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Abstract

Typical fMRI analyses often assume a canonical hemodynamic response function (HRF) that 

primarily focuses on the peak height of the overshoot, neglecting other morphological aspects. 

Consequently, reported analyses often reduce the overall response curve to a single scalar value. 

In this study, we take a data-driven approach to HRF estimation at the whole-brain voxel level, 

without assuming a response profile at the individual level. We then employ a roughness penalty 

at the population level to estimate the response curve, aiming to enhance predictive accuracy, 

inferential efficiency, and cross-study reproducibility. By examining a fast event-related FMRI 

dataset, we demonstrate the shortcomings and information loss associated with adopting the 

canonical approach. Furthermore, we address the following key questions:

1. To what extent does the HRF shape vary across different regions, conditions, and 

participant groups?

2. Does the data-driven approach improve detection sensitivity compared to the canonical 

approach?

3. Can analyzing the HRF shape help validate the presence of an effect in conjunction 

with statistical evidence?
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4. Does analyzing the HRF shape offer evidence for whole-brain response during a 

simple task?

1 Introduction

The blood-oxygen-level-dependent (BOLD) signal, acquired via functional magnetic 

resonance imaging (FMRI), is considered a proxy for neuronal activity. Neurons are 

constantly in need of oxygen and glucose to maintain their functioning. In particularly 

demanding contexts (e.g. performing a cognitively intensive task), energy-rich, oxygenated 

blood oversupplies active regions. This neurovascular coupling also plays a role in supplying 

oxygen for neuromodulator synthesis, signaling to neurons, and other physiological 

functions (Drew, 2022). Thus, the hemodynamic response function (HRF) profiled by the 

BOLD signal in FMRI serves as an indirect indicator for neuronal activity.

The prototypical HRF shape has been broadly verified, yet the mechanisms that generate 

it remain elusive (Buxton, 2021). Briefly, BOLD signal relies on the measurement of T2* 

relaxation, which is sensitive to local concentrations of paramagnetic deoxyhemoglobin. It is 

generally recognized that, as a nonlinear function of neuronal activity, the BOLD response 

to an instantaneous stimulus consists of three phases relative to a baseline (Fig. 1A). First, a 

small and short downward change (referred to as the “initial dip”), which may immediately 

follow stimulus onset and last for as short as one second (Hong and Zafar, 2018). This 

dip is likely related to localized parenchymal increases of total hemoglobin prior to the 

dilation of pial arteries (Hillman, 2014) and is sometimes thought of as a direct marker of 

neuronal oxygen consumption. Second, a large “overshoot” that corresponds to neuronal 

activity with a very brief duration (Birn et al., 2001) and is usually the modeling focus 

(Logothetis et al., 2001). This primary positive BOLD response is directly associated with 

the properties of the brain’s vasculature (e.g., vasodilation) and neurovascular coupling that 

drive stimulus-evoked functional hyperemia. Finally, an “undershoot”1, which may last up 

to 30 seconds (Yacoub et al., 2006; Poser et al., 2010). This negative BOLD response may 

be partly caused by neural suppression, a residual high concentration of total hemoglobin 

in the capillary beds and decreased metabolic rate of oxygen consumption, combined with 

frequently observed post-stimulus arterial vasoconstriction (Hillman, 2014).

1.1 Canonical modeling approaches to capturing BOLD response and their pitfalls

The BOLD signal is measured over time in intervals of repetition time (TR). At the 

individual level, a regressor for each task condition is generated by convolving the 

associated stimulus timing with a canonical HRF under the assumption that the basic shape 

is fixed. The regressor is then entered into a time-series regression model and plays the role 

of “pattern matching” in the data. A canonical HRF is informed by biophysical experiments, 

and is implemented as different versions of gamma variates (Cohen, 1997; Friston et al., 

1998). For example, the canonical HRF in Fig. 1B has a total duration of 32 s with a fixed 

duration (12 s) and peak location (5 s) of the overshoot, the nadir (≈ 9% of the overshoot 

1The undershoot or negative BOLD response is often referred to as “post-stimulus”, a term likely originated from experiments with 
block designs, in which the undershoot occurs after the end of each stimulus presentation. In event-related designs, its usage becomes 
obscure, because both initial dip and overshoot (or positive BOLD signal), if present, also occur after stimulus onset.
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height) and duration (20 s) of the undershoot. In addition, no initial dip is contained in 

this basis shape. If a regressor associated with the canonical HRF is scaled to have a peak 

of one, then the corresponding regression coefficient can be conveniently interpreted as 

approximated BOLD response magnitude at the peak (e.g., in percent signal change, Chen et 

al. (2017)). The peak of the canonical HRF is always estimated to be at five seconds.

Accurate modeling with a fixed HRF depends on the relevant features being present at the 

right time (e.g., time to peak, relative magnitude of undershoot to peak, etc.) and meeting the 

assumption that the chosen shape features are constant across the the brain. It is well known 

that the HRF shape varies substantially across individuals, brain regions, tasks, individuals, 

and groups (by sex, age, diagnostic status) (Handwerker et al., 2004; West et al., 2019). This 

includes variability in peak timing, overshoot width, undershoot depth and duration, even 

with the same peak height. For instance, in an experiment with long blocks (e.g., 10 s or 

more), convolution with a canonical HRF would render a plateau in the model regressor 

- such a horizontal BOLD response is unlikely to be sustained due to habituation to the 

stimulus and other factors. Finally, the presence, size, and timing of the initial dip and 

undershoot can also vary substantially. Its characterization and the associated underlying 

complex mechanism remain a captivating research topic (e.g., Himmelberg et al., 2022; 

Drew, 2022; Taylor et al., 2022a). These aspects are currently not generally considered in 

modeling, even though they have been observed and they reflect physiological (and likely 

neuronal) response information. In addition, the undershoot is assumed to have a fixed depth 

relative to the preceding overshoot peak, notwithstanding that empirical data indicates there 

is no close relation (Aguirre et al., 1998). Although using a canonical HRF effectively 

reduces complexity in the modeling procedure, it seems unlikely that it would accurately 

represent the diversity and variability of actual responses; therefore, in many situations, it 

will under-fit the data, misrepresent the true physiology and miss useful information.

1.2 Ways to improve HRF modeling

Some potential improvements in modeling the response would be to adjust the canonical 

HRF or to extract multiple HRF features. For example, adding adaptive basis functions 

(Friston et al., 1998) can improve the overall fit by allowing variability of HRF profile 

features such as time-to-peak, full-width at half-maximum (FWHM), and peak duration. 

However, when these additional basis functions of temporal and dispersion derivatives are 

used, their associated effects are usually not examined at the population level; and even 

when included in individual-level modeling to improve fitting, most analyses still typically 

focus only on the peak magnitude associated with the canonical HRF at the population level, 

which ignores important information. Therefore, the potential for misrepresentation of effect 

estimates remains. Even when the effects associated with those specific profile features 

are incorporated into the population-level model, the potential gain in detection sensitivity 

is quite limited due to the subsequent information loss from information reduction before 

quantitative comparison (Lindquist et al., 2009; Chen et al., 2015). Moreover, HRF variation 

may occur beyond the profile features that have been considered. For example, the depth 

of the undershoot is generally fixed relative to that of overshoot in the canonical HRF (as 

shown in Fig. 1B), an a priori assumption that is likely often violated.
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An potentially better approach is to directly estimate the HRF at each spatial unit (such as a 

voxel or ROI) from the data. Without assuming a prefixed shape, one could estimate HRFs, 

not through modeling, but by directly averaging the data across repeated instantiations 

using carefully designed experiments with well-separated trials or blocks (e.g., with an 

inter-stimulus interval of more than 10 s). While such a strategy has yielded interesting 

results in multiple studies (e.g., Handwerker et al., 2004; Gonzalez-Castillo et al., 2012), it 

is usually limited to exploratory investigations which just examine a few brain regions at the 

individual level and is not applied more broadly to typical experimental designs in the field 

(e.g., fast event-related experiments).

More broadly, instead of extracting a few limited HRF profile features, an agnostic strategy 

in modeling would be more precise through deconvolution. At the individual level, this can 

be achieved per spatial unit under assumptions of a certain BOLD response duration and 

a linear time-invariant system, using piecewise linear splines (tent, hat, triangular bases 

or sticks, Fig. 2A) or piecewise cubic splines in AFNI (Cox, 1996, or finite impulse 

response bases in FSL (Jenkinson et al., 2012) and SPM (Penny et al., 2011). Ultimately, 

the HRF is estimated at TR grids, each of which is associated with a basis or knot. 

Although these modeling approaches are maximally flexible in capturing the HRF shape, 

this flexibility comes at a cost: model complexity is substantially increased, as these 

approaches require many regressors per condition due to the number of bases used to 

cover the response duration. Moreover, the estimated HRFs are vulnerable to sampling 

fluctuations and could perform poorly when applied to out-of-sample data, a phenomenon 

with a long history motivating techniques of regularization, partial pooling, and hierarchical 

modeling (e.g., Stein, 1956; Efron and Morris, 1976; Hastie and Tibshirani, 1990; Wood, 

2017). The estimated HRFs through deconvolution are only sampled at discrete time 

points. Therefore, simple linear interpolation would lead to a jagged appearance (Fig. 3A). 

Moreover, overfitting may occur and lead to compromised out-of-sample predictive accuracy 

when no restrictions are placed on HRF properties (e.g., smoothness). In the current context, 

a list of HRF morphological features (Table 1) are used to illustrate and compare model 

performance.

1.3 Preview: handling sampled HRFs at the population level

While HRFs are estimated with samples at the individual level, it is challenging to assess 

their morphology when brought into the population-level analysis. With a canonical HRF, 

the basic shape is predetermined.

Thus, the focus at the individual level is usually on the regression coefficient as a scaling 

factor or a proxy for the peak magnitude, which is typically carried to the population level. 

When estimated through deconvolution with piecewise splines at the individual level, each 

HRF is represented by discrete samples (e.g., one at each TR). For instance, under the 

assumption of no BOLD response at the stimulus onset, with eight tents (Fig. 2) to cover 

a duration of 16 s (TR: 2 s), the estimated HRF from each individual is characterized 

by eight data points (i.e., regression coefficients). One could summarize each individual’s 

estimated HRFs via information reduction techniques, such as calculating the area under the 

curve at the overshoot, as an indicator of BOLD response (e.g., Beauchamp et al., 2003). 
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However, such information reduction would result in information loss, negating the original 

goal of capturing the whole HRF profile. Alternatively, HRF samples at time points can 

be brought to the population level as a repeated-measures factor (Chen et al., 2015) to be 

analyzed under a conventional AN(C)OVA or linear mixed-effects modeling framework, 

as implemented in the programs 3dMVM (Chen et al., 2014) and 3dLMEr (Chen et al., 

2013) in AFNI. Then, an interaction approach is adopted to examine statistical evidence: 

by treating the HRF samples as the levels of a repeated-measures factor, the presence of 

the BOLD response can be assessed through the main effect (one-way interaction), and 

HRF differences across groups and conditions can be inferred through two-way interactions 

with the repeated-measures factor. It has been shown that detection through this interaction 

approach achieves substantially higher sensitivity than the canonical approach (Chen et al., 

2015).

While the above approach of comparing sampled HRFs has benefits, it may be possible 

to improve on these approaches to reducing information loss and also perhaps increasing 

predictive accuracy. For example, neuron action potential with which the sampled HRF is 

associated can be approximated through a smooth curve modeled by differential equations 

(Hodgkin and Huxley, 1952). However, discretely sampled HRFs ignore the smoothness 

aspect, which may make the response modeling susceptible to noise. In other words, the 

sampled HRF model is fit to the raw individual-level data without regularization through 

an interaction within an AN(C)OVA (Chen et al., 2015), even if that results in jagged 

appearances (Fig. 3A) and over-fitting of the estimated HRF. Statistical inferences are 

then based on those sampled time points without their sequential information taken into 

consideration. For instance, the serial order among three consecutive time points of k – 

1, k, and k + 1 TRs (k = 1, 2, …) are not preserved since they are simply treated as 

three levels of a repeated-measures factor in the AN(C)OVA model. Hence, the interaction 

approach is disconnected from the underlying BOLD mechanism, which may cause the loss 

of sensitivity and inferential efficiency.

Here, we adopt a smooth modeling approach: let the data determine the BOLD response 

morphology for each voxel and subsequently apply a regularization step. Specifically, we 

extend the individual-level HRF estimation method through deconvolution with splines 

(either piecewise linear, as in Fig. 2A, or cubic splines) to the population level. Moreover, 

with minimal assumptions that play the role of adaptive regularization, we impose a 

constraint on the HRF smoothness that should reduce the influence of noise and prevent 

the informed profile from over-fitting. In other words, instead of assessing how consistent 

an HRF is with data alone, we assess how consistent the HRF is with the data as well as its 

smoothness.

Previous work on HRF estimation has explored data-driven approaches or a smoothness 

constraint using, for example, a Gaussian process prior (Goutte et al., 2000; Ciuciu et al., 

2003; Eickenberg et al., 2017), cubic smoothing splines (Zhang et al., 2007), B-splines 

(Degras and Lindquist, 2014), a canonical HRF combined with its temporal derivative 

(Elbau et al., 2018), wavelet bases (Van De Ville et al., 2004; Khalidov et al., 2011), a 

biophysically informed HRF (Rosa et al., 2015), Tikhonov regularization (Zhang et al., 

2007; Casanova et al., 2008; Casanova et al. 2009; Zhang et al. 2012), spatial regularization 
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(Badillo et al., 2013; Chaari et al., 2013; Zhang et al., 2018), cross validation (Zhang et al., 

2013), and nonlinear optimization (Pedregosa et al., 2015). Some of these methods were 

applied to individual-level modeling for task-based experiments (Goutte et al., 2000; Ciuciu 

et al., 2003; Zhang et al., 2007; Chaari et al., 2013; Pedregosa et al., 2015) and for resting 

state data (Wu et al., 2021); Cherkaoui et al., 2021). Other methods have been adopted at the 

region level (Chaari et al., 2013; Zhang et al., 2012; Badillo et al., 2013; Zhang et al., 2013; 

Zhang et al., 2018) or developed for information extraction through information reduction of 

HRF to two or three morphological features (Zhang et al., 2012; Zhang et al., 2013).

Our current work extends these previous methodologies, but differs in two key aspects. 

First, at the individual level, we directly estimate the HRFs using deconvolution with 

piecewise splines without imposing smoothness or any other regularization. Second, we 

carry the estimated HRFs to the population level where we apply regularization. In doing 

so, we intend to improve population-level inferences for cross-group and cross-condition 

comparisons based on the full HRF, not on one or a few morphological features.

In addition to laying out the modeling framework of the smooth HRF, we will address the 

following questions using a dataset of participants performing a sustained attention task 

during FMRI scanning:

1. How much does the HRF shape vary across regions, tasks, conditions, and 

groups?

2. Does the smooth HRF approach improve effect detection sensitivity and 

efficiency?

3. How useful is the HRF shape information in verifying the presence of an effect?

4. Is the whole brain involved during a simple task? A previous “deep data” 

study by Gonzalez-Castillo et al. (2012) indicated that most of the brain was 

involved in a simple block experiment of visual stimulation at the individual 

level. Compared to such an experiment with many blocks (e.g., 500), in which 

the average BOLD response is relatively strong and reliable, an event-related 

experiment can be challenging to model due to the much weaker signal. Does the 

characterization of the HRF shape provide more sensitivity and possibly reveal 

similarly widespread fluctuations in most brain regions at the population level in 

a rapid event-related design?

5. Does the HRF estimation approach provide evidence for BOLD response in 

white matter? Addressing this is particularly important, as average white matter 

signals are often used to construct confound regressors for motion and other 

physiological effects in resting state FMRI.

We will first discuss the smooth HRF approach with the specific goal of assessing 

the hemodynamic response at the population level. Next, we demonstrate the analytical 

strength of this approach using an experimental, task-based FMRI dataset. Finally, we will 

summarize the three methodologies of canonical, sampled, and smooth HRF, and compare 

their pros and cons.

Chen et al. Page 6

Neuroimage. Author manuscript; available in PMC 2024 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2 Estimating population-level HRF through smoothing splines

In this section, we describe the mathematical background and formulation of the smooth 

HRF modeling approach; the next section describes its application. We start with a simple 

case of an FMRI study with one task condition and one group of participants2. Let {(tk, 

ysk) : s = 1, 2, … S; k = 0, 1, …, K} be a set of HRF samples under one condition 

from S individuals (indexed by s), which are estimated at K + 1 knots (indexed by k) 

from an individual-level regression analysis. Specifically, ysk is the regression coefficient 

for the HRF sample of sth individual at kth time point. Then, (ys0, ys1, …, ySK) are the 

sampled data that characterize the sth individual’s HRF profile, while (t0, t1, …, tK) are the 

corresponding knot locations (or times, usually taking the incremental values in the unit of 

TR counts or seconds). For example, K = 13 would correspond to having 14 knots that span 

13 TRs for a condition, and tk = k, k = 0, 1, …, 13. As noted above, the HRF estimation 

occurs independently at each voxel in the dataset.

2.1 Model formulation

We assume that the BOLD response y for a condition can be characterized as an (initially) 

unknown, continuous and smooth function y = h(t) of time t, where the function h(t) has up 

to second-order derivatives (defining its minimal smoothness). Visually, a smooth function 

can be described as a curve without sharp bends, or mathematically defined as at least 

first order differentiable. Here, we make the practical assumption of having second-order 

differentiability partly for mathematical and algorithmic convenience and partly for its visual 

interpretability (e.g., smoothly connecting discrete points with only moderate smoothing). 

Regarding common splines currently used at the individual level in the field, piecewise 

linear splines such as the tent/stick basis set in AFNI and FIR basis in FSL/SPM do not 

meet this smoothness requirement because they have sharp corners (i.e., a discontinuity in 

their first derivative) at the knots (Fig. 2A). However, the cubic splines available in AFNI do 

satisfy the smoothness criterion. We note that the notations of tk and yk, introduced earlier 

with the subscript k added, are meant to associate the discrete (sampled) quantities with 

their continuous counterparts of t and y, respectively, at the kth knot. Here and below, when 

y appears with a single subscript k, we have removed the index s, letting yk refer to the 

response at the kth knot for an unspecified individual.

We start by illustrating the method with a single generic individual. The model is 

constructed for the hemodynamic response sample dataset {(tk, yk)} as follows:

yk ∼ N ℎk, σ2 ; ℎk = ℎ tk ; k = 0, 1, …, K; (1)

where h(t) is the theoretical HRF, hk is its discrete time-sampled value at the knot tk, and σ 
is the standard deviation for the sampled data yk. As a concrete example, Fig. 3A illustrates 

a set of data yk sampled at time points (in TR) tk = k, k = 0, 1, …, 13, and Fig. 3B–C show 

possible ways to estimate an HRF h(t).

2Throughout this work, the following notation for mathematical expressions is used: regular, lowercase italic letters (e.g., b) stand for 
scalar parameters or variables; boldfaced, lowercase italic letters (e.g., b) for column vectors; and boldfaced, uppercase italic letters 
(e.g., B) for matrices.
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Distinct from curve fitting, “smooth fitting” through regularization is an adaptive calibration 

process for interpolation (Fig. 3C). Due to limited samples and noisy fluctuations, the 

original BOLD response data yk tend to have a rough appearance (Fig. 3A). When confined 

to those samples, statistical inference cannot be extended to the intervals beyond those 

sampled time points. For example, the predictive accuracy beyond the sample data points 

is important in estimating the peak height due to the high sensitivity to its location. The 

traditional nonlinear smooth fitting through polynomials is also daunting (Fig. 3B): order 

selection for polynomials can be complicated and arbitrary, and the fitted curve at a 

particular point may be sensitive to both small, local fluctuations and distance measures 

(e.g., Runge’s phenomenon). Instead of fully relying on the data and tracing the trajectory 

exactly through each data point (Fig. 3A), we seek to fit an approximate curve using a 

regularized process (Fig. 3C): use the data yk to inform and learn the underlying HRF h(t) 
morphology while at the same time containing the risk of over-fitting and the vulnerability 

to sampling uncertainty through imposing a neurologically reasonable constraint of smooth 

transitions. Moreover, because of the assumption of HRF smoothness, we avoid taking the 

risk of two extremes: over-fitting (fully trusting HRF samples or high-order polynomial 

fitting) and under-fitting (e.g., canonical HRF, linear or low-order polynomial fitting). As a 

result, we expect to achieve a high predictive accuracy and to improve statistical inferences 

over the entirety of each HRF profile as opposed to being restricted to the sampled time 

points tk.

2.2 Fitting the model with smooth splines

To achieve smooth fitting, we adopt a modeling strategy at the population level through 

splines. Many types of smooth splines are available, differing in the expression of their basis 

functions while mathematically equivalent. Here, we focus on utilizing thin plate splines 

(Fig. 2B), given their numerical flexibility and performance (Wood, 2003). Additionally, 

thin plate splines are organized in terms of increasingly nonlinear complexity across spline 

order, which is convenient for approximation and interpretability. Estimation starts with as 

many splines as the number of knots, K. To reduce computation and memory overhead, 

eigen-decomposition is adopted with K + 1 splines. The number of splines is then reduced 

to the most P + 1 important components to preserve much of the nonlinearity among the 

conventional thin plate bases, but at considerably greater computational efficiency for large 

datasets. Unlike other spline sets, thin plate splines are not tied to a set of knots (Fig. 2B). 

Because of the component reduction process, the number of adopted thin plates is usually 

less than the number of knots, K, adopted at the individual level (where K is determined by 

FMRI sampling rate and assumed total HRF duration). In other words, we will often have 

P ≤ K (such as P = 9 with K = 13). Another unique (and convenient) feature of thin plate 

splines is the structure of their first two bases: overall mean (solid black, Fig. 2B) and linear 

(dashed red, Fig. 2B) splines correspond to baseline and linearity.

We now express the smooth HRF h(t) as a linear combination of P +1 thin plates within the 

time interval t ∈ t0, tK ,
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ℎ t = ∑
p = 0

P
bp t βp, (2)

where {bp(t) : p = 0, 1, …, P} are P + 1 thin plates (indexed by p). The model (1) can then be 

reformulated,

y ∼ N h, σ2I K + 1 × K + 1 ; h = Xβ, (3)

where y = y0, y1, …, yK ′, h = ℎ t0 , ℎ t1 , …, ℎ tK ′, β = β0, β1, …, βP ′, and X is a (K + 1) × (P 

+ 1) matrix whose (k, p)th element is composed of bp(tk) By replacing the unknown but 

presumably smooth nonlinear function h(t) in (1) with the basis expansion (2), we have 

successfully converted a nonlinear relationship (1) into a linear formulation (3) with the 

model matrix X composed of the basis functions evaluated at the time points tk.

A regularization process is adopted to balance between nonlinearity complexity and 

roughness. Spline fitting has a long history of applications in many fields, including 

individual-level modeling in neuroimaging and signal processing in general. However, the 

adoption of smooth fitting via regularization is relatively recent in statistical modeling 

(Hastie and Tibshirani, 1990; Wahba, 1990; Wood, 2017). At one extreme, fitting with a 

high number of splines could capture more complex associations and lead to many rapid 

turns with large curvature, but it may then over-fit the data and capture noise. For example, 

with K + 1 time points, we could adopt K + 1 splines and fit with Kth order polynomials. 

Such a fit would likely suffer from poor predictive accuracy when applied to out-of-sample 

data (Fig. 3B). At the other extreme, too few splines could under-fit nonlinear associations. 

For instance, with the first two thin plates—b0(t) = 1 and b1(t) = t, Fig. 2B—one could fit 

any data in a traditional linear regression model through a straight line (infinitely smooth) 

with no turns (i.e., zero curvature). However, such a fit would not be a compelling choice 

especially for HRFs.

The balance between nonlinearity and roughness can be achieved through regularization. As 

the second derivative of a function is associated with its curvature or concavity, a positive 

second derivative corresponds to an upwardly concave, while a negative second derivative 

represents downward concavity. Thus, we control the smoothness or curvature of the HRF 

h(t) by tuning the following penalty term on the integrated square of its second derivative 

(Wood, 2017; Chen et al., 2021a),

∫
to

tK

[ℎ″(t)]2dt . (4)

The metric (4) is considered a natural measure of function roughness or wiggliness (Wood, 

2017), which can be expressed as a regularization process among all the spline weights 

excluding the first two (corresponding to baseline and linear trend, whose second derivatives 

are zero): β2, β3, …, βP . An example of the impact of this regularization on the original data 
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(Fig. 3A) is illustrated in Fig. 3C. One trivial case is the following: if only the first two 

splines of b0(t) = 1 and b1(t) = t are adopted, the smooth fitting model (3) degenerates 

into a linear regression: As ℎ″ t = 0 in this case, the penalty (4) becomes zero and no 

regularization is applied.

Conceptually, the regularization in smooth fitting can be viewed in three ways that provide 

insight into its modeling applications. First, as the first two splines among the thin plates are 

overall mean and linearity (Fig. 2B), the penalty (4) on β is essentially an L2 regularization 

imposed on those spline weights other than the first two elements, β0 and β1 (Wood, 2017; 

Chen et al., 2021). That is, the information is regularized across the nonlinear elements 

β2, β3, …, βP ′. Algorithmically, the penalty (4) can be applied with a tuning or smoothing 

parameter through partial least squares. Thus, the HRF h(t) can be expressed with the β 
weights in (2) and then numerically estimated through a process similar to the conventional 

ridge regression. Second, the penalty (4) can also be formulated as a linear mixed-effects 

(LME) model with the spline weights β2, β3, …, βP ′ as random effects. In this case, we can 

readily adopt the numerical schemes from the traditional LME modeling approach. Lastly, 

under the Bayesian framework, the penalty (4) is formulated as a prior assumption for 

the spline weights β2, β3, …, βP ′. All these three frameworks are practically useful in effect 

estimation and statistical inference. In the end, the regularization is implemented through 

imposing a Gaussian prior on those higher order splines, which intends to strike a balance 

between over- and under-fitting. For technical details, refer to Wood (2017).

A few features differentiate the HRF model (2), which is fitted with smooth splines, from 

the typical HRF estimation methods at the individual level as currently implemented in 

neuroimaging packages. First, most basis sets (e.g., stick/tent in AFNI, finite impulse 

response in FSL/SPM) are not smooth splines. Second, each of the thin plate splines covers 

the entire interval, and the degree of modeled nonlinearity increases with the number of 

bases. In contrast, each of the basis sets adopted in typical individual-level modeling is 

piecewise in the sense that each basis is local to one knot sharing the same functional form 

(e.g., linear or cubic polynomial) rather than increasing in complexity. Third, the smoothness 

of the HRFs fitted in the model (2) is further regularized through the roughness measure 

(4). In contrast, no regularization is applied in the conventional HRF estimation approach 

through splines. For example, the cubic splines adopted in AFNI, even though smooth, are 

used to generate regressors with no subsequent regularization in the modeling process.

2.3 Model extensions

Now, we refocus our attention on estimating a smooth HRF h(t) at the population level. With 

the individual subscript s re-included, a hierarchical model is constructed at the population 

level with the set of individual-level HRFs {(tk, ysk)} as input:

ysk ∼ N(ℎsk, σ2); ℎsk = ℎ(tk) + θs;
θs ∼ N(0, τ2); s = 1, 2, …, S; k = 0, 1, …K . (5)

Here, hsk is the value of HRF h(t) associated with the sth individual at the knot tk, σ2 is 

the intra-individual variance. θs codifies the individual-specific intercept, and τ2 represents 
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the inter-individual variance. The model platform (5) can be extended to include categorical 

variables, such as multiple groups of participants (e.g., controls versus patients), where the 

investigator may be interested in comparing HRFs between groups or simply accounting 

for group differences in HRFs. Similarly, quantitative variables (e.g., age) can also be 

incorporated.

Statistical evidence for the predicted smooth HRFs is inferred as follows. A χ2-statistic 

is adopted to assess the evidence for each estimated HRF using its uncertainty within a 

Bayesian framework (Wood, 2013; Wood, 2017), where the null hypothesis posits that the 

HRF is a horizontal line: ℎ′ t = 0. When comparing two HRFs, the expected responses at 

any time t are estimated per the model (2). The uncertainty band of each estimated HRF is 

expressed as the standard error at every time point.

2.4 Modeling implementation for whole-brain voxel-wise analysis

The program 3dMSS, which implements the smooth HRF modeling approach for whole-

brain voxel-wise data analysis, is publicly available in AFNI. It uses the R (R Core Team, 

2022) package gamm4 (Wood and Scheipl, 2020), with thin plate splines as a default. Other 

basis functions such as cardinal cubic and tensor product splines are also available. The 

data analysis is executed through a shell scripting interface. All explanatory variables and 

input data (in text format for 1D and 2D files or NIfTI format for 3D neuroimaging data) 

are prepared in a table in the R long data format. Run-time may range from minutes to 

hours, depending on the amount of data, spatial resolution, the number of predictors, model 

complexity, and computational capacity.

We make the following recommendation for choosing the number of basis functions. At the 

individual level, one should achieve the highest possible time resolution for the estimated 

HRFs. For example, one may use deconvolution with 8 piecewise splines to cover a response 

duration of 16 s for a scanning TR of 2 s. At the population level, when 10 or more 

samples are available for estimated HRFs, we recommend 10 smooth splines (the default 

for 3dMSS), as a suitable choice to capture all major BOLD response shape features. With 

less than 10 HRF samples, choose the number of bases to be close or equal to the number 

of HRF samples. Thanks to the eigen-decomposition process, this recommendation keeps a 

balance between adequate smooth fitting and unnecessary computational cost.

HRF predictions and statistical inferences are provided in the 3dMSS output. The statistical 

evidence for each HRF or for the comparison between two HRFs, is assessed through a 

χ2-statistic based on all basis weights associated with the nonlinear splines, β2, β3, …, βP  in 

the model (2), and their variance-covariance matrix (Wood, 2017). As the effective degrees 

of freedom vary across the spatial units (due to eigen-decomposition-based component 

reduction performed at the voxel level), each χ2-statistic is transformed to have 2 degrees 

of freedom for convenient result storage. To make predictions, the user can specify the time 

resolution for visualization and other variables in a long data format and obtain both the 

estimated smooth HRFs and their standard errors in the output. One can then interactively 

examine the HRF morphology and comparisons at the voxel level through, for example, the 

AFNI graphical user interface or other tools.
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To briefly summarize, we assess three modeling approaches (Table 2): 1) the canonical 

HRF, which has fixed shape and scalar comparison; 2) the sampled HRF, which has a 

flexible shape and ANOVA-based comparison; and 3) the smooth HRF, which has a flexible 

shape, fit-regularization and curve-based comparison. We hypothesize that the canonical 

approach will be the least accurate due to under-fitting, followed by sampled and smooth 

HRF approaches. One may expect that the sampled HRF approach could have similar 

performance to its smooth counterpart, but the smooth HRF approach should have two 

advantages. First, HRF samples tend to contain some amount of noise because of their 

dependence on sample sizes and model quality. In contrast, as the bias–variance trade-off 

shows, the regularization in smooth HRFs should reduce noise sensitivity, and yield higher 

out-of-sample predictive accuracy and reproducibility. Second, and perhaps more important, 

the regularization should also increase inferential efficiency, facilitating the ability to make 

comparisons.

3 HRF estimation with an experimental dataset

We now assess the smooth HRF modeling approach in comparison with the other two 

established methods of canonical and sampled HRFs. The adopted dataset has been analyzed 

in a prior study ( Pagliaccio et al., 2017a) of a global-local selective attention task during 

FMRI scanning (Weissman et al., 2006). Briefly, 87 participants (mean age: 18.3, SD: 4.2, 

range: 8-25 years, 58% female) passed quality control. Of these, 43 were either diagnosed 

with bxipolar disorder or at familial risk for bipolar disorder (BP), and 44 were healthy 

volunteers (HV). On each trial, participants saw a large letter (H or S) made up of smaller 

letters (Hs or Ss) and were asked to identify, by button press, the large “global” letter 

or the small “local” letters, depending on the run-level instructions. In half of the trials, 

the displays were congruent (e.g., a large H consisted of small Hs), while in the other 

half of the trials, the displays were incongruent (e.g., a large S consisted of small Hs). 

Stimulus ordering was pseudorandomized. Each stimulus appeared for 200 ms, followed 

by a 2300 ms fixation/response window, and an additional inter-stimulus interval jittered 

in TR increments (1250 ms) with a decay curve. The total trial length ranged from 2.5 to 

16.25 s (mean ≈ 4.0 s). Six scan runs (304 time points each) were acquired per participant, 

each composed of 92 trials (46 congruent and 46 incongruent), alternating the task goal of 

identifying global or local letters. The scanning sequence used a TR of 1250 ms with a 

voxel size of 3.75 × 3.75 × 5.00 mm3. Detailed information on data acquisition and sequence 

parameters can be found in Pagliaccio et al. (2017a).

3.1 Data preprocessing and individual-level analysis

Data were analyzed using AFNI (Cox, 1996; version 22.1.14) with standard preprocessing 

via afni_proc.py. Processing commands and scripts are available online (https://github.com/

afni/apaper_hrf_profiles). First, both skull-stripping each individual’s anatomical image and 

the estimation of its nonlinear alignment to the MNI 2009c template were performed using 

3dQwarp through @SSwarper (Cox and Glen, 2013). The initial processing steps included 

removal of the first 6 TRs, as well as despiking and slice-timing correction. EPI-anatomical 

alignment was performed using the lpc+ZZ cost function (Saad et al., 2009), while also 

applying EPI brightness unifizing to aid feature matching, and checking for left-right flips 
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(Glen et al., 2020). To address head motion, EPI volume registration was performed by 

rigid alignment to the “MIN_OUTLIER” reference base (the volume with fewest outliers), 

and the six head motion series were saved to use in individual-level regression analysis. 

All alignment steps were concatenated into a single transform before applying to minimize 

smoothing, and the final EPI voxel dimension was set at 3.5 mm isotropic. A whole-brain 

mask was created as the intersection of the EPI and the anatomical and was applied in 

subsequent steps (Taylor et al., 2018b). The EPI time series were blurred within the brain 

mask to FWHM = 6.5 mm, and then were scaled to local average for interpreting effect 

estimates as percent signal change (Chen et al., 2017).

Individual-level regression models were fitted through generalized least squares with a 

temporal autocorrelation structure of ARMA(1,1) with 3dREMLfit. Baseline, low-frequent 

drifts and motion regressors were included per run. To further reduce motion effects, 

censoring was carried out to exclude time points where the Euclidean norm of the first 

difference in motion effects (Enorm) was > 0.3 mm, or where the fraction of outliers within 

the brain mask at a particular time point was > 5%. Sessions were excluded if greater than 

15% of TRs were censored for motion/outliers or if the individual’s behavioral performance 

was below 70% accuracy. Additional quality control was conducted using afni_proc.py’s QC 

HTML (Reynolds et al., 2023). This included visual assessment of the EPI FOV coverage, of 

volumetric alignment (EPI-anatomical and anatomical-template), and of the full F-statistic 

map of the overall regression model. Grayplots of residuals and volumetric radial correlation 

plots were examined for FMRI signal variance and local correlation patterns that could 

be indicative of high motion/scanner coil artifacts, respectively. Individual and combined 

stimulus plots and the regression matrix were examined to confirm the accuracy of timing 

files and appropriately spaced stimulus events. All population-level analyses were restricted 

to a whole-brain mask where at least 90% of participants had usable data (33,495 voxels).

Two established modeling approaches (canonical and sampled HRFs) were adopted at the 

individual level. The first one used the canonical HRF with regressors of interest (congruent, 

incongruent) created through a gamma variate. The second one estimated HRFs through 

deconvolution with piecewise linear splines (tent function); that is, each condition was 

modeled with 14 basis functions that covered a sampled HRF with a duration of 16.25 

s (13 TRs) window starting 2.5 s before stimulus onset. The first two TRs were used to 

capture pre-stimulus dips in BOLD response that have been associated with attention lapses 

(Weissman et al. (2006).

3.2 Modeling at the population level

The input data at the population level were structured as follows: For the canonical 

approach, an effect estimate (regression coefficient) was available for each of the two 

conditions and each of the 87 participants, resulting in 174 total 3D volumes. For the 

sampled and smooth HRF approaches, each participant had 14 effect estimates as a sampled 

HRF per condition that spanned over 13 TRs, leading to 2,436 total 3D volumes. Sex and 

age were included as covariates in all cases.

Three modeling approaches were adopted at the population level. First, for the canonical 

method, an ANCOVA was formulated to examine canonical HRF peak magnitude using the 
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AFNI program 3dMVM with three factors (group, condition, and sex) and one quantitative 

covariate (age). Second, for the sampled HRF method, a similar ANCOVA model with 

3dMVM was performed but with an extra factor that had 14 levels for the HRF-sampled 

time points. Each effect of interest (e.g., group/condition difference) was assessed by the 

interaction of the relevant variables (e.g., group, condition) with the HRF factor (Chen 

et al., 2015). Third, for the smooth spline method, the HRF for each group under each 

condition was fitted at the 14 temporal samples from the individual level with sex and 

age as covariates using the program 3dMSS. Scripts are available at https://github.com/afni/

apaper_hrf_profiles.

3.3 Comparisons among the three modeling approaches

Here, we adopt a “highlight-but-not-hide” approach when visualizing results, to utilize 

available information more fully, to be less sensitive to the relatively arbitrary threshold, 

and to provide a more complete description of the results (Taylor et al., 2022b; Chen 

et al., 2022b). In the highlighting approach, transparent threhsolding is implemented: 

suprathreshold results are opaque while subthreshold ones are still shown, but with 

increasing transparency as statistical strength weakens. To explore statistical evidence 

broadly, the voxel-level threshold in displayed images was set to p = 0.01. For direct 

visual comparison across the three modeling approaches, no spatial clustering was applied. 

Displayed colors indicate the strength of statistical evidence. The predicted HRFs using 

smooth splines were sampled at quarters of the TR (i.e., a time resolution of 0.3125 s) for 

visualization. In each image below, the neurological convention was adopted: the left side 

of the brain is shown on the left of the image. Additionally, RAI-DICOM conventions are 

used for reporting coordinates: a negative X denotes the right hemisphere; negative Y, the 

anterior; and negative Z, the inferior.

The omnibus results emerge in the expected regions for the group and condition effects (Fig. 

4). For example, the motor and medial prefrontal cortex regions reveal group differences, 

and the bilateral dorsolateral PFC and parietal regions show condition effects. Previous 

work using canonical and sampled HRFs did not identify group-by-condition interactions 

(Pagliaccio et al., 2017a; Pagliaccio et al., 2017b), which may have possibly been due to the 

lack of sensitivity of the established approaches.

These overall results confirm our prediction about the sequential order of the model 

performance. Fig. 4 shows the χ2 results for the group, condition, and interaction effects 

for each HRF modeling approach. The superior performance of the sampled HRF over the 

canonical HRF is consistent with our previous investigation (Chen et al., 2015). Noticeably, 

the smooth HRF approach was statistically more sensitive than the sampled HRF for the 

“omnibus” evaluation of the two main effects and the interaction. The improved sensitivity 

is especially beneficial for higher-order effects such as interactions (third row, Fig. 4) than 

main effects (first two rows, Fig. 4) because the former generally require much larger sample 

sizes than the latter (Leon and Heo, 2009; Gelman et al., 2020). As is common in result 

reporting in the field, Fig. 4 only shows one aspect of information: statistical evidence. 

However, it is equally – if not more – important to display the associated effects (Chen 

et al., 2017; Chen et al., 2022b). As illustrated below, the HRF estimation approaches 
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make powerful visualization available and allow researchers to evaluate information beyond 

statistical evidence: Figs. 5–8 display the full HRF curves at a voxel, and Fig. 9 shows the 

voxelwise features across the brain.

We now explore some of the details which are observable with the smooth HRF approach, 

and particularly how this information would be misrepresented with the canonical HRF 

modeling. In each case, we explore how well different modeling approaches address the 

question, Is there a difference in BOLD response between the BP and HV groups? This will 

also reveal the breadth of response shapes which occur across the brain, further challenging 

the idea that a canonical HRF is representative of a global BOLD response shape.

Case A.—Fig. 5 illustrates a location in the left postcentral gyrus that shows similarly 

strong statistical evidence in all three modeling approaches. However, when viewing the 

BOLD response estimates, one of the shortcomings of the canonical approach is evident. 

While each method shows a notable difference between BP and HV peak responses of 

approximately 0.15% signal change, it is clear that the peak responses from the canonical 

HRF are actually incorrect: the canonical approach assumes that the time to peak is ≈ 5 

s, even though the overshoot actually peaked 1-2 s earlier. Therefore, BOLD responses in 

both groups were greatly underestimated. By happenstance, their difference happens to be 

equal to that at the actual peak. In comparison, both the sampled and smooth HRF methods 

provided more reasonable estimation.

This case shows that canonical HRF effect estimation, which relies strictly on shape feature 

assumptions and collapses all information to a single scalar, can result in substantial under-

fitting and misestimation of the actual BOLD response. While the contrast may be correct 

in this case, this will not be the case in other instances. Indeed, as is already observable 

in the spatial maps in Fig. 5, the canonical HRF map has much weaker statistical evidence 

generally than those of the other two approaches. As most studies focus on contrasts 

between group/conditions, this would be particularly problematic in cases where the BOLD 

response either deviates from the canonical HRF only in one group/condition or deviates in 

different ways across groups/conditions, resulting in a systematically biased and inaccurate 

contrast estimates.

Case B.—This example illustrates issues with the canonical approach, even if the assumed 

time-to-peak is largely accurate. In Fig. 6, the estimated HRFs peak around 4-5 s and have 

an overshoot shape similar to that of the canonical HRF. As a result, the peak estimates 

based on the canonical HRF (red and blue bars, Fig. 6) are roughly similar, compared to 

the peak estimates of the other two approaches (red and blue lines in Fig. 6). As a side 

note, the latter estimates also show that the undershoot appeared to be larger than that 

assumed by the canonical HRF, and the HV group had a noticeable initial dip. Despite the 

accurate capture of the peak height, the canonical approach did not provide strong statistical 

evidence, whereas the sampled and smooth HRF approaches did. This is likely due to several 

features, some of which are related to the collapse of so much fit information to a single 

scalar for the canonical HRF.
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Case C.—The third scenario showcases the failure of the canonical approach to detect 

group differences when the BOLD response shape differs substantially from the assumed 

shape. As shown in Fig. 7, each of the estimated group HRFs contained a small-to-negligible 

overshoot, but their undershoots vary greatly in magnitude. Because the morphology is so 

distinct from the canonical HRF, it is not surprising that this approach did not accurately 

capture the BOLD response magnitude, leading to a lack of strong statistical evidence 

for group differences in the incongruent condition. In fact, the canonical assumption of a 

peak at 5 s led to an incorrect sign (−0.012 ± 0.007) for the BP group. The substantial 

deviation of the estimated HRFs from the standard shape was unlikely due to random 

noise, given the consistency of the HRF morphology between the two conditions (congruent 

and incongruent) within each group. Importantly, this non-standard HRF shape was not an 

isolated occurrence. Similar cases occurred in quite a few regions including the inferior, 

superior, central, and middle temporal gyri, precuneus, anterior cingular, and a number of 

regions that were predominantly white matter.

These cases exemplify three important points with regards to detection sensitivity and effect 

validation. First, the performance of the canonical HRF is highly sensitive to the peak 

location. When the underlying BOLD response is similar to the canonical HRF shape, the 

canonical approach can achieve strong statistical evidence. However, for voxels in the motor 

cortex shown in Fig. 5, the estimated HRF peaked around 3-4 s, slightly earlier than the 

canonical HRF and thus the peak estimates were substantially underestimated relative to the 

sampled and smooth HRF results. Second, the undershoot feature generally appeared to be 

larger than the one assumed in the canonical HRF. Such deviations of non-overshoot features 

can notably affect the overall HRF fit and therefore mischaracterize effect estimates. Third, 

there was also an indication of an initial dip for the HV group that was not captured by 

the canonical HRF. However, a higher temporal resolution would be required to investigate 

this feature in greater detail. Overall, while there is some convergence between the three 

approaches, these results also show that even relatively small deviations (e.g., an overshoot 

peak of 1-2 s earlier) from the rigid canonical shape can impact estimation accuracy—and 

below we see that this variability is indeed large. The much richer information conveyed 

through the estimated HRFs is important for both effect accuracy and statistical inference, as 

well as interpretability.

3.4 Evidence for BOLD fluctuations across the brain

In the previous subsection, we focused on a contrast of interest: BP-HV group difference 

for the incongruent condition. Here we focus on a single HRF to examine the question, 

How much of the brain is involved during a simple task? A previous study has investigated 

this question using BOLD responses averaged across many well-separated blocks, such as 

a simple visual stimulation or attention task with a deep (or dense) scanning paradigm 

with 100 runs in a block design for three participants (Gonzalez-Castillo et al., 2012). The 

results suggested that, as more runs were added, the BOLD response appeared to approach 

the whole brain level. Here, we investigate the same question using a lot less runs (but 

with many more subjects), as well as a fast event-related experiment. Compared to a block 

design, event-related designs usually have a much weaker effect magnitude, typically less 

than 1% signal change, due to the short stimulus duration. If this experimental paradigm 
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would also support whole-brain fluctuations at the population level, it would provide an 

important piece of converging evidence for generalizability.

Fig. 8 shows that the sampled and smooth HRF estimation approaches provide strong 

evidence for population-level BOLD response throughout the majority of gray and white 

matter during the attention task. Overall, the BOLD response amplitude of the overshoot 

across the brain was largely below 0.1% signal change for either condition (see Fig. 9 for 

the HV group’s congruent condition). The HRF shape information offered evidence for the 

presence of BOLD response in nearly all regions, including white matter and cerebellum as 

well as those regions where the canonical approach failed to show strong statistical evidence 

(Fig. 8). These observations are consistent with previous findings in white matter (e.g., 

Gawryluk et al., 2014; Gore et al., 2019; Li et al., 2019). While the BOLD response in 

the cerebellum was of similar magnitude as in gray matter, its counterpart in white matter 

was at least a few times smaller (around 0.03% signal change for both the overshoot peak 

and undershoot nadir) with a longer duration (Figs. 8–9), consistent with a previous report 

(Li et al., 2019). Even though a similar HRF profile was also observed in the ventricles, 

it is much less clear how to understand this. Imperfect alignment and spatial smoothing 

could cause bleeding impact from neighboring brain regions, regardless of tissue type; these 

effects are particularly likely to be observed in small regions bordered by much larger 

ones. Nevertheless, we note that the evidence for the presence of typical HRF morphology 

occurred not only under one particular condition or group, but also across both conditions 

and both groups. The evidence of BOLD response is present not only in the white matter 

close to the gray matter, but also across the whole white matter (Fig. 8). In addition, some 

evidence exists in the literature for the involvement of neurovascular coupling driving the 

production and circulation of cerebrospinal fluid (Drew, 2022; Gonzalez-Castillo et al., 

2022). We note that the evidence for the whole-brain fluctuations under a single condition 

is not inconsistent with other results regarding group/condition contrasts: little differential 

effect existed in their overall HRFs between groups or conditions; the magnitude of peak and 

nadir was quite small in most regions (Fig. 9).

3.5 HRF shape variations

Fig. 9 illustrates the spatial variability of HRF in detail by displaying key shape 

features throughout the brain for the HV group under the congruent condition (analogous 

inhomogeneity applies in all group/condition cases): peak magnitude, nadir magnitude, 

peak-nadir ratio, time-to-peak and time-to-nadir. In all cases, properties varied a lot. The 

overshoot peak was negligible or even absent in several parts of the frontal cortex (dark 

blue and empty overlay voxels in the top row, respectively). Recall that the canonical HRF 

assumes a fixed peak-nadir ratio of 9%; however, the ratio here had to be plotted with a 

logarithm because of the wide variability of values, and the peak magnitude is even less 

than the nadir magnitude in much of the brain (blue regions). The canonical HRF assumes 

a fixed time-to-peak of 5 s, but the actual times are mostly within a wider range the [4, 

6] s interval, with a notable number of voxels in the lower range of [3, 4] s as well as 

a higher range of [6, 7] s, consistent with previous empirical individual-level results (e.g., 

Handwerker et al., 2004). Moreover, there does not appear to be a simple relationship among 
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the shape properties or uniformity among tissue classes: these features reflect inherent shape 

differences.

In this dataset, there are many categories into which relative variability of HRF shape could 

be partitioned: between groups, between task conditions and across the brain. Overall, it was 

most pronounced spatially (Fig. 9), with some moderate degree of variation between groups 

and subtle variation between task conditions, in line with the images shown in Figs. 5–8.

4 Discussion

The contribution of FMRI studies to neuroscience heavily hinges on an accurate 

understanding of the link between the expected neural signal and the observed BOLD signal. 

For example, finer characterization of the BOLD response morphology will undoubtedly 

help capture cross-region relationships at the network level (e.g., Fouladirad et al., 2022; 

Gill et al., 2022). The underlying mechanism of neurovascular coupling remains to 

be fully understood - accurately characterizing the HRF morphology in modeling and 

effect estimation is a critical part of this endeavor. The stereotypical HRF is generally 

characterized with three temporal stages (Fig. 1): a transient initial dip, a hyperoxic peak, 

and a recovery undershoot. The explicit HRF estimation approach has been available at the 

individual level since the early days of neuroimaging data analysis, and all major software 

packages offer tools for implementation. However, these approaches are rarely applied in 

routine modeling, and even when they are adopted, their exploration usually either stops at 

the individual level or focuses on sampled HRFs. As we have shown here, there are many 

informative and quantitatively useful indices to more deeply explore the HRF shape in an 

analysis.

4.1 The importance of characterizing the HRF shape

The staple convolution methodology with an assumed HRF of neural events bears a strong 

assumption: the HRF shape remains the same across regions, individuals, tasks, conditions, 

and groups. It is this predetermined shape that allows the direct comparison of the BOLD 

response magnitude through a scalar and simplifies many modeling processes both at the 

individual and population level. This assumption makes neural decoding of FMRI data 

feasible through deconvolution (e.g., Uruñuela et al., 2022). Even when the assumption is 

moderately violated (e.g., a mischaracterized undershoot, absence of the initial dip), one 

would still be able to statistically detect the effect as long as its magnitude is relatively large 

and the focus is on contrasts rather than individual effects.

Here we show that there are many scenarios in which the canonical approach is less 

sensitive in detecting BOLD response. The consequences are under-fitting, effect distortion 

and compromised detection sensitivity, which likely contribute to reproducibility issues. Fig. 

9 catalogues examples of observed HRF feature variation, including peak/nadir location 

and relative magnitude between peak and nadir. Importantly, we have shown several 

scenarios where the canonical approach underestimates (Fig. 5) or distorts (Fig. 7) the effect 

magnitude to varying degrees due to information reduction (Fig. 6) or shape deviation (Fig. 

7). Most studies focus on a contrast between two conditions or groups, i.e. the difference 

between two scalars. Under the canonical approach this is achieved through two steps of 
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information reduction: one from one-dimensional curves to zero-dimensional scalars, and 

the other from two such scalars to one difference value for the contrast. With no availability 

of information on the HRF shape, one is simply left with the sign of each scalar and cannot 

verify the accuracy of overshoot height, undershot depth or the combination of both.

One popular improvement is to adjust the canonical HRF, by either adopting one or two 

auxiliary bases or using a few shape metrics such as peak height, onset latency, time 

to peak and FWHM (Lindquist et al., 2009). However, while adjustments with auxiliary 

bases provide flexibility on location and width of the overshoot, these are not enough 

to capture possible profile variation, especially the undershoot variation and initial dip 

as shown in Figs. 5–8. Thus, their potential improvements remain limited (Chen et al., 

2015), and the applicability of these metrics is difficult to model at the population level. 

For instance, simultaneously assessing these multiple features at the population level is 

challenging. In addition, the meaning of BOLD response magnitude may become ambiguous 

considering the following three different scenarios: a dominant overshoot, the coexistence of 

an overshoot and an undershoot, and an undershoot only. Additionally, when the auxiliary 

bases are used to adjust the peak location and width of the overshoot, despite improved 

model fit, the effects associated with such auxiliary bases are usually then ignored, resulting 

in effect accuracy issues (Figs. 5,7). Even with available tools, it remains a challenge to 

effectively incorporate the overshoot adjustments into follow-up analysis. Furthermore, a 

canonical HRF is intended to capture an overshoot that peaks around 5 s, and an undershoot 

which is fixed and small (9% of the overshoot peak). As a result, the likelihood of accurately 

capturing an undershoot becomes slim – with the added complication that sometimes the 

undershoot is even more dominant (Fig. 7).

4.2 Advantages of estimating HRF shapes

The sampled HRF approach is rarely used in practice. While it has clear advantages, such 

as increased sensitivity, there are also some disadvantages with sampled HRFs that need to 

be discussed. First, more regressors would be required to capture the HRF shape. In other 

words, HRF estimation approaches require careful experimental designs to avoid collinearity 

issues. Furthermore, without constraints imposed on the HRF shape, the basis functions may 

catch signal unrelated to BOLD response or suffer from sampling variations, as evident 

by the jagged appearance of estimated HRFs even at the population level through sampled 

HRFs (Figs. 5–8). Lastly, it is a computationally cumbersome task to estimate HRFs at the 

population level, which may be the main reason for why this approach is rarely attempted.

Despite its improvements relative to previous methods, the sampled HRF approach (Chen 

et al., 2015) needs further refinement. Due to sampling errors, HRF estimates even at the 

population level still contain zigzags, a common symptom of over-fitting (second column 

in Figs. 5–8). In other words, when one fully trusts individual-level HRF samples, it is 

unavoidable to capture some noise. In contrast, even though HRF estimates at the individual 

level are purely data-driven and sampled at a temporally coarse resolution, the estimation 

through smooth splines at the population level balances between under- and over-fitting. 

Hence, we make the basic and reasonable assumption that the HRF should be smooth, i.e., 
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not fully fitting to the raw data. Yet, we still learn the HRF features and profiles from the 

data.

To summarize our results, the performance of the three modeling approaches at the 

population level follows the order to which they reduce information: the sampled HRF 

approach is more accurate and sensitive than its canonical counterpart, but it does not 

perform better than the smooth version. Below are a few specific advantages of HRF 

estimation.

a. Improved detection sensitivity. Modeling in neuroimaging comprises two 

intertwined components: causal inference (e.g., group or condition differences) 

and predictive accuracy. While our data indicate that the HRF is very close 

to the canonical curve in motor and visual regions, the peak in those two 

regions occurred 1-2 s earlier than is stipulated by the canonical HRF. This 

small deviation leads to substantial distortion in effect estimates. While a more 

complex set of models, HRF estimation achieved both enhanced accuracy 

and sensitivity. The improved sensitivity is particularly more valuable for 

higher-order effects such as interactions than main effects due to the former’s 

requirement for much larger sample sizes (Leon and Heo, 2009; Gelman et al., 

2020).

b. Improved reproducibility. As effect magnitudes are rarely reported in the 

literature (especially for voxel-wise analyses), neuroimaging analyses often have 

many “experimenter degrees of freedom” which contribute to reproducibility 

issues (e.g., Chen et al., 2022b). When HRFs are directly estimated, the 

detailed information (i.e., HRF profiles) can be utilized to assess the validity 

of an effect as an extra piece of confirmatory information, independent of the 

statistical evidence. This approach promotes a shift from a decision-making 

process “blind” to the data but only based on statistical evidence, to focusing 

on effect estimation and morphological subtleties. For example, the current 

practice of handling multiplicity solely through statistical evidence in the spatial 

neighborhood could be improved: instead of making a dichotomous decision, 

we propose a holistic approach to providing more compelling information than 

statistical evidence alone. Such information can be the combination with other 

sources of evidence including the presence of BOLD response in the form of 

HRF morphology, anatomical relatedness (e.g., HRF morphological symmetry 

between contralateral regions) as well as prior information (e.g., literature).

c. Exploring differences in HRF shape. Our investigations in the context of the 

sustained attention task indicate that HRF variability across regions and groups is 

much larger than condition differences. Even though not all HRF shape subtleties 

are directly associated with BOLD response magnitude, accurate characterization 

opens an avenue for future investigations regarding the underlying neurovascular 

structure and associated neurological and hemodynamic mechanisms. For 

example, some (1-2 TRs worth) of anticipation effects occurred in some regions 

(Figs. 5–7). It is generally recognized that BOLD effects include changes in 

cerebral blood flow, volume, metabolic rate of oxygen, and hematocrit fraction, 
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and is further complicated by various vascular origins. Moreover, the undershoot, 

the mechanisms of which are poorly understood, may be due to a few factors 

such as delayed vascular compliance, sustained increases in cerebral metabolic 

rate of oxygen, post-activation reduction in cerebral blood flow (van Zijl et al., 

2012), or inhibitory processes (Mullinger et al., 2017). Previously, little attention 

has been paid to undershoots in modeling. Now, their presence could be directly 

estimated and visually verified through HRF estimation. Similarly, the initial 

dip in BOLD signal is typically not considered important in modeling even 

though optical intrinsic signal imaging studies routinely observe its presence 

(Das and Gilbert, 1997; Chen et al., 2005). In addition, an initial dip can be 

predicted by quantitative models that characterize the relationships among blood 

flow, metabolic rate of oxygen, and BOLD signal (Buxton et al., 2004; Maith et 

al., 2022). Here, we empirically demonstrated that through HRF estimation, an 

initial dip was seen in some brain regions (Fig. 6) even though a finer temporal 

resolution would be required to improve certainty.

Questions exist on the degree to which estimated HRFs can be used to make inferences at 

the network level? As the BOLD response shape varies across individuals, regions, groups 

and task conditions, our current modeling focus is limited to region level inferences through 

univariate analysis. Extensive work reveals networks that are engaged during various task 

conditions through multivariate modeling using constrained principal component analysis 

with estimated HRFs (e.g., Woodward et al., 2016; Sanford and Woodward, 2021; Roes et 

al., 2022). In these studies, dominant networks emerge based on similarity in HRF shape. 

Univariate and multivariate approaches adopt different assumptions and possess different 

goals. The hemodynamic response shape is only a proxy – not an exact representation – 

of neural activity. Accordingly, cross-regional inferences based on response morphology 

may lose some sensitivity and accuracy given neurovascular heterogeneity across regions. 

Therefore, univariate modeling is likely more sensitive in detecting subtle differences across 

groups and task conditions at the region level, differences which multivariate approaches 

may have difficulty identifying. However, inferences based on univariate analyses are largely 

confined to the local level without integration at the network level. Future work could 

explore how these two approaches complement each other.

Now we can directly address the questions raised in the Introduction.

1. How much does the HRF shape vary across space, tasks, conditions, and groups? 
While there is variability in each category, the observed shape variability was by 

far the largest across the brain. This is consistent with the reports of cross-region 

heterogeneity in draining veins: regions with larger draining veins showed more 

delayed BOLD response (Handwerker et al., 2004; Taylor et al., 2018a), and the 

variability was also large in the rest of the brain. Some subtle variations occurred 

between clinical groups, with a similar profile across conditions.

2. Does the smooth HRF approach improve effect detection sensitivity and 
efficiency? Yes, the modeling approach with smooth splines captured the HRF 

shape subtleties and reduced information loss compared to the traditional 

approaches (canonical and sampled HRFs).
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3. Does the HRF shape offer validation support for statistical evidence? Yes, we 

believe that visual verification of the HRF shape can play a confirmatory role, 

independent from the statistical evidence, and verify the likelihood of effect 

underestimation and incorrect signs by the canonical approach.

4. Is the whole brain involved during a simple task? Through capturing the HRF 

shape with an event-related experiment, our dataset provided evidence for whole-

brain response at the population level, and these results are similar to what was 

revealed previously at the individual level via an experiment of deep scanning 

(Gonzalez-Castillo et al., 2012).

5. Does the HRF estimation approach provide evidence for BOLD response in 
white matter? Yes, our results revealed hemodynamic activities with the HRF 

signature shape yet with small peak magnitude.

Future explorations are required to further validate the modeling approach with smooth 

splines. The improvements in model quality at the population level, as assessed in questions 

1) and 2) above, have been established, to some extent at the individual level in previous 

work. The increased detection sensitivity by smooth HRFs relative to sampled HRFs, as 

demonstrated in Figs. 4–8, is notable but not as dramatic compared to the canonical HRF 

except for the interaction (third row, Fig. 4). Subsequent studies are needed to evaluate the 

strength of the smooth HRF in its predictive accuracy when applied to out-of-sample data; 

here, we have only validated the modeling approach in a single case study.

This work provides new insights and extensions to the common practice in the field of 

FMRI. The modeling approach with a canonical HRF has been and will likely continue 

to play a crucial role in neuroimaging. However, its inevitable imprecision may be a 

contributor to reproducibility issues faced by the field. For example, the adoption of a 

canonical HRF likely has ramifications for the challenge of estimating intraclass correlation 

or test-retest reliability (Chen et al., 2021b). Since psychophysiological interaction (Friston 

et al., 1997) analyses also rely on deconvolution using a canonical HRF, many of the 

points we raise here may also be applicable. Moreover, the large cross-region heterogeneity 

of BOLD response morphology presents a challenge: the sensitivity for cross-region 

relationships (e.g., correlation) that are heavily based on the similarity of response 

shapes could be compromised. The omnipresence of BOLD response in the brain also 

has implications. Our observations of HRF morphology also confirmed previous results 

suggesting a smaller overshoot peak, delayed onsets and prolonged initial dips in white 

matter compared to gray matter (Li et al., 2019). Lastly, Moroeve, it raises the question 

regarding the common practice of using the average signal in white matter as a regressor of 

no interest in resting-state data preprocessing (Jo et al., 2013; Power et al., 2014; Ciric et al., 

2017), and echoes the concern about the blind spot status of white matter (Grajauskas et al., 

2019).

4.3 Limitations of HRF estimation through smooth splines

HRF estimation can be considered an extension to linear regression: instead of fitting the 

data with straight lines, we model the data with nonlinear curves. Just as the linearity 

assumption in a traditional regression model can be violated to a varying degree or face 
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other issues such as distribution misrepresentation, so do limitations and challenges exist for 

HRF estimation through smooth splines.

1. The appropriateness of the smoothness assumption versus temporal resolution. 

The temporal smoothness assumption for the HRF (up to second-order 

derivatives) is likely reasonable most of the time. However, it is possible that 

some underlying shape subtleties may require a higher-than-available temporal 

resolution when acquiring the data, in order to be able to capture features 

accurately. Violating this assumption could lead to over-smoothing or under-

fitting. For example, without an adequately short TR, it may become difficult to 

accurately capture the initial dip and overshoot peak height/location.

2. Complexity in experimental design. To avoid potential collinearity, one mush 

carefully design an experiment so that the model can accurately estimate 

the HRF shape information at the individual level. Such designs may need 

to carefully consider the use of randomization to reduce collinearity through 

variations in inter-trial intervals and jittering of event timings across conditions. 

Furthermore, a short TR (e.g., 2 s or less) may be required to reduce the risk of 

under-fitting.

3. Complications in modeling and result reporting. Despite its flexibility of 

capturing HRF profiles, the approach still requires a prior determination of the 

BOLD response duration in individual-level modeling. For example, even though 

a duration of 13 TRs (i.e., 16.25 s) was enough to cover the responses at most 

regions with our experimental dataset, data suggest that a longer duration is 

required in white matter (Fig. 8). Future work is needed to understand how 

individual-level measurement errors could be incorporated into the population-

level HRF estimation. Moreover, it remains challenging to estimate trial-level 

HRFs, which is important for statistical learning processes utilized in multi-voxel 

pattern analysis, support vector machine and linear discriminant analysis. In 

addition, detection sensitivity comes at a cost: unlike a single scalar for a 

canonical HRF that can directly reveal the sign of a comparison (positive or 

negative), each estimated HRF is expressed as a full curve. Therefore, one would 

have to resort to visual inspection to assess the relationship across conditions or 

groups, presenting a challenge for result reporting as well as for meta-analyses 

across studies.

The modeling approach with smooth splines is summarized in Table 3. The current work 

leaves some issues unresolved. The association of the overshoot with the excitatory process 

of neural activity, is the theoretical underpinning of a canonical HRF approach. However, 

it remains unclear whether the overshoot peak should be the sole focus irrespective of the 

undershoot magnitude. Our data indicates that the relative magnitude of the overshoot ranges 

from larger to smaller than the undershoot nadir across the brain; the associated mechanism 

for neurovascluar coupling is opaque. In addition, HRF variability across individuals and 

across trials remains to be explored in future work.
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4.4 Suggestions for experimental designs and modeling

Based on this work, we would make the following recommendations for researchers 

designing task-based FMRI studies with the intention of implementing HRF estimation in 

data analysis:

1. The importance of careful experimental design cannot be overemphasized. 

Estimating HRFs at the individual level is a crucial first step in the procedure, 

and it necessitates many more regressors than the canonical approach (e.g., one 

per TR within the expected stimulus duration). Thus, both inter-stimulus jittering 

and trial sequence randomization across conditions are critical to avoid potential 

collinearity across events. In addition, to improve statistical efficiency, having a 

reasonable trial sample size is almost as important as the participant sample size 

(Chen et al., 2022a).

2. Having a higher temporal resolution helps to detect subtle differences in HRF 

shapes. Because of the potentially complicated nonlinearity involved in the HRF 

shape, one needs enough basis functions to capture the fine structure at the 

individual level (and the maximum number of basis functions is limited to the 

number of TRs within the HRF interval). We suggest using seven bases as a 

minimum. With a TR of 2 s, this translates to 12 s of HRF duration. A small TR 

(e.g., less than 2 s) would likely improve the accuracy of shape characterization, 

e.g., for localizing the peak and detecting an initial dip, among other features. 

Alternatively, one may improve the temporal resolution through leveraging the 

participant sample size. For example, even with a TR of 2 s, one could collect 

HRF samples at the TR grids for half of the subjects, and obtain shifted samples 

by 1/2 TR (i.e., 1 s) for the other half. In doing so, HRFs could be estimated at a 

finer temporal resolution of 1 s at the population level.

Modeling advances will continue to play an important role in improving neuroimaging data 

analysis. FMRI signal is “contaminated” with many unknown components that currently 

remain unaccounted for. In fact, the amount of BOLD variability accounted for in models 

remains quite low: 10% or less for event-related experiments in most brain regions among 

typical condition-level analyses. When statistical evidence fails to reach a designated level, 

there is often a strong tendency to ascribe the failure to a small effect size or suboptimal 

sample sizes. However, attempting to remedy this by simply increasing the number of 

samples, although potentially increasing statistical evidence could be inefficient and costly.

5 Conclusions

In this FMRI study, we observed that a substantial amount of HRF shape variability 

occurred across the brain and that the canonical HRF assumptions are often poorly suited 

to modeling it. As a consequence, some subtle differences between groups and conditions, 

which are typically the focal point of such studies, can be lost or misrepresented. To help 

address this issue, we introduced a modeling approach of estimating HRFs at the population 

level, modeling nonlinearity through smooth splines. With the simple assumption that the 

BOLD response is likely to be smooth rather than rough, the hemodynamic profile can be 

effectively estimated without knowing a priori the specifics of its shape characteristics. The 
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process of uncovering the HRF effects through smooth modeling becomes relatively robust 

when the time resolution is fine enough. Furthermore, the validity of estimated smooth 

HRFs can be visually verified and compared across groups and conditions. We hope that 

the modeling framework, with the associated program 3dMSS, will contribute to increasing 

effect detection sensitivity and to improving reproducibility in neuroimaging data analysis.
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Highlights

• Large HRF shape heterogeneity exists across the brain, individuals, 

conditions, and groups

• Canonical HRF may suffer from under-fitting and information loss

• We propose an HRF estimation approach for both individual and population 

levels

• We demonstrate that inferential efficiency can be substantially improved 

through a constraint on the HRF smoothness

• Our HRF estimation approach also revealed evidence for the whole-brain 

BOLD fluctuations

• We offer recommendations for adopting the HRF estimation approach in 

experimental design and modeling practice
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Figure 1: 
(A) Typical depiction of HRF shape and features based on FMRI and optical imaging 

experiments. The scale of the response intensity (vertical axis) depends on stimulus type, 

brain region, and local vasculature. (B) A canonical HRF for modeling (Friston et al., 1998) 

is usually constructed through an impulse response curve as a function of time t: here, h(t) = 

5.7t5e−t/Γ(6) – 0.95t15e−t/Γ(16). It serves as a basis function and is convolved with stimulus 

timings to generate a series of expected HRFs for a task condition. These convolved HRFs 

are then used as regressors in a time series regression for acquired BOLD signals at the 

individual level. The overshoot peak occurs at 5 s and is scaled to 1 (red line) here. It is 

the sole focus in standard modeling, and the corresponding regression coefficient for a task 

condition with instantaneous trials can be conveniently interpreted as, for example, percent 

signal change. Moreover, the onset and duration of the undershoot are fixed, with a preset 

nadir of about 9% of the overshoot peak. The dotted horizontal line in both panels shows the 

baseline level of BOLD signal.
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Figure 2: 
A set of splines b0(x), b1(x), …, bK(x) with K = 5. (A) Piece-wise linear spines in the form 

of tents (solid) or sticks (dashed). Each basis function characterizes a particular temporal 

interval centered on a knot except for the two end points. Although illustrated to cover 

an overall span of 10 s through a linear combination of these bases, the number of knots 

can be adjusted to accommodate any duration based on temporal resolution and model 

complexity. This type of basis function is used in neuroimaging software packages for 

individual-level modeling. (B) Thin plate splines. Unlike other smoothing splines (e.g., 

natural cubic splines), each of the thin plate splines spans the entire duration and is not tied 

to a specific knot; moreover, each thin plate incrementally adds more complexity. Intuitively, 

the first two bases, b0(x) and b1(x), capture the overall mean and linearity, respectively, 

while the rest catch the extent to which there is a nonlinear relationship.
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Figure 3: 
Comparisons of fitting BOLD response data. (A) A hemodynamic response (in units of 

percent signal change), sampled at 14 points (empty circles) with a time resolution of 

1.25 s, was estimated from an experimental participant through a regression model. The 

sampled values can be viewed with linear piecewise interpolation (dashed line). These points 

have a “jagged” appearance, even though they are sampled from a presumably smooth 

HRF. (B) Fitting the data with polynomials introduces some smoothness but is also usually 

challenging: even though higher-order polynomials fit better to the original data, they may 

poorly make out-of-sample predictions and introduce extraneous features. (C) Modeling the 

HRF with smooth splines (e.g., thin plates) intends to achieve a counterbalance between 

fitting and predictive accuracy.
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Figure 4: 
Statistical comparison of main effects and interactions among the three modeling 

approaches. Overlay coloration shows χ2(2) values; transparent thresholding at p = 0.01 

here and below corresponds to χ2(2) = 9.2. The three different axial slices (rows from the 

top, downwards) at Z = 49, 25, and 4 are selected to illustrate the statistical evidence 

comparisons across the modeling approaches (columns) for, respectively, differences 

between groups and conditions, and the group-by-condition interaction.
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Figure 5: 
Case A: roughly compatible statistical evidence, but with important differences in effect 

estimates. Group differences are shown for the incongruent condition at (X,Y,Z) = (39, 29, 

56) in the left postcentral gyrus. (top row) All three approaches showed strong statistical 

evidence for the presence of a group difference. (bottom row) The effect estimation of 

group difference differs importantly across methods. In each panel, vertical bars and shaded 

bands indicate standard error. As the estimated HRFs are largely similar to the canonical 

version, the estimated group contrast (0.15±0.03) from canonical HRF (first column) is 

roughly compatible with the HRF peak differences from the sampled and smooth HRF 

estimates. However, as the canonical HRF assumes a peak at 5 s, slightly later than what was 

revealed through HRF estimation, it substantially underestimated effects for both groups. 

Anticipation effects occurred about one TR before stimulus onset as illustrated by the HRF 

estimation approaches. HRFs for the other condition (BP con, and HV con) and neighboring 

voxels shared similar profiles (not shown here).
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Figure 6: 
Case B: weaker statistical evidence by the canonical HRF compared to the HRF estimation 

approaches. The effect of focus is the group difference in HRF in the incongruent condition. 

The voxel at the cross-hair (X, Y, Z) = (56, 22, 11) is located in the left posterior insula. 

Vertical bars and shaded bands indicate standard error. As the estimated HRFs peaked close 

to what the canonical HRF assumes (i.e., 5 s), no underestimation of peak height occurred 

for either group, and the estimated group contrasts from the canonical HRF (first column) 

were roughly compatible with the HRF peak differences estimated via sampled and smooth 

HRFs. However, as the group difference (0.04±0.04) is much less than the case (0.15 ± 

0.03) in Fig. 5, the canonical HRF fails to show strong statistical evidence. In comparison, 

the characterization of the HRF shape through sampled and smooth HRFs provided strong 

statistical evidence for the presence of group difference. The other two HRFs (BP con, and 

HV con) and neighboring voxels share a similar HRF pattern (not shown here).

Chen et al. Page 36

Neuroimage. Author manuscript; available in PMC 2024 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7: 
Case C: failure of the canonical HRF to capture BOLD responses resulting in an 

incorrect sign of effect estimation. The focal effect is the group HRF difference in the 

incongruent condition. The voxel at the cross-hair (X, Y, Z) = (−7, −52, 18) is located 

in the right medial frontal gyrus. Each vertical bar or shaded band indicates one standard 

error. The estimated HRFs had a small to negligible overshoot with a relatively large 

undershoot, which is dramatically different from the assumed HRF. Thus, the canonical 

approach failed to accurately capture the group difference in peak height. In comparison, 

morphological characterization through HRF estimation provided strong statistical evidence 

for the presence of a group difference. The other two HRFs (BP con, and HV con) and 

neighboring voxels shared a similar HRF pattern (not shown here).
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Figure 8: 
Statistical evidence for the presence of whole-brain BOLD response. The effect of focus is 

the congruent condition for the HV group. The voxel at the cross-hair (X, Y, Z) = (−28, 22, 

32) is located in the right cerebral white matter on the axial slice. Each vertical bar or shaded 

band indicates one standard error. The BOLD response duration in white matter appeared to 

be longer than other regions in the brain. The other three HRFs (HV inc, BP con, and BP 

inc) and neighboring voxels shared a similar HRF pattern (not shown here). Strong evidence 

from both sampled and smooth HRFs indicates BOLD fluctuations cross the brain under the 

congruent condition. However, the canonical approach lacked sensitivity to detect effects in 

some regions (not colored) due to a close to zero or even negative magnitude estimate based 

on misaligned peak location and peak/nadir ratio. Fig. 9 shows several HRF shape properties 

for this same HV group’s congruent condition (see the fourth column for this Z = 32S slice); 

the associated peak magnitudes were typically nonzero but quite small in white matter.
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Figure 9: 
Examples of cross-brain variability of HRF shape features (six axial images, image 

left=brain left). Five key morphological properties are computed from the estimated HRFs 

at the population level and are shown for the HV group under the congruent condition 

with colors coding their respective magnitude: peak magnitude, nadir magnitude, log of 

the peak/nadir magnitude ratio, time-to-peak, and time-to-nadir. These quantities represent 

major features of interest in the HRF, and may not be exhaustive or exclusive; one might 

make analogy to diffusion tensor imaging (DTI), where interpretable scalar parameters 
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of geometric features of interest are often examined (such as mean diffusivity, fractional 

anisotropy, etc.) in addition to the complete tensor set itself. “Empty” voxels in the first row 

show where the peak height was negligible, and in the second row, where the undershoot 

depth was close to 0. Several properties vary by an order of magnitude or more. Blue 

regions in the peak/nadir ratio panel show where the undershoot depth was greater than the 

overshoot peak. Non-green colors in the time-to-peak panel show where the actual HRF 

peak occurred more than 1 s away from the canonical HRF’s assumed 5 s.
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Table 1:

HRF morphological features considered.

Potential HRF Features Units or characterization

overshoot presence/absence

(overshoot) peak magnitude, height BOLD % signal change

(overshoot) peak location, time-to-peak, peak timing seconds

overshoot width: duration, full-width at half-max (FWHM) seconds

undershoot presence/absence

(undershoot) nadir BOLD % signal change

(undershoot) nadir location, time-to-nadir, nadir timing seconds

undershoot width: duration or FWHM seconds

nadir/peak ratio %

overall duration seconds

initial dip presence/absence
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Table 2:

Comparisons among different HRF modeling assumptions.

Canonical HRF Sampled HRF Smooth HRF

fixed features: total duration, time-to-peak, overshoot width, time-to-nadir, 
undershoot width, peak magnitude, peak/nadir ratio, curvature

fixed total duration fixed total duration, assumed 
smoothness

Neuroimage. Author manuscript; available in PMC 2024 August 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chen et al. Page 43

Table 3:

Comparisons of properties among different HRF modeling approaches.

Individual level

Canonical HRF Sampled HRF Smooth HRF

shape assumption: (a priori) fixed adaptive, data-driven

basis: Gamma variates deconvolution with piecewise linear splines (e.g., TENT, FIR)

dimension: scalar (0D) vector (1D) of equally spaced samples

trial-level effects: possible difficult

Population level

Canonical HRF Sampled HRF Smooth HRF

dimension: scalar (0D) vector (1D) of equally spaced samples smooth curve (1D)

interpretability: high: signed peak magnitude moderate: detailed shape features, but relies on visual examination

robustness: low: inflexible and vulnerable to 
under-fitting

moderate: adaptive but vulnerable to over-fitting high: adaptive and regularized
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