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Abstract: The development of severe COVID-19, which is a complex multisystem disease, is thought
to be associated with many genes whose action is modulated by numerous environmental and genetic
factors. In this study, we focused on the ideas of the omnigenic model of heritability of complex traits,
which assumes that a small number of core genes and a large pool of peripheral genes expressed in
disease-relevant tissues contribute to the genetics of complex traits through interconnected networks.
We hypothesized that primary immunodeficiency disease (PID) genes may be considered as core
genes in severe COVID-19, and their functional partners (FPs) from protein–protein interaction
networks may be considered as peripheral near-core genes. We used whole-exome sequencing
data from patients aged ≤ 45 years with severe (n = 9) and non-severe COVID-19 (n = 11), and
assessed the cumulative contribution of rare high-impact variants to disease severity. In patients with
severe COVID-19, an excess of rare high-impact variants was observed at the whole-exome level, but
maximal association signals were detected for PID + FP gene subsets among the genes intolerant to
LoF variants, haploinsufficient and essential. Our exploratory study may serve as a model for new
directions in the research of host genetics in severe COVID-19.

Keywords: severe COVID-19; primary immunodeficiency (PID) genes; protein-protein interaction
(PPI); functional partners (FPs) of PID genes; omnigenic model; core and peripheral genes; whole-
exome sequencing; rare high-impact (HI) variants

1. Introduction

COVID-19, caused by the SARS-CoV-2 virus, remains a global health problem. COVID-19
has a variety of clinical manifestations, ranging from asymptomatic infection to fatal res-
piratory or multiorgan failure. The main risk factors for the severe course of COVID-19
are older age [1], male gender [2], the presence of specific comorbidities and overall mul-
timorbidity [3,4], race/ethnicity and social position [5]. An increased risk of developing
severe COVID-19 outcomes is also associated with unhealthy lifestyle factors and an un-
favorable socioeconomic status. Low socioeconomic status is often the cause of a lack of
timely, quality medical care and unhealthy behaviors. The latter include an unbalanced
high-calorie diet, reduced physical activity, increased alcohol and tobacco use, and sleep
disturbances. All of these behaviors can weaken a person’s immune status [6,7]. The
severity of the course of COVID-19 is also influenced by genetically mediated immune
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system functionality. Genetic and non-genetic factors can interact to orchestrate a complex
cascade of immune signals that lead to the recovery or failure of critical organ systems and
death [8–12].

Rare disease findings can help identify causative genes and mechanisms that explain
the predisposition and course of some common diseases, and in the case of COVID-19, such
rare genetic diseases may be primary immunodeficiencies (PIDs). A recent review including
data on 459 PID patients with COVID-19 showed higher mortality, hospitalization rates,
and a higher frequency of oxygen supplementation use in PID patients than in the general
population [13], but not all PID patients have a severe disease course [14,15]. This is linked
to other risk factors, the same as in the general population [15], as well as the severity
of the causative variant [16] and the overall genetic background. Based on ideas from
the omnigenic model of the heritability of complex traits, we recently showed that the
cumulative effect of rare high-impact (HI) genetic variations across the exome is associated
with the severity of COVID-19 [17]. The omnigenic hypothesis suggests that genes with
regulatory variants in at least one disease-associated tissue may influence the overall risk
of disease development [18]. Due to the interconnectedness of gene regulatory networks,
association signals from so-called peripheral genes are transmitted to core genes, which
have a direct effect on the phenotype. In our previous study, the total contribution of rare
potentially pathogenic variants to the phenotype of severe COVID-19 was greater for PID
genes than for other analyzed groups of genes potentially important in the context of severe
infection development. We hypothesized that PID genes are enriched for core genes for a
phenotype defined as severe COVID-19 [17].

Phenotype determination is one of the “open” problems in the genetics of complex
human traits because there is often a lot of noise in the phenotyping process (mostly
regarding binary phenotypes) [19]. This problem becomes even more relevant when
COVID-19 comparison groups are formed according to disease severity, as disease severity
is a continuum [20] and it is not always possible to distinguish between moderate and severe
forms of disease. Because of the important role of the patient’s immune responses in the
pathophysiology of COVID-19, various immunologic tests have been proposed to identify
patients at high risk of progression or death caused by COVID-19 [21,22]. One promising
immunological test is to measure the levels of T-cell receptor excision circles (TRECs) and
kappa-removal recombination excision circles (KRECs), which are non-replicating DNA
fragments that are formed during the maturation of T- and B-lymphocytes, respectively,
and are retained in cells. Therefore, TRECs and KRECs are considered proxy markers of
the emergence of new T- and B-lymphocytes, and their age-adjusted levels can be used
to assess the efficacy or dysfunction of the respective branches of cellular immunity. The
interest in evaluating TREC and KREC levels in severe COVID-19 is bidirectional. On
the one hand, given the demonstrated association between TREC and, to a lesser extent,
KREC levels and the development of critical conditions and adverse outcomes in patients
with COVID-19 [23–26] and non-COVID-19 pneumonia [27], TREC/KREC measurements
may be useful in order to confirm the classification of COVID-19 severity. On the other
hand, given the importance of selecting immunologic tests with high prognostic value,
the additional evaluation of TREC/KREC levels in severe COVID-19 may contribute
to the selection and subsequent clinical implementation of prognostic tools for patients
with COVID-19.

In the present study, we aimed to further address the hypothesis of a possible role
of PID genes as potential core genes for severe COVID-19. According to the omnigenic
model, the influence of a peripheral gene on the phenotype is realized through a peripheral
network [28]. It can be assumed that the closer a peripheral gene is to the core gene in the
tissue regulatory network, the more influence on the phenotype it can exert through the
core gene. Under this assumption, genes whose products participate in networks of protein–
protein interaction (PPI) with PID gene products may contribute to PID gene association
signals, with the magnitude of the effect depending on the confidence of the interaction.
Thus, our first objective was to create and analyze sets of genes encoding products involved
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in interactions with PID gene products with varying degrees of confidence to then assess
the cumulative effect of rare HI variants in these genes in severe COVID-19. Since severe
COVID-19 is associated with older age and age-related diseases in the general population,
for this study, to reduce the possible influence of confounders, young adults (20 individ-
uals) were selected from our previous sample [17] for whom TREC/KREC analysis was
performed. Therefore, our second objective was to investigate the levels and prognostic
efficacy of TREC/KREC counts in patients with different severities of COVID-19, and to
compare TREC and KREC levels with the number of rare potentially pathogenic variants
in genes controlling PPI with PID genes.

2. Materials and Methods
2.1. Study Design

Our study comprised two phases: theoretical and experimental. In the theoretical
phase, we compiled and analyzed lists of genes associated with primary immunodeficien-
cies (PIDs) and their functional partners from PPI networks (hereinafter referred to as FPs).
In the experimental phase, we used the results of the whole-exome sequencing analysis in
COVID-19 patients with different disease severities to analyze the distribution of rare HI
and potentially pathogenic missense variants in the gene sets generated in the previous
theoretical phase of the study and based on the findings of this previous phase.

2.2. Theoretical Phase: Gene List Construction

The list of primary immunodeficiency genes (PIDs) was taken from the International
Union of Immunological Societies (IUIS) Committee of Experts 2022 Updated Classifica-
tion [29]. The phenotypes and associated genes are presented in this paper in 10 tables,
of which Tables I through IX include the phenotype categories associated with germline
variants, and Table X includes “Phenocopies.” This latter category was excluded from our
analysis. The database search tool (STRING: Search Tool for the Retrieval of Interacting
Genes) version 11.5 [30] was used to generate lists of FPs of PID genes. We generated three
gene sets: (I) consisting of PID genes, and (II and III) consisting of FPs of PID genes. Sets II
and III were generated based on STRING combined scores, which provide an assessment
of STRING’s confidence (measured from zero to one) that the putative association be-
tween proteins is biologically significant, given all the contributing evidence from different
sources. We hypothesized that the magnitude of the effect of FPs would depend on the
confidence of their interaction with PID genes, with the greater the confidence, the greater
the effect. In set II, FPs had a combined interaction score with PID genes ≥ 0.9, and in
set III, the combined interaction score with PID genes ranged from 0.4 to 0.89. STRING
was also used for subsequent enrichment analysis. We next compared these three sets
of genes for the number of genes that may be biologically important in relation to the
development and course of acute infection. As biologically important, we considered the
following gene groups: haploinsufficient [31], essential for life [32], intolerant to loss-of-
function variants and intolerant to missense variants (https://storage.googleapis.com/
gnomadpublic/release/2.1.1/constraint/gnomad.v2.1.1.lof_metrics.by_gene.txt.bgz (ac-
cessed on 21 June 2022)), linked to SARS-CoV-2 infection and/or COVID-19 disease from
the GENCODE project (https://www.gencodegenes.org/human/covid19_genes.html#
(accessed on 12 May 2023)), and immune tissue-specific [33]. Other tissue-specific or non-
specific genes were included in the analysis for the comparison with immune tissue-
specific genes.

Haploinsufficiency is a prediction of sensitivity to a reduced dose of a gene. DECI-
PHER presents haploinsufficiency scores that are based on the predicted probability of
haploinsufficiency. Scores in the 0–10% range indicate a higher probability that the gene is
haploinsufficient (https://www.deciphergenomics.org/about/downloads/data (accessed
on 15 September 2022)). Genes intolerant to a loss of function, i.e., HI variants (pLI > 0.9)
and missense variants (missense Z score > 3.09), were established based on constraint
metrics from gnomAD v2.1 (https://storage.googleapis.com/gnomadpublic/release/2.1.
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1/constraint/gnomad.v2.1.1.lof_metrics.by_gene.txt.bgz (accessed on 21 June 2022)). The
GENCODE project is currently re-annotating genes encoding human proteins associated
with SARS-CoV-2 infection and/or COVID-19 disease. From the list of genes under con-
sideration, we have selected those marked as updated. Compiling a list of immune-tissue-
specific genes has been described elsewhere [33]. Briefly, we used the TissueEnrich R pack-
age v. 1.10.1 [34] to select tissue-enriched, group-enriched and tissue-enhanced genes from
the set of RNA HPA tissue gene data (https://www.proteinatlas.org/about/download
(accessed on 19 September 2022)). Immune-system-related tissues included appendix, B-
cells, bone marrow, dendritic cells, granulocytes, lymph node, monocytes, NK-cells, spleen,
T-cells, and tonsil tissues [35].

2.3. Experimental Phase
2.3.1. Patients and Clinical Data

Twenty patients with severe (n = 9) or mild/moderate COVID-19 (n = 11) under
45 years of age from our cohort of 86 patients with whole-exome sequencing data were se-
lected for the study [17]. Patients with COVID-19 were recruited from the M.F. Vladimirsky
Moscow Regional Scientific Clinical Institute, the Moscow Clinical Center for Infectious
Diseases at Voronovsky, and the V.P. Demikhov City Clinical Hospital of the Moscow Health
Department in 2020 during the period preceding the start of vaccination. In addition to
age (no older than 45 years), a confirmed SARS-CoV-2 infection test and TREC and KREC
data [24] were required for inclusion in the study. Since age-specific TREC and KREC levels
differ in patients with immunodeficiency, those taking immunomodulators and opioids,
and those with changes in their sex hormone levels [36–38], the exclusion criteria in our
study were selected to exclude the possible influence of comorbidities, medications, and
some health-related conditions (e.g., pregnancy) on the course of COVID-19 and TREC
and KREC counts. The exclusion criteria were as follows: patients with incurable terminal
illness, primary or acquired immunodeficiency, long-term corticosteroid use, pregnancy,
alcoholism, drug addiction, and HIV/AIDS. Although extremely unfavorable socioeco-
nomic conditions and lifestyle were not among the exclusion criteria, such patients were
not encountered in our study. For information on clinical diagnosis, see [17].

The Ethics Committee of the Federal Research and Clinical Center of Intensive Care
Medicine and Rehabilitology approved the study; all included patients or their legal
representatives signed an informed consent form.

2.3.2. Sample Analysis

The TREC/KREC levels were assayed in whole blood samples as described previ-
ously [24,27]. In brief, DNA was isolated from 200 µL of venous blood via isopropanol
precipitation. The RT–qPCR reactions were performed in a final volume of 25 µL of reaction
mixture containing 200 ng of DNA, primers and probes, which were designed for the
specific amplification of the δREC–ψJα T-cell receptor, kappa-deleting joint and human
albumin (reference gene). The PCR conditions were as follows: 7 min at 95 ◦C, followed
by 45 cycles of 30 s at 93 ◦C and 1 min at 59 ◦C (CFX96, Bio-Rad, USA; manufactured in
Singapore). Standard curves for the accurate quantification of TREC, KREC, and albumin
were obtained by constructing a calibration curve from sequentially diluted genetic con-
structs containing the TREC/KREC junction region and the corresponding albumin gene
region. TREC and KREC copies were calculated and expressed as copies per 100,000 nu-
cleated cells using the following formula: [mean TREC(KREC) value/(mean albumin
value/2)] × 100,000.

DNA isolation and sequencing is described elsewhere [17]. Briefly, DNA was isolated
from blood using the Qiagen DNA blood mini kit DNA. The Swift 2S® Turbo DNA Li-
brary Kit was used for fragmentation and barcoding. Enrichment was performed with
the Twist HumanCoreExome (https://www.twistbioscience.com/products/ngs/fixed-
panels/human-core-exome (accessed on 29 January 2021)). Sequencing was executed on
an Illumina Hiseq X Ten platform with 150 bp paired-end reads. Reads were aligned to
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the GRCh38 reference genome using BWA MEM [39]. Duplicate reads were marked and
excluded using the MarkDuplicates program. Variant calling was carried out using the
HaplotypeCaller program of the GATK package. Variants were required to pass GATK’s
standard variant quality score recalibration (VQSR) threshold along with additional fil-
ters [17], and to have at least 10× coverage.

2.3.3. Annotation of Variants

Variants were annotated using SnpSift [40], SnpEff [41], and FAVOR [42], as well
as the population databases Genome Aggregation Database (GnomAD) [43], 1000G [44],
and TopMed [45]. Variants assessed by Ensembl as having serious consequences for
protein structure and function (acceptor splice variants, donor splice variants, stop-loss,
frameshift, stop-loss, and start-loss) were classified as HI. To classify a missense variant
as harmful, we used the rare exome variant ensemble learner (REVEL) tool with a rec-
ommended threshold > 0.5 [46]. Our analysis focused on rare variants with alternative
allele frequency (AF) < 0.001 or no AF data (missing) in the GnomAD, 1000G, and TopMed
population resources (hereinafter rare variants).

2.4. Data Analysis

Calculations were performed using the R software (version 3.4.1). In the theoretical
phase of this work, we compared the proportions of biologically important genes in PID
genes (set I) and their FPs with combined interaction scores with PID gene products ≥ 0.9
(set II) and 0.4 to 0.89 (set III). Because the gene sets overlapped, for statistical analysis, we
excluded all genes of set I from set II and all genes of sets I + II from set III. Thus, as designed,
we categorized genes according to their proximity to the phenotype in terms of causality.
The analyzed sets did not contain common genes, and we used Pearson’s chi-square test
with Yates’ correction for continuity. In the experimental phase, the calculation of the area
under the receiver operating characteristic (ROC) curve (AUC) was performed using the
approach of DeLong et al. [47]. The AUC was considered according to Metz [48]; AUC > 0.9
means that the diagnostic performance of the classifier is excellent. Given the sample size,
we used the unadjusted two-sided Cochran–Mantel–Haenszel (CMH) test to analyze the
sequencing data. The pooled analysis of rare variants was carried out with the dominant
inheritance model. Graphs were plotted using https://www.bioinformatics.com.cn/en
(accessed on 23 June 2023), a free online platform for data analysis and visualization.

3. Results
3.1. Theoretical Phase: The Analysis of PID Genes and Their Functional Partners

The list of PID phenotypes and associated genes is constantly growing; for example,
in 2004, the IUIS Committee update included 57 gene–phenotype pairs [49], and by 2022,
this number had increased to 450 [29]. The IUIS reports categorize phenotypes into tables,
which in turn consist of subtables with overlapping phenotypes. Most of the new genes,
as exemplified by those established since 2004, encode proteins that are FPs of previously
known proteins, so similar phenotypes in the subtables are associated with genes that
form PPI networks (Supplementary Table S1). Although some other genes that will be
identified as PID genes in the future can be expected to also encode proteins involved in
PPI networks with previously known FPs, we are interested in finding differences between
PID and FP genes today, when NGS technologies are already used, including for patients
with PID [50,51].

The three sets of genes we analyzed in this study included (I) 450 PID genes [29],
(II) 4580 FPs of PID genes with a combined interaction score of ≥0.9, and (III) 6445 FPs
of PID genes with a combined interaction score of 0.4 to 0.89 (Supplementary Table S2).
Gene ontology and KEGG pathway enrichment analyses were performed for PID genes
and their FPs representing similar phenotypes, i.e., belonging to the same IUIS subtables.
Because the gene sets overlapped (shown in the legend panel in Figure 1), we considered
sets I, I + II, and I + II + III (Figure 1A,B; Supplementary Tables S3 and S4). Although

https://www.bioinformatics.com.cn/en
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PID genes accounted for a smaller proportion of the genes in sets II and III, the results of
the enrichment analyses in these three sets were consistent with each other. These results
reflected the predominance of different types of regulatory interactions (Figure 1C,D).

Biomolecules 2023, 13, x FOR PEER REVIEW 7 of 15 
 

 
Figure 1. PID genes and their functional partners from the STRING database. (A) STRING Gene 
Ontology and (B) KEGG pathway enrichment analysis for sets of genes: (I) PID genes, (II and III) 
PID genes and their functional partners (FPs) with a combined interaction score ≥ 0.9 and 0.4 to 0.89, 
respectively. The legend panel for gene sets includes a built-in Venn diagram showing the overlap 
between these sets and the total number of genes in the sets (indicated in parentheses near each 
element of the Venn diagram). The analysis was performed for genes (and their partners) represent-
ing similar phenotypes, i.e., belonging to the same subtables from the IUIS tables. A list of subtables 
is provided in Supplementary Table S1. For sets II and III, only the terms encountered for the PID 
genes are indicated. Dotted lines separate enriched terms for genes (and their partners) from each 
of the IUIS categories, which are signed using Arabic numerals above the line graphs. See Supple-
mentary Tables S3 and S4 for more information. (C,D) Wordclouds displaying sets of terms, related 
to enriched biological processes (C) and metabolic pathways (D); the higher the frequency, the 
larger the word in the wordcloud. (E,F) A comparison of the proportion of biologically important 
and tissue-specific genes in gene sets under consideration. Because the gene sets overlapped, we 
excluded PID genes from set II and PID and set II genes from set 3. (E) Odds ratios and horizontal 
bars denoting 95% confidence intervals are shown. The experiment-wise p-value threshold corre-
sponds to 0.0021 to account for multiple testing (0.05/24 comparisons). (F) The number of genes from 
the considered sets is indicated using a 100% stacked bar chart. 

  

Figure 1. PID genes and their functional partners from the STRING database. (A) STRING Gene
Ontology and (B) KEGG pathway enrichment analysis for sets of genes: (I) PID genes, (II and III)
PID genes and their functional partners (FPs) with a combined interaction score ≥ 0.9 and 0.4 to 0.89,
respectively. The legend panel for gene sets includes a built-in Venn diagram showing the overlap
between these sets and the total number of genes in the sets (indicated in parentheses near each
element of the Venn diagram). The analysis was performed for genes (and their partners) representing
similar phenotypes, i.e., belonging to the same subtables from the IUIS tables. A list of subtables is
provided in Supplementary Table S1. For sets II and III, only the terms encountered for the PID genes
are indicated. Dotted lines separate enriched terms for genes (and their partners) from each of the
IUIS categories, which are signed using Arabic numerals above the line graphs. See Supplementary
Tables S3 and S4 for more information. (C,D) Wordclouds displaying sets of terms, related to enriched
biological processes (C) and metabolic pathways (D); the higher the frequency, the larger the word in
the wordcloud. (E,F) A comparison of the proportion of biologically important and tissue-specific
genes in gene sets under consideration. Because the gene sets overlapped, we excluded PID genes
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from set II and PID and set II genes from set 3. (E) Odds ratios and horizontal bars denoting 95%
confidence intervals are shown. The experiment-wise p-value threshold corresponds to 0.0021 to
account for multiple testing (0.05/24 comparisons). (F) The number of genes from the considered sets
is indicated using a 100% stacked bar chart.

We also compared the proportion of biologically important genes (see Section 2.2)
in the three sets under consideration and found that sets I and II did not differ from
each other, but differed from set III in the proportion of genes that are haploinsufficient,
intolerant to LoF and missense variants, essential, and annotated by GENCODE-COVID-19
(Figure 1E,F; Supplementary Table S2). The distribution of immune tissue-specific genes
did not correspond to this pattern (Figure 1E,F; Supplementary Table S2). The proportion
of immune tissue-specific genes was higher in set I than in sets II and III. Set I was depleted
in non-immune tissue-specific genes compared to sets II and III. The highest proportion of
tissue non-specific genes was reported in set II compared to set III, while the other results
were non-significant. Thus, pronounced differences in tissue specificity were observed for
PID genes and their FPs.

As follows from the theoretical phase of this work, among the FP genes there is a large
share of genes involved in the same biological processes and metabolic pathways as the
PID genes themselves. In addition, among the FPs (mostly in set II), as well as among the
PID genes themselves, there is a high proportion of biologically important genes whose
variability may influence the resistance of the organism in response to acute infection. This
hypothesis was tested in the experimental phase of this work.

3.2. Experimental Phase; Whole-Exome Sequencing of Twenty Patients with COVID-19
3.2.1. Demographic and Clinical Characteristics of Patients

Twenty unrelated patients with COVID-19 aged ≤45 years were included in the
present study. Key demographic and clinical data are presented in Supplementary Table S5.
The severe COVID-19 subgroup included nine patients with a severe or extremely severe
course (mean age ± SD, 38.33 ± 5.72), and the non-severe COVID-19 subgroup included
eleven patients with mild or moderate COVID-19 (35.18 ± 5.91). The subgroups did not
differ in demographic characteristics and previous diseases.

3.2.2. TREC and KREC Levels in Severe and Non-Severe COVID-19

A strong difference was found in the number of TRECs (copies/105 cells) in patients
with severe (Median; Q1–Q3: 11.41; 3.74–23.50) versus non-severe (96.63; 71.42–192.41)
COVID-19; Mann–Whitney U test p-value 0.00063 (Figure 2A, Supplementary Table S5). The
TREC levels did not differ between men and women for severe COVID-19 and were higher
in women than in men for non-severe COVID-19, although the results were not significant
after adjustment for multiplicity. The KREC levels did not differ between men and women
for either severe or non-severe COVID-19 (Supplementary Table S5). Other immunologic
markers, such as the leukocyte, lymphocyte, neutrophil, and monocyte counts, as well as
the neutrophil-to-lymphocyte ratio (NLR) and lymphocyte-to-monocyte ratio (LMR) at
admission and at the last measurement before discharge/death, did not differ significantly
between patients with different COVID-19 severities (Supplementary Table S5).

In the ROC analysis, the TREC assay demonstrated excellent diagnostic performance
for severe COVID-19 (AUC 0.96, 95% CI 0.765 to 1.000, p < 0.001, Youden index J 0.818)
(Figure 2B). The results for KRECs were non-significant (Figure 2A,B; Supplementary
Table S5). According to the literature, SARS-CoV-2 infection affects both T and B cell
generation, but this effect is less pronounced in the B cell compartment [26]; our sample
size was apparently insufficient to detect effects at the level of KRECs. The pronounced
effects found for TRECs may be related to the fact that SARS-CoV-2 can directly invade the
thymus and alter the gene expression patterns of the thymic epithelium [26].
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Figure 2. Immunological and genetic variability in patients with severe and non-severe COVID-19.
(A) Boxplots depicting differences between TREC and KREC levels in patients with severe and
non-severe COVID-19. (B) Receiver operating characteristic (ROC) curves for TREC and KREC levels
in predicting the severity of COVID-19. (C) Multi-group scatter plots showing the inverse correlation
between TREC levels and the number of rare HI variants in patients with severe and non-severe
COVID-19. (D,E) Burden of rare HI variants (D) and missense variants (E) in gene sets under study.
Odds ratios and horizontal bars indicating 95% confidence intervals are provided. The right column
indicates the number of rare variants ((D): HI variants; (E): missense variants) and the number of
genes with these variants in the entire sample of 20 patients. The p-value threshold corresponds to
0.0025 to account for multiple testing (0.05/20 comparisons). #: number.

Given the association demonstrated in the literature between TREC levels and the
development of critical conditions and adverse outcomes in patients with COVID-19 and
non-COVID-19 pneumonia [23–27], we believe that the results of ROC analysis support the
accuracy of phenotype determination in severe and non-severe COVID-19.
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3.2.3. Correlation between TREC and KREC Levels and the Number of Rare High-Impact
Variants at the Whole-Exome Level

A significant inverse correlation was observed between the number of TRECs (copies/
105 cells) and the number of rare HI variants in the study cohort (Figure 2C). The Spearman
rank correlation coefficient rs was −0.53 (two-tailed p-value was 0.017).

3.2.4. Rare Variant Burden in PID Genes and Their Functional Partners in
Severe COVID-19

In the entire sample of 20 patients, the total number of rare HI variants in PID genes
was small (eight variants in seven genes, Supplementary Table S6), so our primary analysis
(without dividing into specific gene groups) involved comparing the burden of rare HI
variants in all genes and in PID + FP genes (sets I + II and I + II + III) between patients with
severe and non-severe COVID-19 (Figure 2D). In our sample, the burden of rare HI variants
measured according to OR (95% CI) in severe versus non-severe COVID-19 decreased in
the sets I + II > I + II + III > all genes, but the results were highly significant for all sets. We
then performed a similar analysis for genes intolerant to LoF variants, haploinsufficient,
essential, and immune tissue-specific. For genes intolerant to LoF variants and essential
genes, the distribution of association signals was consistent with that obtained earlier for
all genes (I + II > I + II + III >all genes); for haploinsufficient genes, the greatest effect was
observed in the I + II + III set. The association results for immune-tissue-specific genes
results did not remain significant after adjusting for multiple comparisons, so the groups of
non-immune-tissue-specific or tissue-non-specific genes were not considered (Figure 2D).
GENCODE-COVID-19 genes were not considered because they included only six rare
HI variants.

For missense variants, the effect had the same direction of association but was weaker
than for HI variants, and in the smaller sets (REVEL > 0.5, Z-score > 3.09, and REVEL > 0.5,
Z-score > 3.09 in the PID + FP gene sets) the results were non-significant when corrected
for multiple comparisons (Figure 2E).

Summarizing these results, we can conclude that there was a burden of rare potentially
pathogenic variants at the whole-exome level in patients with severe compared to non-
severe COVID-19. The association signals were stronger when considering certain groups
of genes, particularly genes intolerant to LoF variants, haploinsufficient and essential genes.
The maximum effect sizes were observed in PID + FP gene subsets selected within these
gene groups. Expanding the sample (from I + II to I + II + III) led to a decrease in the variant
burden in genes intolerant to LoF and essential genes. Notably, among the PID + FP subsets
with the largest effect sizes, PID genes accounted for only 13.6% (3/22), 6.7% (1/15 genes),
and 15.6% (5/32 genes) among the genes intolerant to LoF variants, haploinsufficient, and
essential, respectively (Figure 2D, Supplementary Table S6).

4. Discussion

In this study, we turned to the omnigenic hypothesis to delineate the role of PID genes
as core genes in severe COVID-19 and the FPs of PID genes at the level of PPI networks as
near-core peripheral genes. In the theoretical phase, we compared PID genes (set I) and
their FPs with combined interaction scores ≥ 0.9 and 0.4 to 0.89 (sets II and III, respectively)
according to several characteristics. We found similarities between PID genes and FP genes
with respect to their involvement in biological processes and metabolic pathways, and with
respect to FPs from set II in the proportion of biologically important genes in the context
of overall organismal resilience and resistance to various stressors. The main differences
between PID genes and their FPs were related to tissue specificity. In the experimental
phase of this work, we combined the TREC/KREC immunologic analysis in COVID-19
patients with the whole-exome sequencing results. Using a cohort of 20 patients under
45 years of age with different severities of COVID-19, we showed the excellent ability of
the TREC count (copies/105 cells) to help diagnose severe COVID-19 (AUC = 0.96), as well
as an inverse correlation between the number of rare HI variants and the number of TRECs.
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In this small cohort, the results of the whole-exome sequencing analysis were consistent
with those previously described [17], i.e., patients with severe COVID-19 had an excess of
rare potentially pathogenic variants at the whole-exome level. The association effects were
stronger when specific groups of genes were considered, particularly genes intolerant to
LoF variants, haploinsufficient and essential genes, but not immune tissue-specific genes.
In most cases, the effects decreased in the following series: set I + II > set I + II + III > all
genes in the group or at the whole-exome level.

The main question linked to the omnigenic model and discussed in the literature is the
identification of core and peripheral genes. While core genes are expected to have largely
consistent effects, the effects of peripheral genes are mediated through interactions with
environmental and genetic factors and thus have inter- and intrapopulation variability [28].
We extended this hypothesis by considering that the magnitude of the effect of peripheral
genes may be influenced by their proximity to core genes in regulatory networks due
to fewer interactions during associative signal transduction. The results are consistent
with our assumption, as the effects of PID + FP genes, among which FP genes strongly
dominated, were higher than the total effects of all genes considered, especially within
groups of biologically important genes. The possibility of the gradual delineation of
peripheral genes has already been mentioned in the literature [52], and our work illustrates
an approach to such delineation and the isolation of a near-core “layer” of peripheral genes.

One of the main differences between core and peripheral genes in our study was
the significantly lower number of tissue-specific genes among peripheral genes. It has
been shown that disease-causing genes are often tissue-specific and, in a healthy state, are
expressed at a higher level in those tissues that are affected in pathology [33,53,54]. In this
context, one of the possible explanations for why biologically important peripheral genes
from the near-core FPs remain peripheral is their low tissue specificity. FP genes are mainly
genes that control various types of interactions; among them there are few genes specific to
immune tissue, and they are enriched with non-specific genes that control the processes in
various tissues.

We showed the utility of TREC analysis in differentiating patients at increased risk
of severe COVID-19 and an inverse correlation between TREC level and the number
of rare HI variants. This finding may simply reflect the correlation of disease severity
with both variables, the number of TRECs and the number of genetic variants. But it
is also known that an excess of rare variants in large specific gene groups is associated
with the severity of the course, and sometimes, the age of manifestation of a number of
psychiatric [55,56], neurologic [57,58], immune [59], and cardiovascular [60] diseases. Given
that the immune system is involved to some degree in most pathologic phenotypes [61,62],
their more frequent and severe manifestations may lead to earlier immunosenescence,
which is reflected in TREC levels.

5. Conclusions

The main limitation of the study is the small sample size, which may be responsible for
several types of bias. This applies not only to the genetic part of the study, but also to the
interpretation of the results of the TREC/KREC analysis due to their high variability and
dependence on many demographic, environmental and patient health factors. Therefore,
a larger and more diverse cohort is needed to increase the statistical power of the results
and to provide a more complete understanding of the observed patterns and their signifi-
cance for clinical outcomes. Thus, we consider our study to be a preliminary one, which
nevertheless has methodological and biological significance. In a sample of young patients
with severe and non-severe COVID-19, we confirmed our previous findings regarding the
cumulative effect of rare HI variants at the whole-exome level on individuals’ susceptibility
to severe COVID-19 [17]. COVID-19 is a complex multisystem disease associated with
multiple genes, most of which are peripheral genes whose action is modulated by envi-
ronmental, epigenetic and genetic factors [28,63]. Focusing on the ideas of the omnigenic
model, which divides genes by their proximity in terms of causality to the phenotype, we



Biomolecules 2023, 13, 1380 11 of 14

used PPI networks to identify the sets of FP genes that are closest to PID genes, which
were treated as core genes in this study. We hypothesized that the effects of near-core FP
genes might be more pronounced and more stable than those of other genes expressed
in disease-relevant tissues. Consistent with this assumption, top association signals for
the severe form of COVID-19 were obtained for the subsets of PID + FP genes within the
groups of biologically important genes (intolerant to LoF variants, haploinsufficient and
essential for life). In most cases, the largest effects of rare variants were obtained for the set
of PID genes and their FPs with a combined interaction score ≥ 0.9 (set I + II), providing
indirect evidence for the role of proximity to core genes in PPI networks. Our work may
serve as a model for systematic studies and new directions in the study of host genetics in
severe COVID-19.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biom13091380/s1, Table S1: Year-to-year trends in PPI network
statistics for genes with overlapping phenotypes according to subcategories in the IUIS report
(2022) [29]. Table S2: Characteristics of primary immunodeficiency (PID) genes and their functional
partners (FPs) at the protein level. For each gene, the full STRING network was queried for interactors
with the maximal available size cutoff of 50 and combined interaction score of ≥0.4. The names of the
categories and subcategories for PID genes are shown in Table S1. Table S3: STRING Gene Ontology
enrichment analysis for primary immunodeficiency (PID) gene set products with overlapping phe-
notypes according to IUIS subcategories compared to similar data for PID gene functional partners
(FPs). For the FP sets, only those biological processes that occurred for the PID sets are indicated.
I—PID genes; II—FPs (combined interaction score ≥ 0.9); III—FPs (combined interaction score 0.4 to
0.89). Terms missing for set I are not shown, but the enrichment analysis results (strength and false
discovery rate) are given according to the STRING enrichment analysis for the full set of associated
terms. Table S4: STRING analysis of KEGG pathways for primary immunodeficiency (PID) gene set
products with overlapping phenotypes according to IUIS subcategories compared to similar data
for PID gene functional partners (FPs). For the FP sets, only those biological processes that occurred
for the PID sets are indicated. I—PID genes; II—FPs (combined interaction score ≥ 0.9); III—FPs
(combined interaction score 0.4 to 0.89). Terms missing for set I are not shown, but the enrichment
analysis results (strength and false discovery rate) are given according to the STRING enrichment
analysis for the full set of associated terms. Table S5: Demographic and clinical characteristics of the
COVID-19 patients. * The exact two-tailed Fisher test unless otherwise indicated in parentheses. LR,
the likelihood ratio χ2 test; MWU, the Mann–Whitney U test. Significant results are highlighted in
bold. (p-value threshold corresponds to 0.0015 to account for multiple testing: 0.05/33 comparisons).
** Median (Q1–Q3). Table S6: Gene annotations for the entire gene set with variants identified by
whole exome sequencing in the 20-patient sample.
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