated into components 

that are additive over cause and/or age (i.e., assuming that the integral is separated into age-

specific components). Because eqns. (4) and (5) are identities, Pollard recommended they be 

combined as a convex combination with equal weights. Thus, Pollard’s decomposition has 

two forms based on the ordering of the life table indexes, 1–2, 2–1, and a third form based 

on a convex combination of the first two. The convex combination form with equal weights 

will be used in the present paper for comparisons of life tables for pairs of subpopulations, 

as recommended by Pollard.

The calculations in the present paper represent discrete-time alternatives to Arriaga’s19,20 

discrete-time formulas; our calculations derive directly from Pollard’s decomposition and, 

hence, connect directly to Greville’s23 formulas (1) and (2) and Makeham’s life table 

theory21,22 for independent causes of death.

2.1.1 The assumption of independence of cause-specific forces of mortality 
is not required for Pollard’s decomposition by cause of death in equations 
(4) and (5).—Greville commented23 that the independence assumption was required for 

the cause elimination calculations in eqns. (1) and (2) but independence was not required 

for the representation of the total force of mortality as a sum of cause-specific forces 

indexed by i; the only assumption required for additivity was that the set of I, i = 1, 2, …, I, 

causes be mutually exclusive and exhaustive. The same result follows from Gail26 (eqn. 

4): the additivity of the cause-specific forces arises solely as a consequence of the chain 

rule for partial derivatives of multivariable functions. Thus, the additivity over causes in 

eqns. (4) and (5) applies even if the causes of death are dependent. This is important 

for our applications because many causes of death above age 65 are chronic degenerative 

diseases with common risk factors that generate complex forms of dependence that cannot 

be resolved using available population/registry and administrative claims data.

Makeham22 and Greville23 used the term “independent” to describe cause-specific forces of 

mortality that would remain unchanged upon elimination of deaths due to one or more other 

causes, the implication being that “dependent” cause-specific forces of mortality would 

allow such changes to occur. Gail26 considered Makeham’s22 use of the term “independent” 

in the context of competing risk theory and determined that the condition of no change 

in a given force of mortality upon elimination of deaths due to other causes is slightly 

weaker than the usual assumption of statistical independence of the multiple theoretical 

times to death associated with any given set of independent competing risks. The slight 

difference is of little practical significance given that only the first of the multiple theoretical 

times to death can actually be observed. Gail26 commented that the use of either form of 

independence assumption is “always suspect.” Pollard’s decomposition can be formulated 
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without either form of independence assumption making it highly attractive for use in 

decomposing disparities in LE.

Beltrán-Sánchez et al.12 (2008) and Beltrán-Sánchez and Soneji18 (2011) recognized 

the close connection between Pollard’s decomposition and cause-elimination life table 

techniques, but they did not mention that Pollard’s decomposition can be performed 

without the independence assumption. They wrote: “An important limitation in this area of 

demographic research is the assumption of independence among causes of death.” (Beltrán-

Sánchez and Soneji18, 2011; p. 44). The independence assumption is required only for 

cause elimination calculations, not for Pollard’s decomposition. Whereas two life tables are 

observed in Pollard’s formulas (3)-(5), only one is observed in Greville’s formulas (1) and 

(2). The penalty for the lack of observed information regarding Greville’s second life table is 

the need for additional assumptions, the simplest of which is independence26.

The impact of assuming independence between causes of death may not be that 

large in practice. For example, Beltrán-Sánchez et al.12 developed an alternative 

decomposition of LE differences based on cause elimination calculations with an explicit 

independence assumption. Comparisons of their alternative with Pollard’s decomposition 

led to their conclusion: “Differences are found to be minute between our approach and 

Pollard’s.” (Beltrán-Sánchez et al.,12 p. 1327). They found substantially larger differences 

in comparisons with Arriaga’s approach20. Given the aforementioned equivalence of 

Arriaga’s20 and Pollard’s8 formulas, however, it is highly likely that the differences reported 

by Beltrán-Sánchez et al.12 were due to the use of a “1–2” form of Arriaga’s formulas20 

rather than the convex-combination form recommended by Pollard8. Unlike Pollard8 who 

identified three forms of decomposition consistent with formulas (4) and (5), Arriaga19,20 

published just one form for his decomposition. Preston et al.27 simplified the indexing in 

Arriaga’s formulas and introduced the “1–2” notation to refer to two different populations in 

the same way as Pollard did. Once the existence of the different 1–2 and 2–1 forms is taken 

into account and the discrepancy with Arriaga’s20 approach is explained, it then follows that 

Beltrán-Sánchez et al.’s12 results support our conclusion that Pollard’s8,9 decomposition is 

the method of choice.

2.2 Pollard’s Decomposition and Cause-Specific Contributions

The approach developed by Pollard8,9 provides the fundamental decomposition of LE65 

which is represented herein as the sum over all cause-of-death-specific contributions:

e
∘

W(65) − e
∘

B(65) = ∑i ∫
65

∞

μiB(a) − μiW(a)
ℓB(a)e

∘

W(a) + ℓW(a)e
∘

B(a)
2 da (6)

where i indexes causes of death, and e
∘

j(a), μij(a) and ℓj(a) are LE, cause-specific force 

of mortality, and survival function at age a for the groups being compared (j indexes the 

groups); we use ℓj(a) ≡a − 65 p65
j  to simplify Pollard’s notation in eqns. (3)-(5). Term-by-term 

comparison shows that eqn. (6) is a convex combination of eqns. (4) and (5) with equal 

weights, as recommended by Pollard.
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We denote the population groups by “B” and “W ” instead of Pollard’s “1–2” to mirror the 

analysis of race-related disparities between Black and White Americans; but the formula is 

applicable to any two well-defined groups. We will shift the location of the “B” and “W ” 

from subscript to superscript freely in the following development, if such shifts simplify the 

associated equations.

Each individual term in eqn. (6) in the sum over i can be divided by e
∘

W (65) − e
∘

B(65) ≠ 0
to represent the relative contributions of cause i to the disparities of LE65, with the ratio 

denoted by RCi,

RCi = 100 % ⋅ ∫
65

∞

μiB(a) − μiW(a)
ℓB(a)e

∘

W(a) + ℓW(a)e
∘

B(a)
2 e

∘

W(65) − e
∘

B(65)
da , (7)

where ∑i RCi = 100 %. The ratios are defined only when the LE65s differ between the two 

groups (i.e., division by zero is undefined). Moreover, the cause-specific RCis may differ in 

sign, implying that the sum of their absolute values may be substantially greater than 100% 

and that the differences in LE65s reflect offsetting effects for one or more causes.

Numerical evaluation of integrals always requires approximations. We leverage the specific 

properties of two types of widely available epidemiological data to evaluate the integral in 

eqn. (6) without additional assumptions beyond those that are standard for the two types of 

data. The two types of data are: i) population/registry data (MCD data in our case) where 

the number of cause-specific deaths and the associated population counts in each age group 

are known; and ii) administrative claims data (5%-Medicare data in our case) where the age 

and time at the beginning and end of each individual’s follow-up period and, if deceased, 

the date and cause of death are known. The standard assumptions for these two types of data 

are those necessary for life table construction and Kaplan-Meier estimation of group-specific 

survival functions, respectively.

For population/registry data we evaluate the integral assuming the availability of the 

numbers of cause-specific deaths between integer ages (i.e., between x and x + 1, where 

x is an integer) and observed or estimated exposed-subpopulation counts at exact age x. 

Chiang28 eqn. (23) showed that exposed-population counts at exact age x can be estimated 

using mid-year population counts for ages between x and x + 1. The life table calculations 

provide the age-specific survival functions lx
j (using lx

j ≡ ℓj(x)) and life expectancies e
∘

xj (using 

e
∘

xj ≡ e
∘

j(x)). Pollard’s integral can then be evaluated, yielding the following decomposition 

(details are presented in Section 2.3):

e
∘

65
W − e

∘

65
B = ∑

i = 1

I
∑

x = 65

x1 μix
B

μx
B eμx

B
− 1 − μix

W

μx
W eμx

W
− 1 × W x, (8)
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where W x = 1
2 lx + 1

W e
∘

x
B − (ax − x) + lx + 1

B e
∘

x
W − (ax − x)  for 65 ≤ x < x1, and 

W x1
= 1

2 (lx1

B + lx1

W )
(1 − qx1

B )(1 − qx1
W )

qx1
B qx1

W . The difference ax − x can be set to ½ in the majority of 

applications.

The total (all-cause) 1-year cumulative hazards are estimated as: μx
B = log lx

B ∕ lx + 1
B  and 

μx
W = log lx

W ∕ lx + 1
W . Age x1 denotes the left bound of the last age group which is open-to-

the-right (e.g., the group 100+ if x1 = 100). The total hazard in this group is estimated as 

μx1
j = − log(1 − qx1

j ), where qx1
j  denotes the annual probability of death at age x1 which is 

assumed to be constant at age x1 and above. It follows from Greville23 eqn. (5) that if 

the cause specific hazards are proportional between ages x and x + 1, then the constant of 

proportionality for each cause i is equal to the fraction rix
j = dix

j ∕ dx
j, where dx

j = ∑i dix
j  are 

the total and cause-specific number of deaths between ages x and x + 1, for 65 ≤ x < x1, 

or for the last age interval the total and cause-specific number of deaths for age x1 and 

above. The cause-specific one-year cumulative hazards, μix
j , are estimated using μix

B = rix
Bμx

B

and μix
W = rix

W μx
W ; see Appendix A for proof.

For administrative claims, the product-limit estimates of subpopulation-specific survival 

functions for left-truncated (or delayed entry) data16 are constructed using individual follow-

up data. Because the product-limit survival functions are constant between exact ages of 

death, LE65 is easily calculated as the area under the survival function. Pollard’s integral is 

then represented as a sum of the respective estimates taken at ages of death recorded in the 

data for one or the other subpopulation:

e
∘

W(65) − e
∘

B(65) = 1
2 ∑

i = 1

I
∑

ki = 1

Ki μiB(aiki)
μB(aiki)

eμB(aiki) − 1 −
μiW(aiki)
μW(aiki)

eμW (aiki) − 1

ℓW(aiki + )e
∘

B(aiki − ) + ℓB(aiki + )e
∘

W(aiki − )
(9)

where i indexes cause of death, aiki represent age at death from cause i, and the number 

of such deaths is Ki; {ak} is the set of ages of death in either or both subpopulations; ak −

and ak +  indicate that the left and right limits of the respective functions have to be taken. 

The product-limit estimator has jump discontinuities of survival functions at these points, 

so survival functions for ak −  and ak +  (and therefore life-expectancies) are not equal but are 

well-defined at these points. The quantities μj(ak) and μij(ak) denote total and cause-specific 

cumulative hazards that are estimated as logarithms of the ratios of the respective survival 

functions at ak −  and ak + .

Standard errors and confidence intervals for LE65 and RCi are calculated using a simulation 

strategy29-31. Although most such approaches provide analytical formulae for the variance 

in life expectancies, we prefer the version involving Monte Carlo simulations because such 

an approach allows us to obtain the standard errors and confidence intervals for the cause-
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specific relative contributions RCi. Specifically, the number of deaths for an age interval is 

assumed to be binomially distributed and simulated when a life table is constructed based 

on the age-specific probability of death and the number of individuals at risk in the input 

dataset. The standard deviation of the distribution of LEs, simulated multiple times, gives an 

estimate of the standard error of the life-table-based LE. For our study the standard approach 

(based on the assumption of a binomial distribution of the number of deaths) was improved 

in several aspects. First, because there were many different causes of death, the multinomial 

distribution was used to simulate cause-of-death-specific probabilities of death at each exact 

age. Technically we used the conditional method to simulate a multinomial draw using 

a series of binomial draws32. Second, although the standard approach provides for the 

calculation of standard errors for LE, we also needed standard errors for cause-specific 

relative contributions RCi. Therefore, we calculated the RCi for each simulated life table and 

evaluated the standard errors of the RCi using their simulated distributions.

2.3. Derivation of Equations (8) and (9)

Formulas (6) and (7) are exact. The sum of the relative contributions ∑i RCi equals 1 (or 

100%). Only the cause-specific hazards μij(a) depend on i, so the sum over i in (6) or (7) 

results in ∑i μij(a) = μj(a), where μj(a) is the total subpopulation-specific hazard function for 

subpopulation j. The integral in the resulting formulas is analytically calculated for two 

arbitrary ages:

∫
a1

a2

(μB(a) − μW(a)) ℓB(a)e
∘

W(a) + ℓW(a)e
∘

B(a) da

= ℓB(a1) + ℓW(a1) e
∘

W(a1) − e
∘

B(a1) − ℓB(a2) + ℓW(a2) e
∘

W(a2) − e
∘

B(a2) .

(10)

The four-step proof of this statement is (where each line is a step):

∫
a1

a2

(μB(a) − μW (a)) ℓB(a)e
∘

W (a) + ℓW (a)e
∘

B(a) da = ∫
a1

a2 ℓW′ (a)ℓB(a) − ℓB′ (a)ℓW (a)
ℓB(a)ℓW (a) ℓB(a)e

∘

W (a) + ℓW (a)e
∘

B(a) da

= − ∫
a1

a2

ℓW (a)e
∘

W (a)d
ℓB(a)
ℓW (a) + ∫

a1

a2

ℓB(a)e
∘

B(a)d
ℓW (a)
ℓB(a)

= − ℓB(a)e
∘

W (a) ∣a1
a2 − ∫

a1

a2

ℓB(a)da + ℓW (a)e
∘

B(a) ∣1
a2 + ∫

a1

a2

ℓW (a)da

= ℓB(a1) + ℓW (a1) e
∘

W (a1) − e
∘

B(a1) − ℓB(a2) + ℓW (a2) e
∘

W (a2) − e
∘

B(a2)
,

where we used i) the equation μj(x)ℓj(x) = − ℓj
′(x) in step one (j indexes 

the groups being compared, e.g., j = B or W ); ii) properties of derivatives 

of a ratio like ℓB(a) ∕ ℓW (a) ′ = ℓB
′ (a)ℓW (a) − ℓW

′ (a)ℓB(a) ∕ ℓW
2 (a) for step two; iii) 
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integration by parts and the equation ℓj(x) = − ℓj(x)e
∘

j(x) ′ that follows from the 

definition of LE: e
∘

j(x) = 1
ℓj(x)∫x

∞ℓj(a)da, for step three; and iv) the equation: 

−∫a1

a2ℓj(a)da = ℓj(a2)e
∘

j(a2) − ℓj(a1)e
∘

j(a1) which also follows from the definition of LE for 

step four. The result of the integration can be represented as F (a1) − F (a2) where 

F (a) ≡ ℓB(a) + ℓW (a) e
∘

W (a) − e
∘

B(a) . Pollard’s integral is obtained when a1 = 65 and a2 ∞

because F (65) = 2 e
∘

W (65) − e
∘

B(65)  and F (∞) = 0.

An important property of Pollard’s integral is that it is exactly zero if taken 

over a time interval with no deaths in either subpopulation under comparison. This 

follows from eqn. (10) because the subpopulation-specific survival functions are 

constant, and therefore, changes in life expectancies for both subpopulations are equal: 

e
∘

W (a1) − e
∘

W (a2) = e
∘

B(a1) − e
∘

B(a2) = a2 − a1, and finally, F (a1) = F (a2). This implies that the entire 

integration region can be separated into subregions containing and not containing death 

events and only the former contributes to Pollard’s integral. The area around an event can 

be chosen to be arbitrarily small. Thus, if all events occurred at different times (from a 

theoretical point of view this is always true), we can express Pollard’s integral as a sum over 

all death events as

eW
o (65) − eB

o(65) = ∑k = 1

K F (ak − ) − F (ak + ) (11)

where ak −  and ak +  are left and right limits of age ak (i.e., ak − = ak − ϵ and ak + = ak − ϵ, where 

ϵ is an arbitrary small value or even ϵ 0), and k, k = 1, …, K, indexes the sequence numbers 

of the death events. Each death is associated with a certain cause i; hence, we can index each 

ordered death time by cause as aiki − , aiki + , and aiki
. All terms in eqn. (11) can be regrouped 

by cause, resulting in a decomposition of the disparity in LE in terms of cause-specific 

contributions:

eW
o (65) − eB

o(65) = ∑
i = 1

I
∑

ki = 1

Ki

F (aiki − ) − F (aiki + ) (12)

where i indexes causes of death, aiki
 represent ages of death from cause i, and the number of 

deaths from cause i is Ki, where ∑i = 1
I Ki = K, the total number of deaths from all causes.

We need to specify the details of this approach for the two types of data used in the present 

study: i) administrative data, where we have individual follow-up information including 

initial age, final age of follow-up, an indicator of death/censoring at the final age, and cause 

of death; and ii) population/registry data where we know the number of deaths by cause and 

age (or age groups) and the associated exposed-population counts.

2.3.1. Administrative data—The first step of analysis using administrative data is 

to obtain the product-limit estimates for left-truncated (or delayed entry) data16 both for 

total and cause-specific survival functions. The cause-specific survival functions can then 
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be calculated similarly, but ignoring all other causes of death, i.e., treating the other 

causes as additional “censoring events”. Software to obtain the estimates of such total 

and cause-specific survival functions is available in all standard statistical packages, e.g., 

Proc PHREG with BASELINE statement provides such estimates in SAS software33. The 

resulting subpopulation-specific total ℓj(a)  and cause-specific ℓij(a)  survival functions 

then satisfy the equality ℓj(a) = ∏i = 1
I ℓij(a) for each age a. The survival functions obtained 

using the above product-limit method are constant between events (i.e., times of death) and 

change only at these time points. This means that subpopulation-specific hazards functions 

μB(a) and μW (a) are zero everywhere except at age-points where deaths occur, i.e., the 

hazard functions have to be described in terms of the Dirac delta-function. However, the 

cumulative hazards, i.e., hazard functions integrated over an age interval that includes 

the age-at-death of a death event (ak) are well-defined and can be expressed in terms of 

logarithms of the ratios of the respective survival functions taken at the age-points just 

before (ak − ) and just after (ak + ) the death event (e.g., see ref.34). Specifically, the estimates 

of the total and cause-specific cumulative hazards are: μj(ak) = log ℓj(ak − ) ∕ ℓj(ak + )  for 

total and μij(ak) = log ℓij(ak − ) ∕ ℓij(ak + )  for cause-specific cumulative hazards. The equality 

∑i μij(ak) = μj(ak) is then satisfied exactly, because:

∑i μij(ak) = ∑i log ℓij(ak − ) ∕ ℓij(ak + ) = log ∏i ℓij(ak − ) ∕ ∏i ℓij(ak + ) = log ℓj(ak − ) ∕ ℓj(ak + = μj(ak) .

As noted above, Pollard’s integral is exactly zero if taken over a time interval with no deaths 

in either subpopulation under comparison. Therefore, only intervals involving death events 

contribute to the integral, and Pollard’s integral is represented as a sum of the respective 

estimates taken at ages of death detected in the data for one of the subpopulations.

If exactly one death occurred in the age interval between ak −  and ak + , so that μj(a) = μij(a), 
then the integral over the area around the death event from cause i at age ak can be calculated 

using (10), yielding:

∫
ak −

ak +

(μiB(a) − μiW(a)) ℓB(a)e
∘

W(a) + ℓW(a)e
∘

B(a) da = F (ak − ) − F (ak + )

= ℓB(ak − ) + ℓW(ak − ) e
∘

W(ak − ) − e
∘

B(ak − )
− ℓB(ak + ) + ℓW(ak + ) e

∘

W(ak + ) − e
∘

B(ak + )
= ℓB(ak − )e

∘

W(ak − ) − ℓW(ak − )e
∘

B(ak − ) − ℓB(ak + )e
∘

W(ak + ) + ℓW(ak + )e
∘

B(ak + )

(13)

where we used the equalities

ℓj(ak − )e
∘

j(ak − ) = ℓj(ak + )e
∘

j(ak + ) (14)

which are valid for each subpopulation j (e.g., j = B or W ). The equality holds because both 

products in the left and right sides of eqn. (14) are equal to ∫ak
∞ℓj(u)du. Recall that ak −  and ak +

mean that the left and right limits of the respective functions have to be taken. Also recall 
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that we have the freedom to choose any lower and upper integration limit in eqn. (13) and 

that there is only one age at death (ak) inside the integration region. This allows us to choose 

ak −  and ak +  infinitely close to ak. Because of the discontinuity of the survival function at the 

point ak, it follows that life expectancy is not continuous at this point either. Recall, however, 

that the cumulative hazard function is estimated as the logarithm of the ratio of the survival 

functions at ak −  and ak + . It follows that the survival and life expectancy functions can each 

be expressed in terms of the cumulative hazard function:

ℓj(ak − ) = ℓj(ak + ) exp(μj(ak))
e
∘

j(ak − ) = e
∘

j(ak + ) exp( − μj(ak))
(15)

where the first line of eqn. (10) follows from the definition of the cumulative hazard 

and the second uses the definition of LE, i.e., e
∘

j(x) = 1
ℓj(x)∫x

∞ℓj(a)da, combined with 

the property that the integral ∫ak
∞ℓj(u) du is a continuous function of age, in which case 

∫ak −
∞ ℓj(u) du = ∫ak +

∞ ℓj(u) du = ∫ak
∞ℓj(u) du. Multiplication of the first and second lines of eqn. (15) 

yields eqn. (14), thereby confirming its validity.

Eqn. (15) allows us to express eqn. (13) in terms of ℓ j(ak − ) and e
∘

j(ak + ):

F (ak − ) − F (ak + ) = e−μW (ak) − e−μB(ak) ℓW(ak − )e
∘

B(ak + ) + ℓB(ak − )e
∘

W(ak + ) , (16)

or, in terms of ℓ j(ak + ) and e
∘

j(ak − ):

F (ak − ) − F (ak + ) = eμB(ak) − eμW (ak) ℓW(ak + )e
∘

B(ak − ) + ℓB(ak + )e
∘

W(ak − ) . (17)

One more expression involves the difference between ℓ j(ak − ) and ℓ j(ak + ) or jump 

discontinuity, defined as Jj(ak) = ℓj(ak − ) − ℓj(ak + ):

Jj(ak) = ℓj(ak − ) − ℓj(ak + ):
F (ak − ) − F (ak + ) = JB(ak)

ℓB(ak + ) − JW(ak)
ℓW(ak + ) ℓW(ak + )e

∘

B(ak − ) + ℓB(ak + )e
∘

W(ak − ) . (18)

Eqns. (16), (17), and (18), and the property that the integral over an interval without any 

deaths is exactly zero, allow us to represent the disparities in LE65 (e
∘

W (65) − e
∘

B(65)) as a 

sum overtimes when deaths occurred:

e
∘

W(65) − e
∘

B(65) = 1
2 ∑k

(F (ak − ) − F (ak + ))

= 1
2 ∑k

JB(ak)
ℓB(ak + ) − JW(ak)

ℓW(ak + ) ℓW(ak + )e
∘

B(ak − ) + ℓB(ak + )e
∘

W(ak − ) .
(19)

Similar formulas can be obtained using eqns. (16) and (17).
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If each term in the sum over k is associated with a certain cause of death, then all terms in 

(19) can be regrouped to combine all cause-specific terms resulting in decomposition of the 

disparity in LE in terms of cause-of-death-related contributions:

e
∘

W(65) − e
∘

B(65) = 1
2 ∑

i = 1

I
∑

ki = 1

Ki JB(aiki)
ℓB(aiki + ) −

JW(aiki)
ℓW(aiki + )

ℓW(aiki + )e
∘

B(aiki − ) + ℓB(aki + )e
∘

W(aiki − )
(20)

where i indexes cause of death, aiki
 represent age at death from cause i, and the number of 

such deaths is Ki.

Eqn. (20) is valid only when no deaths from a different cause occur on the same day, 

assuming that time of day of each death is not available to break such ties. Because such 

situations are likely to occur occasionally, a minor modification of eqn. (20) is required. The 

modification is based on the property that the jump discontinuities Jj(ak) are proportional to 

the cause-specific cumulative hazards Jj(ak) ∑i
μij(ak)
μj(ak)

Jj(ak). This works for one or several 

deaths from one cause as well as many deaths from different causes, all occurring at exact 

age ak (i.e., with attained age measured in days since birth). Substituting for Jj(ak) in eqn. 

(20), we obtain an expression for disparities in LE valid in the general case, i.e., when 

multiple deaths with multiple causes can occur at an exact age ak:

e
∘

W(65) − e
∘

B(65) = 1
2 ∑

i = 1

I
∑

ki = 1

Ki μiB(aiki)
μB(aiki)

JB(aiki)
ℓB(aiki + ) −

μiW(aiki)
μW(aiki)

JW(aiki)
ℓW(aiki + )

ℓW(aiki + )e
∘

B(aiki − ) + ℓB(aiki + )e
∘

W(aiki − ) ,
(21)

or, alternatively:

e
∘

W(65) − e
∘

B(65) = 1
2 ∑

i = 1

I
∑

ki = 1

Ki μiB(aiki)
μB(aiki)

eμB(aiki) − 1 −
μiW(aiki)
μW(aiki)

eμW (aiki) − 1

ℓW(aiki + )e
∘

B(aiki − ) + ℓB(aiki + )e
∘

W(aiki − ) .
(22)

Equation (22) is the final expression for the decomposition of life-expectancy disparities 

using administrative data; it is the same as eqn. (9). The explicit expressions for the cause-

specific relative contributions are:

RCi = 1
2 ∑

ki = 1

Ki μiB(aiki)
μB(aiki)

eμB(aiki) − 1 −
μiW (aiki)
μW (aiki)

eμW (aiki) − 1
ℓW (aiki + )e

∘

B(aiki − ) + ℓB(aiki + )e
∘

W (aiki − )

e
∘

W (65) − e
∘

B(65)
.
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Because all derivations used to obtain eqn. (22) were exact, and the only actions taken 

to isolate the contributions of specific causes of death was a regrouping of the terms by 

combining deaths with the same cause to create the sum over i, the property ∑i = 1
I RCi = 1 is 

exactly satisfied. The RCi s may include offsetting effects for one or more causes, in which 

case some RCi s will differ in sign from that of the overall sum.

2.3.2. Population/registry data—In population/registry data, data for integration are 

usually available in the form of life table functions. We assume that the total and cause-

specific survival functions (lx
j and lix

j ) are available for integer ages. We use notation lx
j and lix

j

in order to underscore that these are life table functions in contrast to the continuous survival 

functions ℓ j(a) and ℓ ij(a) that we used in Section 2.1.1. Decomposition of disparities in LE65 

can be obtained from eqn. (10) if we consider a1 and a2 as consecutive integer ages. The 

integration between the two integer ages is performed as shown in Appendix B.

e
∘

W(65) − e
∘

B(65) = 1
2 ∑

i = 1

I
∑

x = 65

∞ μix
B

μx
B eμx

B
− 1 − μix

W

μx
W eμx

W
− 1

lx + 1
W e

∘

x
B − (ax − x) + lx + 1

B e
∘

W − (ax − x) ,
(23)

where the total and cause-specific cumulative hazards are defined as: μx
j log lx

j ∕ lx + 1
j  and 

μx
ij log lix

j ∕ li, x + 1
j . No specific assumption on the form of the distribution of deaths within an 

age interval is required. The age ax is an effective mean age of death in this interval, which 

is calculated as weighted sum of the individual ages of death (Appendix B). Equivalently, we 

can consider the age ax as the point at which all deaths in the interval occurred; no specific 

assumptions are required to do so. In this case, eqn. (23) can be obtained directly from eqn. 

(22). The assumption that ax − x = 1 ∕ 2 can be made for one-year intervals, but it is not 

necessary for our development.

We need to explicitly demonstrate that the sum over all age intervals, indexed by x, results in 

the difference in life expectancies shown in eqn. (23). The ratios of cause-specific and total 

cumulative hazards sum to one, after summing over i, so we need to deal only with terms 

derived from eqn. (23) having the following form:

lx
B

lx + 1
B − lx

W

lx + 1
W lx + 1

W e
∘

x
B − 1

2 + lx + 1
B e

∘

x
W − 1

2

= lx
B

lx + 1
B − lx

W

lx + 1
W lx + 1

W ∑y = x
∞ ly + 1

B

lx
B + lx + 1

B ∑y = x
∞ ly + 1

B

lx
W ,

(24)

where we used the following expressions for LE in terms of life table functions

e
∘

x
j = ∑y = x

∞ Ly
j

lx
j = ax − x + ∑y = x

∞ ly + 1
j

lx
j . (25)
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That is true when ax − x is independent of x. The standard expression for LE is obtained 

using ax − x = 1 ∕ 2.

To complete the demonstration, we change the order of summations in the right side of (24) 

and reintroduce the summation over x, starting at x0 = 65:

1
2 ∑x = x0

∞ lx
B

lx + 1
B −

lx
W

lx + 1
W ∑y = x

∞ lx + 1
W ly + 1

B

lx
B +

lx + 1
B ly + 1

W

lx
W = 1

2 ∑x = x0
∞ ∑y = x

∞ lx + 1
W ly + 1

B

lx
B +

lx + 1
B ly + 1

W

lx
W

lx
B

lx + 1
B −

lx
W

lx + 1
W

= 1
2 ∑x = x0

∞ ∑y = x
∞ lx

Bly + 1
W

lx
W −

lx
W ly + 1

B

lx
B +

lx + 1
W ly + 1

B

lx + 1
B −

lx + 1
B ly + 1

W

lx + 1
W

= 1
2 ∑y = x0

∞ ∑x = x0
y lx

Bly + 1
W

lx
W −

lx
W ly + 1

B

lx
B +

lx + 1
W ly + 1

B

lx + 1
B −

lx + 1
B ly + 1

W

lx + 1
W

= 1
2 ∑y = x0

∞ lx0
B ly + 1

W

lx0
W −

lx0
W ly + 1

B

lx0
B +

ly + 1
W ly + 1

B

ly + 1
B −

ly + 1
B ly + 1

W

ly + 1
W = ∑y = x0

∞ ly + 1
W − ly + 1

B = e
∘

x0
W − e

∘

x0
B ,

where, with x0 = 65, the final term is seen to be equal to the first term in eqn. (23). 

In these calculations x0 denotes the left bound of the first age interval (e.g., x0 = 65), so 

the equation lx0
W = lx0

B = 1 was used for consistency with the initialization of the continuous 

survival functions ℓj(x0) = 1. For any other starting age a, where la
W ≠ la

B ≠ 1, the result of the 

above calculation is:

∑x = a

∞ lx
B

lx + 1
B − lx

W

lx + 1
W ∑y = x

∞ lx + 1
W ly + 1

B

lx
B + lx + 1

B ly + 1
W

lx
W = la

W + la
B e

∘

a
W − e

∘

a
B . (26)

This calculation can be repeated for any initial and final interval resulting in:

∑x = a1

a2 lx
B

lx + 1
B −

lx
W

lx + 1
W ∑y = x

∞ lx + 1
W ly + 1

B

lx
B +

lx + 1
B ly + 1

W

lx
W = la1

W + la1
B e

∘

a1
W − e

∘

a1
B − la2 + 1

W + la2 + 1
B e

∘

a2 + 1
W − e

∘

a2 + 1
B .

The sums in this calculation were treated as follows:

∑x = a1

a2 ∑y = x
∞ … ∑y = a1

∞ ∑x = a1

min(y, a2)
… ∑y = a1

∞ ∑y = a1
∞ … − ∑y = a2 + 1

∞ … .

The last age group—with left bound denoted as x1—should be chosen such that both lx1 + 1
B

and lx1 + 1
W  are negligible. In practice, data for life tables contain a last group that is open to 

the right, e.g., the group 100+ in our study. The total and cause-specific probabilities of 

death are assumed constant within the last group. The contribution of the last group to the 

difference in LE65 can be calculated based on eqn. (23) in which all terms starting from x1

in the sum over x have to be analytically summed for fixed probabilities of death qx1
j , where 

qx1
j = 1 − exp( − μx1

j ). Life expectancies for x ≥ x1 are time independent (i.e., constant) if the 

probabilities of death are time independent; they are estimated as:
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e
∘

x1
j − (ax − x) = ∑y = x1

∞ ly + 1
j

lx1
j = 1

lx1
j ∑y = x1

∞ ly
j − ly

jqx1
j = 1 − qx1

j ∑y = x1

∞ (1 − qx1
∞)y − x1

= 1
qx1

j − 1 .
(27)

The survival functions lx + 1
B  and lx + 1

W  in eqn. (23) are the only functions that change with 

changing x for x ≥ x1, and therefore, sums of these functions need to be calculated to 

evaluate the last-age-group contribution:

∑
y = x1

∞
lx + 1

j = lx1
j 1 − qx1

j

qx1
j .

Then the last age-group contribution in eqn. (23) is:

1
2 ∑

i = 1

I μix1
B

μx1
B exp(μx1

B ) − 1 −
μix1

W

μx1
W exp(μx1

W) − 1
(1 − qx1

B )(1 − qx1
W)

qx1
B qx1

W (lx1
B + lx1

W) . (28)

Thus, the life-table-based decomposition with x0 and x1 denoting left bound of the first and 

last (open-to-the-right) age intervals is:

e
∘

x0
W − e

∘

x0
B = ∑

i = 1

I
∑

x = x0

x1 μix
B

μx
B eμx

B
− 1 − μix

W

μx
W eμx

W
− 1 W x, (29)

where

W x = 1
2 lx + 1

W e
∘

x
B − (ax − x) + lx + 1

B e
∘

x
W − (ax − x) for x0 ≤ x < x1,

and

W x1 = 1
2(lx1

B + lx1
W )

(1 − qx1
B )(1 − qx1

W )
qx1

B qx1
W .

These quantities correspond to Pollard’s weights in his original notation. The final 

expression using eqn. (29) with x0 = 65 is shown in eqn. (8).

3. Application

We now apply the new approach to identify cause-specific contributions to disparities in 

LE65 between i) Black and White subpopulations, ii) U.S. regions leading and lagging 

the national average in respect to LE65, and iii) two time periods: 1998–2005 and 2010–

2017. Leading and lagging U.S. regions were identified by ranking all U.S. states by 

their LE65 using the Centers for Diseases Control and Prevention (CDC) Wide-ranging 
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OnLine Data for Epidemiologic Research (WONDER)35 and selecting eight with the lowest 

and eight with the highest LE65 as lagging/leading states, respectively. The lagging states 

were: Arkansas, Tennessee, Louisiana, Oklahoma, Kentucky, Alabama, Mississippi, and 

West Virginia. The leading states were: California, New York, Hawaii, Florida, Arizona, 

Connecticut, Minnesota, and Colorado. We then selected 37 cause groups (Table 1) that 

cover all possible causes of death that are recorded on death certificates. When an individual 

cause (e.g., hypertension, heart failure) in a chapter of the International Classification of 

Disease 10th Edition (ICD-10) (e.g., disease of the circulatory system) demonstrated rates in 

excess of 50 per 100,000, it was treated as its own cause group; the remaining diseases in 

the chapter were combined into an other-cause group (e.g., other diseases of the circulatory 

system). The total sum of death rates for these 37 cause groups was 4,533/100,000 which 

was equal to the total age-adjusted death rate obtained from the CDC-Wonder for the study 

period.

3.1 Data

Two datasets were used in this study. The Multiple Cause of Death database (MCD) 

provides cause-specific mortality and population counts for the U.S.; the mortality data 

are derived from death certificates; the mortality and population counts can be aggregated 

to form race- or geographic-region-specific population strata. The mortality data for each 

decedent are summarized as a single underlying cause of death, supplemented with up 

to twenty additional causes, with each cause coded using 4-digit ICD-10 codes; basic 

demographic data including place of residence, age, race/ethnicity, and sex are also 

provided. We used the underlying cause of death provided by the CDC-WONDER MCD 

tool to evaluate race- and geography-specific age-adjusted mortality rates in older adults age 

65+ over the 2000–2017 period.

The MCD database is a commonly used source of information for evaluation and analyses of 

strata-specific LE. However, because of known limitations at ages 65+ (e.g., unavailability 

of year-specific population counts at ages 85+, erroneous assignment of underlying cause-

of-death), another source of data is needed for comparison. Because most legal U.S. 

residents become eligible for health insurance provided by the Medicare system at age 

65, Medicare administrative health insurance claims can serve as an alternative source of 

information for analyses of LE65. In the present study, a nationally representative sample 

of 5% of the total Medicare population (5%-Medicare) over the 1991–2017 period was 

used. The enrollment file provided information on place of residence, age, race, sex and 

date of all-cause mortality while ICD-9/10 codes in the diagnoses fields of Medicare Part 

A (facility-based services) or Medicare Part B (professional services) records were used to 

ascertain morbidity.

Each of the utilized datasets underwent additional processing to make them suitable for the 

planned analysis. For the MCD data, cause-specific death rates were calculated as the ratio 

of the number of deaths from a given underlying cause within a given age group to the 

total mid-year population count within that age group. Our analysis required cause-specific 

death rates calculated in 36 age groups (single-year age groups from 65 to 99 and the age 

group 100+ that aggregates all ages above 99) across four population strata (White and 
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Black population, leading and lagging state of residence) for each calendar year of the 

analysis (2000–2017). The CDC-WONDER provides all necessary data with one exception: 

population counts by single-year age groups are available only for ages younger than 85 and 

are aggregated into a single group for ages 85+. Therefore, we used additional information 

to disaggregate the year-specific population counts in the 85+ age group into single-year 

age groups for ages 85-99 and a single aggregated group for age 100+. For geographic 

disparities, we used state-specific life tables from the Human Mortality Database for all 

years of the analysis (see Akushevich et.al.36, Supplementary Methodologic Remark 1 

for methodological details). For racial disparities, we used the Annual Projections of the 

Resident Population by Age, Sex, Race, and Hispanic Origin, 1999–2100, from the 2000 

National Population Projections Datasets37. Reconstructed distributions were smoothed for 

ages 83–86.

For the 5%-Medicare data, an assigned underlying cause of death was not available. 

Therefore, we developed a simulation procedure to assign a cause of death from the 

set of diagnoses associated with each individual decedent. Specifically, we reconstructed 

individual health trajectories utilizing all 37 cause-specific groups (Table 1) and used them 

to simulate the cause of death. In the simulation procedure, individual assignment of a cause 

of death occurred through a random selection of a cause from the lists of health conditions 

individuals accumulated by the end of their life. Selection of the final cause of death used 

probabilities proportional to the cause-specific weights, which were iteratively recalculated 

in such a way as to have the final cause-specific mortality rates equal to those found in the 

MCD data.

3.2. Results

Time-patterns of LE65 for leading and lagging states, the White and Black population, as 

well as the related differences are shown in Figure 1. Both the size of LE65 and the shapes 

of the time patterns observed in the MCD and Medicare data were similar. Geographic-

related disparities were stronger in their impact on LE65 than race-related disparities over 

the entire study period. In the 5%-Medicare data, a slow increase in both geographic and 

race-related disparities can be seen between 2000 and 2005 after which racial disparities 

decrease sharply until about 2015 while geographic-related disparities continued increasing 

but at a much higher rate. The MCD data suggest that the decline in racial disparities 

occurred much sooner than observed in the Medicare data. In general, the MCD data showed 

much sharper increases in geographic disparities and decreases in racial disparities than the 

5%-Medicare data. Even so, both datasets show 2005–2015 as a period of active change.

The full set of absolute and relative cause-specific contributions to the differences in 

life expectancies are shown in Supplementary Tables 1-3. Time trends of the cause-

specific contributions are shown in Supplementary Figures 1 and 2. The causes with 

the largest contributions are shown in Figure 2. A cause was included in Figure 2 if 

one of its contributions exceeded one month of LE65. The life-table-based cause-specific 

decomposition was obtained by applying eqn. (8) to the MCD (open circles; all colors), 

and Medicare-based estimates were obtained on a day-by-day basis using the product-limit 

form of Pollard’s decomposition using eqn. (9) (closed circles; all colors). Cause-specific 
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contributions for racial (red) and geographic (blue) disparities, as well as the trend of 

the effect of this condition over time (green) are also shown. In sensitivity analysis, we 

also obtained Medicare-based estimates on a grouped data basis using the life-table form 

of Pollard’s decomposition (Supplementary Tables 1-3). The differences between the two 

Medicare-based estimates were minor; this gives us confidence in the stability of the initial 

results and allowed us to conclude that the results differed somewhat due to differences in 

how the respective causes of death were assigned, and possible contributions of individuals 

without Medicare records available. Standard errors and confidence intervals were evaluated 

using the life-table approach with simulations based on the multinomial distribution. The 

last line in Figure 2 presents the contributions to the disparities from the group of individuals 

without identified Medicare diagnoses for the 37 disease groups included in this study; 

therefore, a cause of death cannot be assigned for these individuals. Jointly, this group 

accounts for 10.0% of total available deaths and is not homogenous; it includes four 

subgroups: i) individuals on Medicare Part C plans that do not contribute claims data to the 

database (38.9%), ii) individuals eligible for Medicare services but residing outside the U.S. 

(2.2%), iii) individuals without Medicare service records (38.5%), and iv) individuals with 

Medicare service records but without diagnoses identified in our algorithms (20.5%). The 

first two subgroups represent individuals with incomplete data due to a known (entry/exit/

duration in this stage is known as well as, in some cases, partial health records, are available) 

reason; the third – individuals not utilizing the Medicare system for reasons unknown; the 

last – relatively healthy people. All subgroups contribute to negative geographic disparities 

(i.e., fractions of membership in leading states for the group shown in Figure 2 are much 

higher than the fractions in the total sample) and last two subgroups contribute to the 

positive racial disparities increased time trend in Figure 2. Specifically, the fractions of 

individuals without a diagnosis are higher for leading states (85.8%) compared to the total 

group (72.9%) and for the Black subpopulation (10.3% vs. 8.2%). These estimates reflect 

the observed disparities for the group of individuals without identified Medicare diagnoses 

in Figure 2.

The greatest contributions to racial disparities were observed for arterial hypertension, 

diabetes mellitus, cerebrovascular diseases, and renal disease. While the majority of causes 

contributing to LE65 disparities were those with higher rates among the Black population, 

there were also several causes with substantial contributions to the gap in LE65 whose 

rates were higher among Whites: chronic respiratory diseases had the greatest contribution 

in the MCD data and slow progressive cancers in the Medicare data followed by the 

contribution of Parkinson’s disease in both datasets. The largest relative contributions 

to geographic disparities in LE65 were from chronic lower respiratory diseases, lung 

cancer, and circulatory diseases including myocardial infarction, heart failure, and stroke. 

Chronic ischemic disease had large contributions in both MCD and Medicare data but these 

contributions were in opposite directions. Circulatory diseases and lung cancer were among 

the leading causes contributing to increases in LE65 with time. Dementia and Alzheimer’s 

disease as well as renal disease (in Medicare) had the greatest negative contributions, 

suppressing LE65 with time.
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4. Discussion

We extended Pollard’s decomposition for application to administrative and registry data. 

We demonstrated that if the continuous-time cause-specific survival functions are estimated 

using the Kaplan-Meier product-limit estimator, then Pollard’s integral for the difference of 

life expectancies between two subpopulations can be solved exactly. The analytic formulae 

for the difference can be specified for administrative data, and then extended to discrete-time 

registry data. The formulae do not require numerical integration; no parametric assumptions 

have to be made for the cause-specific hazards and other functions in Pollard’s integrand. 

An important property of the solutions for Pollard’s integral for registry and administrative 

data is that the sums of cause-specific contributions in expressions (8) and (9) are exactly 

100% of the respective differences in life expectancy. This means that biases of technical 

or methodological origin do not impact the estimates, or that their contributions mutually 

cancel out. The new methodology was applied to an exhaustive set of causes of death 

observed in Multiple Causes of Death and Medicare data, and a series of new results on 

the racial and geographic disparities as well as their cause-of-death decompositions was 

presented and discussed.

4.1 Methodologic development: Solving Pollard’s decomposition

Pollard’s decomposition for specific causes of death is given by eqn. (6). To calculate 

the integral, we need to calculate each function in the integrand at each exact age at 

death, a. Practical applications generally require estimating the required functions from an 

administrative dataset and, possibly, numerical evaluation of the integral. Medicare data 

(as well as any other administrative dataset) provide individual measurements including 

age/time of initial follow-up, age/time of the end of follow-up, and the censoring/death 

(with a cause) indicator at the end of follow-up. The survival functions can be calculated 

from such data using the Kaplan-Meier estimator (or its generalization for left-truncated 

data). To calculate the life expectancy at exact age a, the survival function can be integrated 

from a to infinity. This can be done using a numerical method with specific assumptions 

concerning the behavior of the survival function after the last observed age at death. 

The race-specific and cause-specific hazard functions can be evaluated using parametric 

functions or non-parametric procedures that yield numerical values at each exact age of 

death and handle multiple deaths with different causes occurring on the same day (usually 

the smallest time-interval in administrative data). Thus, Pollard’s integral can be numerically 

calculated under various simplifying assumptions using administrative data with exact ages 

at death.

Our approach to evaluation for such data of all functions contributing to the integral 

in eqn. (6) used Kaplan-Meier product-limit estimators for the total and cause-specific 

survival functions. The survival functions estimated using the Kaplan-Meier approach 

are discontinuous and the respective instantaneous hazards are equal to zero everywhere 

except for exact ages at death where the hazards go to infinity. Numerical evaluation 

of Pollard's integral using such hazard functions is not possible. Instead, we performed 

the integration analytically, obtaining expressions for the cumulative hazard functions as 

logarithms of the ratios of the associated survival functions just before and just after each 
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exact age of death. The exact solution for the integral in eqn. (6) is shown in eqn. (9). A 

remarkable property of this solution is that Pollard’s decomposition is represented as a sum 

of terms obtained from the Kaplan-Meier estimators for the total and cause-specific survival 

functions, without numerical integration. Moreover, because the Kaplan-Meier estimator is 

a maximum likelihood estimator, it follows from Zehna38 that the solution for Pollard’s 

decomposition in eqn. (9) is likewise a maximum likelihood estimator.

Having solved Pollard’s decomposition for exact ages of death, we then considered the 

corresponding problem for complete life tables using population/registry data with death 

recorded using single-year age at last birthday. The expressions for complete life tables were 

obtained by integration of the expressions for administrative data over each age interval of 

the life table, using the procedure described in subsection 2.3.2. The expressions in eqns. (8) 

and (29) reflect the close-out of the life tables at age 100; this can be increased to age 110 

or 120 if the life table data are available. The close-out age should be high enough that the 

impact of the close-out term is negligible. Thus, Pollard’s decomposition can be represented 

as a sum of terms obtained from the respective life tables for the total and cause-specific 

survival functions, without numerical integration. Also, given that the life table survival 

function is a maximum likelihood estimator29, it follows from Zehna38 that the resulting 

solution for Pollard’s decomposition in eqn. (8) is likewise a maximum likelihood estimator.

Thus, we developed a consistent methodology for solving Pollard’s decomposition for exact 

ages of death and for grouped ages of death, which are exact in the sense that they do not 

require numerical integration or parametric models for the cause-specific hazards and other 

functions in Pollard’s integrand. In addition, methods for generating reliable estimates of 

standard errors and associated confidence intervals for the cause-specific contributions were 

also provided. The solutions for Pollard’s decomposition were applied to two types of data 

that are often used in biodemography for LE evaluation at the national level: i) Medicare 

administrative claims data, and ii) MCD data with population counts. Each dataset must be 

analytically extended to be used in these analyses. Population counts for MCD data end 

at age 84, with the 85+ population represented by an aggregate group. Since this is too 

imprecise for our study, we applied procedures to distribute population counts aggregated 

at age 85+ into single-year age groups for ages 85-99 and a single aggregated group for 

ages 100+. These distributions had to be calculated for each year, had to be race-specific 

for analyses of racial disparities, and had to be state-specific for analyses of geographic 

disparities. Medicare data do not contain entries for cause of death. Therefore, we developed 

a Monte Carlo procedure to assign underlying causes of death for all decedents. The 

procedure provides equal cause-specific death rates in the 5%-Medicare and MCD data.

The final solutions (8) and (9) for Pollard’s decomposition of LE65 for MCD and Medicare 

data, respectively, possess the main properties of a decomposition: exact normalization 

and additivity. The cause-specific contributions to the decomposition related to different 

causes of death are appropriately normalized, i.e., the sum of the cause-specific relative 

contributions for each decomposition computed using eqn. (8) and (9) is exactly 1, or 100% 

of the difference in life expectancy. This property was proved analytically for both types of 

datasets and was used for additional cross-checks of our analysis software: in our SAS code 

these sums were exactly 100% for each year of our analysis. Importantly, as long as this 
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property holds, any contribution obtained through Pollard’s integral is directly interpretable 

regardless of size, i.e., researchers can be equally confident in both large and small cause-

specific contributions. The additive property of Pollard’s decomposition holds exactly in our 

final expressions; even after the multiple operations necessary to apply Pollard’s integral to 

the two types of data used in this study. For example, this allows us to sum all cancer-related 

or circulatory-disease-related contributions to obtain the decomposition involving the all-

cancer or all circulatory disease groups. The exact normalization will hold in this case. We 

note that our main decomposition presented by formulae (8) and (9) is valid even in the case 

when the difference in life expectancies at age 65 is exactly zero. In this purely theoretical 

scenario, the absolute decomposition shows how effects of causes with positive contributions 

are exactly compensated by causes with negative contributions. Although relative differences 

are undefined, the sum of all cause-specific contributions gives zero years exactly.

This study opens potential new avenues for research on the origin of substantial geographic 

and racial disparities in LE in older U.S. adults. For example, each type of disparity could be 

expressed using health measures recorded in Medicare data to further identify contributing 

factors behind the observed time trends and observed disparities. After ranking all causes 

according to their effects on LE in selected geographic regions, it then becomes feasible 

to apply partitioning analyses39-44 to the causes that contribute most to the disparities to 

assess the extent to which their contributions reflect higher incidence vs. poorer survival. 

Such analyses are feasible with Medicare data because the longitudinal sub-files for each 

enrollee beyond age 65 record all covered services before and after onset of each chronic 

disease allowing measures of incidence, prevalence, and case fatality to be generated 

and analyzed. Moreover, regression-based approaches, e.g., Oaxaca-Blinder decomposition 

extended for censored data45-47, can be used to help understand the role of clinical factors 

(e.g., screening, effective diagnostic procedures, treatment choice, and treatment adherence), 

demographic and socioeconomic characteristics, behavioral risks, environmental exposures, 

as well as access to and quality of available medical care. Ultimately, identification and 

evaluation of such contributing factors may reveal a role as fundamental drivers of the 

observed disparities, which could inform the design of strategies to improve public health 

and the healthcare system48.

4.2. Pollard’s decomposition and other methods of cause-specific decomposition of life 
expectancies.

Two distinct demographic approaches are commonly used to evaluate the cause-specific 

contributions to the difference in life expectancies for two well-defined subpopulations12. 

The first considers each subpopulation separately and estimates the gains in life-expectancy 

that would occur under the assumption that the causes of death are independent and that the 

deaths from each cause can be eliminated one at a time, in turn, with the deaths from all 

other causes retained, i.e., the force of mortality for each selected cause is set to zero for 

all ages with the forces of mortality for all other causes held unchanged from their initial 

values49. The cause-elimination life expectancy gain for cause i can be computed using 

Greville’s method23 as shown in eqn. (2). The difference between the cause-elimination life 

expectancy gains for cause i in the two subpopulations can then be treated as a measure 

of the contribution of cause i to the overall life expectancy difference between the two 
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subpopulations. Unfortunately, the contributions are not additive; additional procedures 

are needed to ensure that the sum of the relative contributions over all causes equals 1. 

Beltrán-Sánchez et al.12 developed an alternative decomposition of LE differences based on 

cause-elimination principles (including the independence assumption) that does not make 

direct use of the cause-elimination life expectancy gain for cause i in either subpopulation; 

instead, the underlying cause-specific survival functions in the two subpopulations are used 

to estimate cause-specific contributions for cause i that are approximately additive for the 

overall life expectancy difference between the two subpopulations.

The second approach is based on demographic decomposition theory. Pollard’s 

decomposition belongs to the second approach. The properties of Pollard’s decomposition 

were discussed in Section 2.1. Pollard’s decomposition is exact by construction and 

represents the difference in life expectancies for two subpopulations as the sum of 

cause-specific components. An important property of Pollard’s decomposition is that the 

assumption of independence of cause-specific forces of mortality is not required. The two 

approaches, i.e., Beltrán-Sánchez’s decomposition and Pollard’s decomposition, are not 

equivalent though the respective results are close12.

Historically, methods for decomposing differences in LE were presented in several 

mathematically equivalent approaches8,19,50-52, as demonstrated by Pollard9 and Shkolnikov 

et al.53, although their implementation via various discrete approximations can give rise to 

different results12. Several other approaches were presented to further analyze the difference 

in LE between subpopulations in terms of age and cause-of-death contributions.

Horiuchi et al.54 presented a general approach for decomposition of a demographic measure 

that can be represented as a function of multiple covariates. For example, race-specific LE65 

can be considered such a demographic measure, and differences in race-specific LE65s can 

be represented as functions of age and cause specific mortality rates. Eqn. (5) of ref.54 gives 

the general decomposition formula for an arbitrary demographic measure, and eqns. (9-10) 

of ref.54 give the decomposition formula for differences in life expectancy. Two types of 

numerical integration are required to represent the difference in LE65 in a form comparable 

to our eqn. (6): i) integration over age groups, and ii) integration over a linear variable that 

connects pairs of age-specific mortality rates (e.g., two race-specific mortality rates from 

lung cancer in age group 65–69). The second integration is specific to Horiuchi’s method 

and can be performed only under the assumption of a linear relationship between specified 

covariates (e.g., as in eqn. (11) of ref.54). The necessity for this linearity assumption and 

the two-way numerical integration are limitations of this method that are not present in 

our approach. Horiuchi reported that an approximation to Pollard’s decomposition (using 

stepwise replacement55) by broad age groups for Japanese females was equivalent to their 

method when applied on an annual basis over 54 separate calendar years (Table 3 of ref.54) 

and was close when applied across the entire 54-year period (Table 4 of ref.54). This 

equivalence/closeness occurs because our solution of Pollard’s formula in eqn. (8) is an 

exact solution to Horiuchi’s eqns. (5) and (9)54. Horiuchi’s method has been implemented 

in DemoDecomp R-package56 (Decompose Demographic Functions) and used in recent 

analyses57,58.

Akushevich et al. Page 24

Theor Popul Biol. Author manuscript; available in PMC 2024 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Age decomposition in the general replacement method55 was developed based on the 

idea that the difference between life expectancies can be constructed based on a general 

algorithm, which includes the stepwise replacement of elements from one vector of age-

specific mortality rates by the respective elements of another vector, with the replacements 

ordered by ascending age. The resulting formula eqn. (3) of ref.55) for age decomposition 

with predetermined age groups is a particular case of our formula (10) that is valid for 

continuous ages. The cause-of-death decomposition in our approach is then developed 

based on eqn. (10) using exact methods of calculus for continuous age. Depending on 

the dataset type, the resulting formulae for continuous age can be reduced to age-interval 

specific formulae for certain datasets: one day in administrative data and one year in registry 

data types. In contrast, incorporation of cause-of-death decomposition in the replacement 

approach requires another set of replacements of age-specific rates with vectors of age- and 

cause-specific rates. The final effect for a specific cause of death is computed by averaging 

over all possible combinations of replacements using all other causes.59

Another common approach59-63 is Arriaga’s decomposition19. Pollard showed9 that the age 

decomposition presented by Arriaga18 was mathematically equivalent to the "1–2" form of 

his decomposition. An important difference between our approach and Arriaga's, however, 

is that our cause-specific decomposition was theoretically derived; Arriaga's formula was 

an assumed allocation formula that happens to be consistent with Pollard's result. One 

limitation of Arriaga cause-of-death decomposition is that the calculations may become 

unstable if the denominator (the difference between the age-specific mortality rates in the 

two subpopulations being compared) is small relative to the corresponding cause-specific 

differences. This could happen, for example, if sex differences at some ages were small 

except for breast and prostate cancers, which could be large but in opposite directions. Our 

discrete time formula (8) is equivalent to Arriaga's discrete time formula, but: i) ours is 

easier to interpret given that it can be matched to formula (9) that covers the Kaplan-Meier 

estimator; and ii) ours does not become unstable for small, or zero, differences between the 

age-specific mortality rates in the two subpopulations being compared.

A complementary indicator to cause-elimination gains in life expectancy is the average 

years of life lost prior to some chosen threshold age, which can be evaluated for the age 

interval between birth (or other fixed age) and any selected upper age limit (e.g., ages 85 

or 95). Using this strategy, Andersen et al.64 presented a new approach for defining and 

evaluating life years lost by cause of death, and generating cause-specific decompositions of 

the differences in restricted (or “temporary”) life expectancy between two subpopulations, 

where the restricted life expectancy is: ∫0
xℓ(a)da, assuming ℓ(0) = 1; the higher the value 

of x, the closer the restricted will be to the unrestricted life expectancy. The difference 

between the restricted life expectancies in any two subpopulations is exactly equal to the 

difference in their respective life years lost (see page 1135 of ref.64), and this difference 

can be readily decomposed by cause and age. The additivity of the cause-specific forces of 

mortality implies that the decomposition can be done without assuming that the causes of 

death are independent (see Gail25 eqn. (4)). The need to choose an upper age limit and use 

numerical integration are the main limitations of this approach compared to the approach 

developed in this paper.
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A new approach for decomposition of the young adult mortality hump by cause of death was 

presented in Remund et al.65. Under this approach, a non-parametric spline-based model was 

used to parameterize the age-dependence of the hazard functions. The approach allowed the 

separation of the trends in the hump from background mortality, yielding multiple insights 

into the cause-specific structure of the hump in the U.S. The spline-based approach for 

non-parametric evaluation of the cause-specific hazards could be considered for evaluating 

Pollard’s integral; however, the error-accumulation from model fitting and the necessity for 

numerical integration limit the applicability of such an approach when precise estimates are 

needed. In any case, the property that the sum of all relative cause-specific contributions to 

the decomposition is exactly 100% of the difference in life expectancy does not hold.

4.3. Differences in time trends of LE65 and its racial and geographic disparities

We found that LE65 in the U.S. increased during the study period for all subpopulations 

(Figure 1). The increase was more rapid for leading states and for the Black population. 

The shapes of the time patterns were similar for all study populations as well as for results 

obtained using MCD and Medicare data. The difference in estimates for LE65 in 2005 and 

2015 did not exceed 1% with the exceptions of Blacks (2.12%) and leading states (2.52%) 

in 2015, for which LE65 was lower in the Medicare data, as well as lagging states (1.63%) 

in 2005, for which LE65 was lower in the MCD data. A tendency for stagnation in LE65 

in later years was seen in the Medicare data. However, even though LE65 increased for all 

subgroups, notable racial and geographic disparities remained. The geographic disparity in 

LE65 between leading and lagging states was 2.75 years (2.32 years based on Medicare 

data) in 2015; this was a 29% increase from its 2005 value of 2.13 years (1.83 based 

on Medicare data). Over the same time-period the Black/White racial disparity in LE65 

decreased by 41% from 1.55 years (1.68 based on Medicare data) in 2005 to 0.91 years 

(1.33 based on Medicare data) in 2015.

We found that the dynamics of racial and geographic disparities in LE65 demonstrated 

opposing tendencies. The loss of LE65 associated with racial disparities narrowed between 

the years 2000 and 2017, predominantly due to increasing LE65 in the Black population. 

This is consistent with estimates of change in race-specific disparities in life expectancy at 

birth recently reported by the Global Burden of Diseases Collaboration66. Over the same 

time-period the size of the geographic disparity in LE65 widened, predominantly due to 

more rapid improvements of LE65 in leading states. Although race-specific differences 

between age-adjusted mortality between 2005 and 2015 looked similar in leading and 

lagging states: 913/1077/983 per 100,000 in leading/lagging/all states for the Black and 

559/486/497 for the White populations, there were three types of contributions to the time 

trend in the geographic disparities. A lower difference in mortality for the White population 

in lagging states provided the main contribution to the overall increase in geographic 

disparities. The stronger declines in mortality in the Black population of lagging states 

partly offset the overall widening disparities in LE65 between leading and lagging states. 

Although the decline in mortality was much larger for the Black population, the contribution 

of the Black population to the trend in geographic disparities was lower due to the relative 

size of the Black population in these states (8.5% in leading states and 14.5% in lagging 

states in 2010). One more contribution to the geographic disparities came from changes in 
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the fraction of the Black population, especially in leading states, e.g., an increase of the 

fraction from 8.0% in 2005 to 9.0% in 2015 in leading states. Our estimates showed that the 

effect of such changes in the geographic disparity trend were as large as 7%.

It was reported that the Black-White gap in all-cause mortality (i.e., death rate disparity 

relative to Whites) narrowed from 33% in 1999 to 16% in 201567. Over a similar time period 

our findings show a decrease in Black-White disparities in LE65 from 1.70 in 2000 to 0.83 

years in 2015. Furthermore, it was reported that the non-Hispanic Black population in 2000–

2014 had the greatest increase in LE at birth. Our findings also show that LE65 for Blacks 

increases sharply over the 2000-2014 period. The magnitude of this growth was much 

higher than that observed in White individuals which is consistent with a previous finding 

that non-Hispanic Whites had the lowest increase in LE among all race/ethnicity-related 

groups68,69. However, Blacks continue to have higher mortality than Whites at ages < 6567 

and 60% of the decline in the racial gap in LE at birth in 2000–2010 has been attributed 

to declining differences in the age at which Black and White individuals die of chronic 

diseases, with the remaining 40% of the reduction in the LE gap associated with changes 

in the distribution of causes of death among Blacks and Whites at younger ages (e.g., due 

to greater declines in HIV/AIDS and perinatal deaths in Blacks, and increasing death rates 

caused by accidental poisoning—mostly drug related—among Whites)69-71. A recent study 

of Medicare beneficiaries aged 65+ supports this rationale by showing that the average 

decline in LE65 with an additional comorbid condition was higher in the Black population 

(1.8 years per additional condition) than in the White population (1.7 years), with the Black 

population being more likely to have 7+ chronic conditions72.

Widening disparities in state-specific LE65 across the U.S. have been observed for midlife 

mortality since the early 1980s73. More recently, persistent geographic inequalities in the 

risk of death at ages 65–85 have received increasing attention74,75 with suggestions that the 

increases in geographic inequality in LE65 in the U.S. over the past three decades have 

been driven largely by unfavorable dynamics of mortality at older ages74. Furthermore, 

geographic variation in the disparities in LE between Black and White Americans has been 

documented, suggesting that racial and geographic disparities are intertwined76; indeed, 

there are indications that the narrower racial disparities in LE in certain U.S. states were not 

due to the Black population living longer but rather to the White population having a shorter 

LE compared to the national average77. Our findings confirmed these tendencies, finding 

that over time racial disparities decreased but geographic disparities increased. These results 

were replicable across two distinct data types: Medicare and MCD.

4.4. Causes contributing to racial and geographic disparities in LE65 and the time trend 
in LE65

Our study showed that trends in the cause-related determinants of racial disparities were 

characterized by a relatively small number of high-impact contributors with some acting 

through increased mortality rates in the White population. Lower LE65 in the Black 

population was associated with death from arterial hypertension (24.4%/9.1% of total 2015 

disparity in LE65 using MDS and Medicare data, respectively)), cerebrovascular disease 

(17.0%/11.0%), diabetes mellitus (21.3%/14.5%), renal disease (16.0%/10.5%), prostate 
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cancer (9.9%/5.9%), and the group of other circulatory diseases (8.0%/7.5%). Disease 

specific contributions were not identified for LE65 before, however, some of these causes 

have been previously reported as important determinants of racial disparities in LE at birth. 

For example, heart disease was found to be a leading contributor that accounted roughly 

for 25% of the racial gap70 with cardiovascular disease in general accounting for 34%48 

of the racial difference in all-cause mortality. COPD was the only major contributor to 

Black/White disparities in LE65 that acted through higher mortality rates in the White 

population48,78. We note that an important contribution of the Firebaugh study70—which 

utilized the approach of Beltrán-Sánchez et al.12 to the decomposition of MCD data in order 

to evaluate the role of age-at-death and incidence of 19 causes in forming the gap in overall 

LE between Blacks and Whites—was that the decline in Black/White disparities in overall 

LE was attributable to a reduction in the contribution of age-at-death, largely due to the 

declining differences in the ages at which Blacks and Whites died of chronic diseases.

In our study trends in cause-related determinants of geographic disparities were 

characterized by a relatively large number of causes with relatively small individual impacts 

all acting through increased mortality rates in lagging states. The largest contributions 

to geographic disparities in LE65 were associated with CVD including acute ischemic 

heart diseases (7.8%, 7.9%), the other circulatory diseases group (8.4%, 7.4%), and 

heart failure (8.1%, 3.5%), as well as COPD (10.7%/9.8%), lung cancer (8.7%/9.9%), 

and Alzheimer’s disease (7.1%/5.3%). The contributions of COPD, Alzheimer’s disease, 

and arterial hypertension increased over time. Although, not directly comparable due to 

differences in study design; our results are concordant with several existing studies focused 

on geographic disparities in cause-specific mortality and LE. For example, MCD-based 

studies have shown that CVD and smoking-associated diseases were the principal drivers of 

geographic variations in LE65 which accounted for over 64% of the geographic disparities 

in changes in LE65 from 2000 to 2016 in the 65+ population78,79. This effect persisted 

despite overall declines in CVD mortality in all states78. These studies also stressed 

improvement in smoking-related mortality (lung cancer and respiratory diseases) as being 

second (following CVD) in contributions to LE65 gain in the U.S.78,79. Finally, rising 

mortality from Alzheimer’s disease and other diseases of the mental or nervous systems, 

including non-Alzheimer’s dementia, has been identified as negative contributors to changes 

in LE65 among older U.S. adults79.

In our study the shapes of the time patterns in LE65 were similar for all subpopulations: 

LE65 increased over the entire study time-period with the speed of the gains decelerating 

after 2010. The increase in LE65 between 2005 and 2015 was more than one year for 

all subpopulations, and Pollard’s approach was then used to decompose this gain into cause-

specific contributions for each of the four study groups. Our results showed that the increase 

in LE65 between 2005 and 2015 was primarily due to (Table 2) reduced mortality from 

chronic ischemic disease, acute ischemic disease, lung cancer, and cerebrovascular disease. 

This was offset, in part, by increased mortality from Alzheimer’s disease and dementia. For 

most causes, the relative contributions to temporal reductions in mortality in Blacks were 

less than in Whites. We note that approximately 65% of the total gains in LE65 occurred in 

2005–2010 and only 35% in 2010–2015 which was consistent with other research80,81.
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Our results are consistent with a comprehensive report on the burden of disease and its 

patterns in the U.S. states from 1990 to 2016 which also identified wide disparities in the 

burden of disease at the state level82. While the U.S. overall is experiencing improvements 

in health outcomes, the patterns of health burden at the state level substantially vary 

across geography, and monitoring location-specific disease trends is essential given the 

geographic differences in various aspects of health and social policy (e.g., enrollment in the 

Medicaid program, the use of private insurance companies)83 and the local socioeconomic 

environment82. In this study, we identified a number of exact disease-specific causes, which 

if targeted, can act to mitigate these tendencies. Although, geographic differences were 

aggregated at the state-group level, stronger sources of data can now be combined with the 

methods developed in this study to obtain results specific to smaller localities. Consistency 

between Medicare and MCD data demonstrated in this study, suggest that high-power 

Medicare samples can be used for such analysis; though additional linkages to Medicaid 

claims may be necessary to better reflect socioeconomically disadvantaged individuals, 

many of whom are also members of other disadvantaged populations.

4.5. Study strengths and limitations

The study has several strengths. Within the same study design, we analyzed the trends 

of both racial and geographic disparities in LE65 among older U.S. adults over a period 

spanning 17 years and obtained complementary results from two different large nationally 

representative datasets. Much of the existing research on disparities in LE is focused on 

variations in mortality at working ages82,83. However, unlike working-age individuals, in 

the 65+ age strata morbidity is the most common cause of death79,82, making differences 

in morbidity and associated adverse health-related outcomes between advantaged and 

disadvantaged groups an important aspect of disparities in LE65. The analysis of individual 

contributions of discrete diseases to this problem is sub-optimal due to both increasing 

levels of multi-morbidity in older adults and the inherent relationships between disease 

trends such as the recent declines in mortality from circulatory disease and certain cancers 

(lung, colorectal, breast) being partially offset by increases in mortality from other chronic 

diseases84. We used Pollard’s decomposition to evaluate the contributions of 37 cause 

groups to the size and the time trend in both geographic and racial disparities in LE65 in the 

U.S.

We also acknowledge the following limitations. An underlying cause of death is not 

provided in Medicare data, and it may be hard to determine accurately in the MCD data, 

particularly among the elderly, where multiple mortality-related diseases are likely to be 

present at the time of death. Involving multiple causes of death (MCD data) in future 

analyses (e.g., through random assignment of a cause of death from the list of multiple 

causes) could estimate the sensitivity of our estimates. Furthermore, we developed an 

approach to assign a cause of death in Medicare records, and these analyses can be repeated 

when linked cause-of-death data become more widely available for Medicare beneficiaries. 

Population estimates in the MCD could be biased, especially for minority populations, 

because of census undercounts, age misreporting, and race misclassification. However, 

because the MCD and 5%-Medicare results were broadly consistent, this limitation may 

be of lesser concern. Finally, changes in diagnostic and coding practices have likely 
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affected some of the trends that we have identified in cause-specific mortality. For example, 

coding changes implemented by the National Center for Health Statistics in 2006 produced 

an increase in deaths from “unspecified dementia” and “vascular dementia”, and this 

increase occurred at the expense of anemias, nutritional deficiencies, heart disease, and 

cerebrovascular disease85.

5. Conclusions

Although notable progress has been made in improving the health and well-being of 

Americans, health inequities between population groups and geographic areas persist 

representing a major area of policy concern78. Using an integral representation of Pollard’s 

decomposition8,9 applied to Multiple Cause of Death and Medicare administrative health 

insurance claims data, this study identified the morbidity-related causes of race and 

geography-related disparities in LE65; quantified their respective magnitudes to isolate 

cause-groups with the highest overall impact; and measured the trends in the relative 

impact of such cause-groups over time. These analyses required methodologic development 

involving an analytic solution to Pollard’s decomposition to evaluate the cause-specific 

contributions for administrative and registry data. We demonstrated that if the cause-specific 

survival functions are estimated using the Kaplan-Meier estimator, then Pollard’s integral for 

the difference of life expectancies of two subpopulations can be exactly solved. The analytic 

formulae for the difference were specified for both types of data. They do not require 

numerical integration; no parametric assumptions for the cause-specific hazards and other 

functions in Pollard’s integrand have to be made for their derivation. An important property 

of the expressions (8) and (9) for Pollard’s integral for administrative and registry data is 

that the sum of all cause-specific contributions is exactly 100% of the difference in life 

expectancy. This means that biases of technical or methodological origin do not impact our 

estimates, or that their contributions mutually cancel out. The additivity of the cause-specific 

contributions arises without the assumption of independence among the selected causes of 

death. Dependencies between the cause-specific contributions may be due to common risk 

factors that impact multiple causes.

The developed methodology was applied for an exhaustive set of causes of death observed 

in Multiple Causes of Death and Medicare data, and a series of new results on the racial 

and geographic disparities as well as their cause-of-death decompositions were obtained 

and discussed. We found that the temporal improvement in LE65 was more substantial 

for the Black than the White population and it was less pronounced in the lagging 

compared to the leading states. These temporal trends resulted in a narrower LE65 gap 

between the White and Black populations and a wider gap between the leading and 

lagging states. Estimates using Medicare data reproduced those obtained using MCD data, 

though Medicare-based trends were less pronounced. The largest relative contributions to 

geographic and racial disparities in LE65 were: for geographic—chronic lower respiratory 

diseases, Alzheimer’s disease, circulatory diseases, lung cancer, and renal failure; for racial

—arterial hypertension, diabetes, cerebrovascular diseases, and renal disease. The ranks of 

the diseases were in agreement between analyses using MCD and Medicare data. Based 

on the MCD, chronic ischemic diseases for geographic disparities and chronic respiratory 

diseases for racial disparities were higher in the advantaged groups thereby reducing LE65 
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disparities, however, these effects were not replicated in the Medicare data. Overall, the 

increase in LE65 observed in 1998–2005 and 2010–2017 was primarily due to a reduction 

in the contributions of acute and chronic ischemic diseases, although this was partially 

offset by increased contributions of diseases of the nervous system, including dementia and 

Alzheimer’s disease.
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Appendix A

Here we demonstrate that if the cause-specific hazard functions are proportional over the 

interval [t0, t1], with constant of proportionality ri(t0) for cause i, then the life-table number of 

deaths from cause i, denoted di(t0), is proportional to the life-table number of deaths from all 

causes, denoted d(t0), where d(t0) = ∑i = 1
I di(t0), with the same constant of proportionality ri(t0). 

The sum over all such intervals of the life-table number of deaths from all causes is scaled to 

equal ℓ(0), which for simplicity is initialized to ℓ(0) = 1.

Because μ(t) = μ1(t) + … + μI(t) and ℓ(t) = ℓ1(t) ⋅ … ⋅ ℓI(t) (see Gail25 eqns. (4) and (5)), the 

total density of deaths from all causes is:

f(t) = d
dt (1 − ℓ1(t) ⋅ … ⋅ ℓI(t)) = f1(t) ⋅ ℓ2(t) ⋅ … ⋅ ℓI(t) + … + ℓ1(t) ⋅ … ⋅ ℓI − 1(t) ⋅ fI(t) .

The first term in this sum, f1(t) ⋅ ℓ2(t) ⋅ … ⋅ ℓI(t) = f1(t)ℓ(t) ∕ ℓ1(t) = μ1(t)ℓ(t), is interpreted as 

the density of deaths from cause 1; more generally, μi(t)ℓ(t) is the density of deaths from 

cause i. Therefore, the integrals of these cause-specific densities over the interval [t0, t1] give 

the probabilities of death from the specific causes. Hence,

di(t0) = ∫t0

t1
μi(t)ℓ(t)dt = ri(t0) ⋅ ∫t0

t1
μ(t)ℓ(t)dt = ri(t0) ⋅ ∫t0

t1
f(t)dt = ri(t0) ⋅ d(t0),
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as required. It follows that the total and cause-specific life-table numbers of deaths are 

discrete probability functions.

Appendix B

Integration between two integer ages x and x + 1 starting from (10) and using properties of 

the integral and approach resulting in (11) allows us to rewrite (10) as

e
∘

W (65) − e
∘

B(65) = 1
2 ∑x = x0

∞ F (x) − F (x + 1)

Consider one time interval [x, x + 1]. We need to sum over all deaths that occurred in this 

time interval. The contribution for the case of one death is given by (17), so:

F (x) − F (x + 1) = ∑
k, x ≤ ak < x + 1

F (ak − ) − F (ak + ) = ∑k eμB(ak) − eμW (ak)

ℓW (ak + )e
∘

B(ak − ) + ℓB(ak − )e
∘

W (ak − ) .

We need to prove that

F (x) − F (x + 1) = lx
B

lx + 1
B − lx

W

lx + 1
W lx + 1

W e
∘

x
B − (ax − x) + lx + 1

B e
∘

x
W − (ax − x) . (30)

To do this we need to use eqn. (15) in the form: ℓ j(ak − ) = skjℓ j(ak + ) and e
∘

j(ak + ) = skje
∘

j(ak − ), 
where we define sjk = exp(μj(ak)) to simplify formulae. Furthermore, we use relations of 

survival functions and life expectancies in age points without deaths between them such 

as: ℓ j(ak + ) = ℓ j(ak + 1, − ) and e
∘

j(ak − 1, + ) = e
∘

j(ak − ) + (ak − ak − 1). These equations are sufficient to 

express all functions through life expectancy at x and all survival functions at x + 1.

F (x) − F (x + 1) = ∑k ℓB(ak − )e
∘

W (ak − ) − ℓW (ak − )e
∘

B(ak − ) − ℓB(ak + )e
∘

W (ak + ) + ℓW (ak + )e
∘

B(ak + )

= ∑k skBℓB(ak + )e
∘

W (ak − ) − skW ℓW (ak + )e
∘

B(ak − ) − skW ℓB(ak + )e
∘

W (ak − ) + skBℓW (ak + )e
∘

B(ak − )

= ∑k (skB − skW )(ℓB(ak + )e
∘

W (ak − ) − ℓW (ak + )e
∘

B(ak − )) .

Continuing recursively, we can obtain the expression with all functions at bounds. 

Specifically, for the case of three deaths inside the interval [x, x + 1] we obtain:

F (x) − F (x + 1) = s1Bs2Bs3B − s1W s2W s3W ℓB(x + 1)(e
∘

W (x) + a1 − x) + ℓW (x + 1)(e
∘

B(x) + a1 − x)
− s3B − s3W a3 − a2 ℓB(x + 1) + ℓW (x + 1) − s2Bs3B − s2W s3W a2 − a1 ℓB(x + 1) + ℓW (x + 1) .

Then we introduce a to represent the average age at death:
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F (a1) − F (a2) = s1Bs2Bs3B − s1W S2W s3W ℓB(x + 1)(e
∘

W (x) − (a − x)) + ℓW (x + 1)(e
∘

B(x) − (a − x))
− ℓB(x + 1) + ℓW (x + 1) s3B − s3W a3 − a2 + s2Bs3B − s2W s3W a2 − a1 + s1Bs2Bs3B − s1W s2W s3W (a1 − a)

.

Thus,

F (a1) − F (a2) = s1Bs2Bs3B − s1W s2W s3W ℓB(x + 1)(e
∘

W (x) − (a − x)) + ℓW (x + 1)(e
∘

B(x) − (a − x)) ,

where a is defined as a = w1a1 + w2a2 + w3a3, with weights:

w1 = 1 −
s2Bs3B − s2W s3W

s1Bs2Bs3B − s1W s2W s3W

w2 =
s2Bs3B − s2W s3W

s1Bs2Bs3B − s1W s2W s3W
−

s3B − s3W
s1Bs2Bs3B − s1W s2W s3W

w3 =
s3B − s3W

s1Bs2Bs3B − s1W s2W s3W
.

Because w1 + w2 + w3 = 1, a can be interpreted as a weighted average of ages at death. In 

addition, because s1js2js3j = ℓ j(x) ∕ ℓ j(x + 1). eqn. (30) is proven for the case of three deaths 

in the interval [x, x + 1], as well as for the general case, because it does not depend on the 

number of deaths except through a.

The formula for a in the general case is: a = ∑k wkak, with weights:

wk =
∏k′ = k

Kx SBk′ − ∏k′ = k
Kx SW k′

∏k′ = 1
Kx SBk′ − ∏k′ = 1

Kx SW k′
−

∏k′ = k + 1
Kx SBk′ − ∏k′ = k + 1

Kx SW k′

∏k′ = 1
Kx SBk′ − ∏k′ = 1

Kx SW k′
.

This formula is valid for the first and last age at death (using the convention: 

∏k = Kx + 1
Kx ( ⋅ ) = 1.

The above formulae are valid independently of assumptions on the form of the distribution 

of ages at death in the age interval. The expressions got a = ax can be derived for 

specific cases and under specific assumptions. Assume that the race-specific hazards are 

time-independent (i.e., constant) for the interval [x, x + 1] and that the number of deaths for 

each race (KxW  and KxB, Kx = KxW + KxB) is known. In this case a has to be calculated through 

Kx-dimensional integration. For example, if KxW = 1 and KxB = 1, we need to calculate two 

two-dimensional integrals ax = I1 + I2, where:

I1 = ∫
x

x + 1
dx1∫

x

x + 1
dx2ρB(x1)ρW (x2) x1w1

BW + x2w2
BW I(x1 < x2)

I2 = ∫
x

x + 1
dx1∫

x

x + 1
dx2ρW (x2)ρB(x2) x1w1

W B + x2w2
W B I(x1 < x2) .

Here ρ denotes the conditional density of age at death for the interval [x, x + 1], i.e.,
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ρj(y) = μj exp( − μjy)
exp( − μjx) − exp( − μj(x + 1)) .

The weights in this case are:

w1
BW = 1 −

1 − sW
sB − sW

, w2
BW =

1 − sW
sB − sW

, w1
W B = 1 −

1 − sB
sB − sW

, w1
W B =

1 − sB
sB − sW

The integrals I1 and I2 are calculated analytically and can be presented in the form:

ax = x + 1
2 −

μB + μW
12 + o(μB, μW ) .

The integration for more than two deaths results in:

ax = x + 1
2 −

KxBμB + KxW μW
12 + o(μB, μW ) .

The formula for an arbitrary age interval [a1, a2] is:

ax =
a1 + a2

2 − (a2 − a1)
2KxBμB + KxW μW

12 + o(μB, μW ) .

In these illustrations, ax is less than halfway between the start and end of the indicated age 

interval. This property follows from the assumption that the hazard rates are constant over 

the interval. An assumption of increasing hazard rates is reasonable for human mortality 

at age 65 and above. The most convenient assumption for such increasing hazard rates 

is that deaths are uniformly distributed over each interval, with the mean time to death 

among decedents exactly halfway between the start and end of the interval. The expression 

ax = x + 1
2  is consistent with this assumption.
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Figure 1. 
Life expectancy at age 65 (left plot) and subpopulation-specific disparities (right plot). 

State disparities reflect leading states (Hawaii, Florida, Arizona, California, New York, 

Connecticut, Minnesota, and Colorado) vs, lagging states (Arkansas, Tennessee, Louisiana, 

Oklahoma, Kentucky, Alabama, Mississippi, and West Virginia). Race disparities reflect 

White vs. Black. B-splines with two internal nodes in 2005 and 2011 were used to smooth 

the curves.
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Figure 2. 
The cause-specific contributions to the differences in life expectancy at 65 given by eqns. 

(8) and (9). Estimates are shown for racial (red), geographic (blue), and time-related (green) 

disparities using Medicare (closed dots) and Multiple Cause of Death data (open dots). 

The last line shows disparities for the group of individuals without established diagnoses in 

Medicare records (the blue point that shows the geographic disparity has to be multiplied by 

3 to obtain actual value).
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Table 1.

Study diseases/disease groups and associated cause-specific age-adjusted mortality

Disease ICD-9 ICD-10 Mortality*

Septicemia 038 A40-A41 67

Other Infectious and Parasitic Diseases 001-139 A00-B99 32

Malignant neoplasms of colon, rectum and anus 153-154 C18-C21 94

Malignant neoplasm of pancreas 157 C25 64

Malignant neoplasms of trachea, bronchus and lung 162 C33-C34 276

Malignant neoplasm of breast 174-175 C50 60

Malignant neoplasm of prostate 185 C61 65

Non-solid (leukemias and lymphomas) 200–208 C81-C96 104

Other solid fast progressive see** see** 216

Other solid slow progressive see*** see*** 35

Secondary malignant neoplasm 196–198 C77-C79 12

Other non-specified cancers 199 C80, C45, C97 61

In situ, benign uncertain, or unknown neoplasms 210-239 D00-D48 29

Diseases of Blood and Blood Forming Organs 280-289 D50-D89 16

Diabetes mellitus 250 E10-E14 132

Other Endocrine, Nutritional, Metabolic, Immunity 240-279 E00-E89 54

Dementia 290, 294.2 F01, F03 208

Other Mental Disorders 290-319 F01 – F99 12

Alzheimer's disease 331.0 G30 188

Parkinson's disease 332 G20-G21 53

Other Diseases of Nervous System and Sense Organs 320-389 G00-G99, H00-H95 62

Hypertension 401-405 I10-I15 117

Acute myocardial infarction and other acute ischemic 410, 411 I21-I22, I24 275

Atherosclerotic cardiovascular disease, so described 429.2 I25.0 109

All other forms of chronic ischemic heart disease 412-414 I20, I25.1-I25.9 447

Heart failure 428 I50 126

Cerebrovascular diseases 430-434, 436-438 I60-I69 303

Other diseases of Circulatory System 390-459 I00-I99 320

Influenza and Pneumonia 480-488 J09-J18 121

Chronic lower respiratory diseases 490-494, 496 J40-J47 291

Other Diseases of Respiratory System 460-519 J00-J99 104

Diseases of Digestive System 520-579 K00-K95 139

Skin/Subcutaneous/Musculoskeletal/Connective 680-739 L00-L99 M00-M99 33

Renal failure 584-586 N17-N19 89

Other Diseases of Genitourinary System 580-629 N00-N99 42

Signs, Symptoms and Ill-Defined Conditions 780-799 R00-R99 52

Injury and Poisoning 800-999 E800-E999 S00-T88, V00-Y99 125

*
Age adjusted cause-specific mortality rates (per 100,000).
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**
ICD-9: 150-152,155, 156, 158, 159 163-165, 170-172, 176, 179, 182, 183, 188, 189, 191, 192, 194, 195, 209; ICD-10: C15-C17, C22-C24, 

C26, C37-C41, C43, C46-C49, C54-C56, C64-C68, C70-C72, C74-C76

***
ICD-9: 140-149, 160, 161, 173, 180, 181, 184, 186, 187, 190, 193; ICD-10: C00-C14, C30-C32, C44, C51-C53, C57, C58, C60, C62, C63, 

C69, C73
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