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Abstract

Field-of-view (FOV) tissue truncation beyond the lungs is common in routine lung screening 

computed tomography (CT). This poses limitations for opportunistic CT-based body composition 

(BC) assessment as key anatomical structures are missing. Traditionally, extending the FOV of 

CT is considered as a CT reconstruction problem using limited data. However, this approach 

relies on the projection domain data which might not be available in application. In this work, 

we formulate the problem from the semantic image extension perspective which only requires 

image data as inputs. The proposed two-stage method identifies a new FOV border based on the 

estimated extent of the complete body and imputes missing tissues in the truncated region. The 

training samples are simulated using CT slices with complete body in FOV, making the model 

development self-supervised. We evaluate the validity of the proposed method in automatic BC 

assessment using lung screening CT with limited FOV. The proposed method effectively restores 

the missing tissues and reduces BC assessment error introduced by FOV tissue truncation. In 

the BC assessment for large-scale lung screening CT datasets, this correction improves both the 

intra-subject consistency and the correlation with anthropometric approximations. The developed 

method is available at https://github.com/MASILab/S-EFOV.
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1. Introduction

Computed tomography (CT) assessment of body composition (BC) has the advantage of 

clear separation of adipose tissue, muscle, and organs (Thibault et al., 2012). CT-based 

approaches are particularly beneficial as CT examinations are often already available 

as a common imaging study conducted for various clinical indications, allowing for 

“opportunistic” assessment of BC which requires no additional examination procedure 

(Pickhardt et al., 2021; Pishgar et al., 2021; Pickhardt, 2022). Chest low dose computed 

tomography (LDCT) is the standardized routine practice in lung cancer screening due to 

its high sensitivity for nodule detection and malignancy risk evaluation despite the lowered 

radiation exposure, making it an attractive modality for opportunistic BC analysis for the 

lung cancer screening population (Krist et al., 2021). Prior studies have demonstrated the 

feasibility of using cross-sectional areas measured on single or multiple cross-sectional 

slides in abdominal or thoracic CT as surrogate markers for whole body compositions (Shen 

et al., 2004; Mathur et al., 2020; Troschel et al., 2020; Best et al., 2022; Bridge et al., 

2022). However, the labor-intensive nature of manual (or semi-automatic) annotation is a 

major roadblock for both population scale evaluation and routine clinical reporting. For this 

reason, artificial intelligence-based approaches have been introduced for fully automatic BC 

assessment in several recent studies (Bridge et al., 2018; Lenchik et al., 2021; Magudia et 

al., 2021; Weston et al., 2019; Xu et al., 2022).

As BC assessment is not among the primary clinical indications for routine lung cancer 

screening CT examinations, certain imaging limitations may exist. For instance, tissue 

truncation caused by limited field-of-view (FOV) is a well-known issue for BC assessment 

using thoracic CT (Troschel et al., 2020). In lung cancer screening, the imaging acquisition 

protocol may even intentionally limit the FOV to increase the imaging quality in the lung 

region (Gierada et al., 2009; Kazerooni et al., 2014; American College of Radiology, 2022). 

In a prior study (Xu et al., 2022), the authors introduced a morphology based cross-sectional 

FOV truncation severity evaluation index and revealed that up to 96.1% of scans in the 

CT arm of National Lung Screening Trial (NLST) were associated with significant tissue 

truncation caused by FOV limitation. Even though we observed a lower rate (69.4%) of 

severe FOV limitation in a recently acquired in-house lung screening program, the issue 

was still frequent enough to preclude consistent automatic BC assessment application. Fig 

1 shows typical FOV limitation-caused tissue truncation in lung screening LDCT and the 

introduced shifts in BC assessment. Several studies have opted for selective assessment 

of regions fully visible in FOV, e.g., using pectoralis muscle or paraspinous muscle as 

surrogate for muscle measurement (Bak et al., 2019; Gazourian et al., 2020; Lenchik et 

al., 2021; Pishgar et al., 2021). However, evidence suggests that the regional evaluation can 

insufficiently represent whole-body assessment (Kim et al., 2016; Troschel et al., 2020). 

In additional, significant portions of available BC information in the CT images could be 

ignored following this approach.
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Extending the FOV to recover the missing tissues provides an alternative solution for 

BC assessment with limited FOV CT. Traditionally, the FOV extension of CT image was 

considered as an image reconstruction problem with incomplete projection data (Ogawa et 

al., 1984). When the object exceeds the effective data collection region, also known as the 

scan FOV (SFOV), of the CT scanner, the object will be truncated in the reconstructed 

CT image, and significant increase in image intensity near the FOV borders will appear 

at the truncated locations, which is commonly referred as the “cupping” artifact (Ruchala 

et al., 2002). Several earlier works employed heuristic extrapolation methods to extend the 

data in projection domain (Ohnesorge et al., 2000; Hsieh et al., 2004; Sourbelle et al., 

2005). Recently, deep learning-based approaches have been proposed to further improve the 

truncation correction, operating on either the projection domain (Ketola et al., 2021), or a 

combination of image and projection domains (Fournié et al., 2019; Huang et al., 2021). 

However, the projection data that are required by these methods might not be available in 

many application scenarios. Typically, in retrospective studies where the data acquisition 

is already completed, only the reconstructed data in the image domain are stored and 

transferred. In addition, the FOV truncation in lung screening LDCT is mainly caused by 

the reconstruction FOV (RFOV) and display FOV (DFOV), or a combination of both, where 

the image intensity near the FOV borders can still be faithfully reconstructed from the 

projection data collected in SFOV. This is mainly a result of the intended restriction of the 

output CT FOV where the adopted SFOVs in practice are usually the same as those used in 

conventional full-sized chest CT, e.g., 500 mm in diameter (Gierada et al., 2009; Troschel et 

al., 2020). As a result, the cupping artifacts are rare in lung screening LDCT. This simplifies 

the FOV extension for these CT images as such it can be solved as an image completion 

problem.

Image completion refers to the process of filling-in target regions with contextual plausible 

contents based on the semantic information provided by the remaining of the image 

(Iizuka et al., 2017). Convolutional Neural Network (CNN) architectures are widely used 

in modern image completion models with potential to generate realistic imaging contents 

(Iizuka et al., 2017; Isola et al., 2017; Li et al., 2020; Liu et al., 2018; Nazeri et al., 

2019; Pathak et al., 2016; Yu et al., 2019). The models are typically developed in a self-

supervised manner, where the input and ground-truth data pairs are generated by applying 

centrally located square (Isola et al., 2017; Pathak et al., 2016), or randomly generated 

(Isola et al., 2017; Li et al., 2020; Liu et al., 2018) corruption patterns on raw images. 

In the medical imaging domain, the technique has shown its capability of generating 

anatomically consistent structures, and has been used, for example, to remove lesions or 

unwanted markers to enhance downstream analysis including registration, segmentation, or 

classification (Armanious et al., 2020; Kang et al., 2021; Shen et al., 2021). Compared to 

the inpainting tasks, the extension of the original image boundary, or outpainting, poses 

additional challenges as less information are provided as boundary conditions. Though 

several studies have demonstrated promising results in extending the image boundary of 

natural images (Krishnan et al., 2019; Wang et al., 2019), it is still an under-explored task to 

achieve anatomically consistent FOV extension for medical images.

In this work, we sought to solve the CT FOV extension problem in the image domain and 

formulated it as a semantic image extension task. A two-stage procedure was designed 
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to achieve fully automatic slice-wise FOV extension of lung screening LDCT. In the 

first stage, the bounding box covering the entire body region was predicted, which 

provided an estimation for the appropriate extension ratio of the raw FOV. In the second 

stage, the truncated anatomical structures in the region outside of initial FOV region 

were automatically generated. To provide training samples, we generated synthetic FOV 

truncation cases using CT slices without tissue truncation. Unlike the randomly generated 

corruption patterns commonly used in current literature, this simulation was based on 

domain knowledge of FOV determination during the CT acquisition procedure. To evaluate 

the validity of the developed method in real application, we employed a prior developed 

automatic BC assessment pipeline for lung cancer screening LDCT (Xu et al., 2022). 

We evaluated the proposed semantic FOV extension method on both synthetic cases and 

real-world lung cancer screening LDCT with FOV truncation. The evaluation was based 

on human perceptual studies conducted with trained clinical experts and assessments of the 

methods’ capability in correcting the BC measurement shifts caused by FOV truncation. We 

evaluated the effectiveness of three different general-purpose image completion methods 

under the proposed framework. In addition, we characterized the generalizability and 

limitations of the proposed method on chest CT scans acquired with a broader spectrum 

of clinical indications beyond lung cancer screening.

2. Method

To extend the FOV of an image, there are two questions need to be answered: (1) how to 

determine the new image border; and (2) how to determine the new contents in the extended 

region. As opposed to the border extension task for natural images, where the expected 

extension space may be arbitrary and usually need to be specified manually (Wang et al., 

2019), the actual anatomical boundary of the human body can be roughly estimated even 

with partially visible anatomy. With this consideration, we designed a two-stage framework 

for semantic FOV extension by (1) extending the FOV border based on the estimated 

extent of the complete body; then (2) imputing missing tissue in the truncated region of the 

boundary extended images. Fig 2 shows a combined overview of the method, including the 

workflow of each stage and its integration with the BC assessment pipeline.

2.1. Two-stage Framework for Semantic FOV Extension

2.1.1. FOV Border Extension—We formulated the task to identify the extent of the 

complete body as a regression problem to estimate the axis-aligned minimum bounding box 

(denoted “bounding box”) of the untruncated body region. The model G took a slice x with 

limited FOV-caused body tissue truncation as input and outputted an estimation G x  for 

bounding box coordinates of the complete body. For the training data, we used the FOV 

truncation slice and ground-truth body bounding box data pairs simulated using the slices 

with the complete body in FOV (detailed in Section 2.2). To guide the model training, we 

employed the generalized intersection over union (GIoU) loss introduced in Rezatofighi et 

al. (2019). The GIoU between two arbitrary convex shape A and B is defined as

G A, B = A ∩ B
A ∪ B − C ∖ A ∪ B

C , (1)
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where C is the smallest enclosing convex object of A ∪ B. ·  represent the number of 

elements in a set. The first term, which follows the definition of conventional intersection 

over union (IoU), assesses the degree of overlapping, and the second term evaluates the 

normalized empty space between the two regions.

This combined representation provides an approximation for IoU, while overcoming the 

difficulties of IoU as an objective for model training. With x, b  demoting the data pair 

of input CT slice and ground-truth body bounding box coordinates, we defined our GIoU 

objective as

ℒGIoU G = E x, b G ℬ b , ℬ G x , (2)

where ℬ ·  represented the region defined by predicted or ground-truth bounding-box 

coordinates. To further accelerate and stabilize the training process, we also included the 

conventional mean squared error (MSE) between the predicted and ground-truth bounding 

box coordinates as the second objective:

ℒMSE G = E x, b ∥ b − G x ∥2 . (3)

The final loss function was given by a combination of the MSE term and the GIoU term, 

which was in the form of

ℒtotal = ℒMSE + λℒGIoU. (4)

Fig 3 (B) shows an overview of training of this module, and Fig 2 (B) shows the integration 

of the developed module with the overall workflow.

With the predicted bounding box of the complete body, the FOV border of the raw image 

was extended to fully cover the estimated extent of the complete body. Since in most 

application cases the body region locates approximately at the center of FOV, we simplified 

the FOV border extension to symmetric padding which was controlled by an estimated 

extension ratio

R = R0 · Rest, (5)

where Rest was the extension ratio using which the extended FOV can exactly cover the 

predicted bounding box. As prediction errors for the body extent bounding box always exist, 

Rest alone may fail to cover the complete actual body extent for a significant proportion of 

cases in application. For this reason, we introduced the empirically determined multiplier 

R0 > 1  such that the extended FOV can successfully cover the body extent for most cases. 

Based on the estimated extension ratio R, the input image was symmetric padded, then 

resized to the dimension of input image. The physical dimensions of image pixels were 

scaled by factor R correspondingly.

2.1.2. Image Completion—The target of the second-stage model was to reconstruct the 

missing tissues outside of FOV region. The model took the CT slice with extended image 

border and optionally the FOV region mask as inputs, and outputted a predicted image with 
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missing tissue imputed. In the training phase, the FOV region, input corrupted slice, and 

ground-truth uncorrupted version were simulated using CT slice with complete body in FOV 

(detailed in Section 2.2). During the inference phase, the output image generated by the 

first stage was directly forwarded to the second-stage model. The FOV region can be given 

by the initial FOV mask in the original image space with symmetric padding and resizing 

based on the same extension ratio defined in Eq (5). Fig 3 (C) shows an overview of the 

training of this module. Fig 2 (C) demonstrated the integration of this module with the 

overall workflow.

In our study, we evaluated three general-purpose solutions for the image completion task: 

pix2pix (Isola et al., 2017), PConv-UNet (Liu et al., 2018), and RFR-Net (Li et al., 

2020). The detailed evaluations of these methods are given in Appendix A. As RFR-Net 

outperformed the other two methods, we used RFR-Net as the default method for the second 

stage in the rest of this study.

2.2. Synthetic Data Generation

In image completion model development, it is a common practice to synthesize the 

corrupted image using uncorrupted raw images by applying a randomly generated free-

form mask. The models are trained to predict the corresponding uncorrupted version 

given the corrupted version as input (Li et al., 2020; Liu et al., 2018). This makes the 

model development self-supervised and easy to scale on a large dataset. Inspired by this 

observation, we designed a synthetic data generation procedure for the development and 

evaluation of the proposed two-stage approach for FOV extension, which consisted of the 

following steps: (1) identification of slices with the complete body in FOV; (2) simulation 

of FOV truncation patterns; and (3) paired data generation. Herein, we assume the regions 

representing body and FOV in the CT images are readily known. The solutions we adopted 

in this study to automatically generate required regional masks are detailed in Appendix B. 

An overview of the synthetic data generation and data workflow for model development is 

demonstrated in Fig 3.

2.2.1. FOV Truncation Severity Quantification—To identify the FOV limitation-

caused tissue truncation and assess the truncation severity, we adopt the Tissue Cropping 

Index (TCI) which was initially introduced in Xu et al. (2022) TCI evaluated the truncation 

severity for the given CT slice by the proportion of artificial body boundary caused by FOV 

truncation in all detected body boundaries. Given the body region mask ℳbody and FOV 

region mask ℳFOV , TCI was defined as

T ℳbody, ℳFOV = ℰ ℳbody ∩ ℰ ℳFOV

ℰ ℳbody
, (6)

where ℰ ·  represented the set of boundary pixels of a 2D binary mask. The TCI value 

ranged from zero to one, with a non-zero value indicating the existence of body tissue 

truncation and a larger value indicating more severe tissue truncation. In our synthetic data 

generation, we used a TCI value of zero to filter out slices with a complete body in FOV. 

At the scan level, we defined the scan TCI as the averaged slice-wise TCI across T5, T8, 

and T10 levels. The TCI value can give an approximated stratification for both slice-wise 
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and scan-wise truncation severity. We empirically setup a four-level system: (1) trace level, 

TCI ∈ 0, 0.15 ; (2) mild level, TCI ∈ 0.15, 0.3 ;; (3) moderate level, TCI ∈ 0.3, 0.5 ;; and (4) 

severe level, TCI > 0.5.

2.2.2. FOV Truncation Pattern Simulation—The following three spatial region 

concepts are closely relevant to the determination of CT FOV:

• Scan Field-of-view (SFOV). The SFOV is the region from which the projection 

data are collected during CT acquisition (Seeram, 2015). The size of SFOV 

is determined by the scanner limitation and can be adjusted based on specific 

application. In lung cancer screening, this parameter is usually set to 500 

mm. The SFOV determines the maximum spatial region that the image can be 

reconstructed.

• Reconstruction Field-of-view (RFOV). The RFOV, or reconstruction circle, is 

the circular region in which the image data is reconstructed from the projection 

domain. RFOV can be equal or smaller than SFOV. In general, reducing RFOV 

can improve the quality of the reconstructed image (Salimova et al., 2022), and is 

a commonly used strategy in lung cancer screening to improve the image quality 

in the lung regions (Gierada et al., 2009; Kazerooni et al., 2014; American 

College of Radiology, 2022). The role of RFOV in the determination of CT FOV 

is visually demonstrated in Fig 4 and Fig 5 (A, the yellow region).

• Display Field-of-view (DFOV). After the reconstruction, a squared region needs 

to be specified, to which the data will be cropped or padded to form the final 

output image. We follow the same notation as in Chapter 3 of Seeram (2015), 

and term this squared region as display field-of-view (DFOV). The DFOV is 

selected to partially or entirely cover the RFOV, which provides a way to 

further adjust the anatomical region to be displayed. The role of DFOV in the 

determination of CT FOV is visually demonstrated in Fig 4 and Fig 5 (A, the 

blue region).

The final CT FOV is determined by the intersection of RFOV and DFOV (Fig 4 and Fig 

5). However, when the object exceeds the SFOV, cupping artifacts can appear near those 

CT FOV borders that are overlapping or close to the borders of SFOV where the truncation 

exist. In our study, we only considered the FOV truncation without the cupping artifacts, in 

consideration of its extremely low occurrence observed in the application in lung screening 

LDCT. A detailed discussion in relevant limitations in terms of generalizability are given in 

Section 4. Two chest CT scans with cupping artifacts identified from a conventional chest 

CT dataset are given in Table C.7.

It is common that parts of the squared DFOV extrude the boundary of the circular RFOV, 

resulting in output image regions without available reconstructed data (Fig 4). In the 

reconstructed images, these “invalid” regions are imputed with a pre-defined value, which 

is controlled by the “Pixel Padding Value (0028, 0120)” under DICOM standard (DICOM 

PS3.3 2016c: Information Object Definitions).
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Depending on the relative size and location between RFOV and DFOV, the FOV truncation 

can present in three distinguishable patterns. Fig 4 shows the typical examples of the 

three major truncation patterns in lung screening CT. In Fig 4 (a), the selected DFOV is 

fully inside the region of RFOV. This generates a slice where all pixels are with valid 

reconstruction value. The artificial body boundaries are located at the edge of the image. In 

Fig 4 (b), the DFOV is selected to exactly match the extent of the RFOV, which leads to a 

slice with all valid pixels located inside the centered reconstruction circular. The artificial 

body boundaries are at the edge of the circular region and inside the image region. Fig 4 

(c) represents a middle status between Fig 4 (a) and Fig 4 (b), with DFOV selected smaller 

than the extent of the RFOV, but not fully covered in RFOV. This gives a truncation pattern 

where artificial body boundaries exist on both the image borders and the internal region as 

arc segments of the reconstruction circular.

We designed a random procedure to generate synthetic FOV truncation patterns simulating 

the FOV truncation in CT acquisition described above (Fig 3, A). First, we specified 

the probabilities of generating each of the three truncation patterns, with Pa, Pb, and P c

corresponding to the probability to generate pattern represented by Fig 4 (a), Fig 4 (b), 

and Fig 4 (c), respectively. A pseudo circular RFOV was generated at the center of input 

image space, with diameter determined by a ratio RRFOV ≤ 1  relative to the full image 

dimension. For type Fig 4 (a), the DFOV was automatically determined as the largest square 

region fit into the RFOV, with location centered at the image center and side length as 

1/ 2 of the diameter of the RFOV. For Fig 4 (b), the DFOV was the bounding box of 

RFOV, with location centered at the image center and side length same as the diameter 

of RFOV. For type Fig 4 (c), a squared DFOV region was selected inside the extent of 

the RFOV with side length specified by a ratio RDFOV ≤ 1  relative to the RFOV diameter, 

and with center location defined by displacement XDFOV , Y DFOV  relative to the image center. 

RRFOV , RDFOV , XDFOV , and Y DFOV  were randomly generated inside a pre-defined range, with 

specific constraints to confine with geometric limitations.

2.2.3. Synthetic Data Pairs—Combining the simulated FOV truncation pattern and CT 

slice with complete body in FOV, we generated the paired synthetic data used in model 

development and evaluation (Fig 3, B and C). To further increase the generalizability of 

the trained model, we applied random scaling, rotation, and translation on the CT slice. 

Corresponding operations were applied on associated binary masks simultaneous. The 

following two groups of data were derived based on this process.

Corrupted-uncorrupted pairs and FOV masks.: The FOV region was defined as the 

intersection of the simulated RFOV and DFOV. The artificial truncation was generated 

by imputing the regions outside this FOV by a predefined value as indication for invalid 

pixels. This truncated slice and the corresponding untruncated version formed the corrupted-

uncorrupted image pair. Combining with the FOV region mask, these data were designed for 

the image complete model development (Fig 3, C).

Ground-truth body bounding box for cropped slice.: The processed CT slices with 

artificial truncation were further cropped at the DFOV, simulating the same process during 
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CT acquisition. The bounding box of the body region was defined as pixel coordinates in 

image space and first identified in the complete image space before the DFOV cropping 

operation. After the cropping, these coordinates were shifted and rescaled to the cropped 

image space, usually resulting in a bounding box extrudes the image border. The cropped 

slice and ground-truth body bounding box in its space formed the training data pair for the 

bounding box prediction model (Fig 3, B).

2.3. Evaluation

The evaluation of synthetic image results is challenging as the commonly used intensity-

based similarity metrics, e.g., L1, L2, PSNR, and SSIM, can lead to a significant preference 

for blurry images (Liu et al., 2018). For this reason, the human perceptual study is 

commonly used as the gold standard to evaluate the output image quality of image 

generative models (Chuquicusma et al., 2018; Isola et al., 2017; Liu et al., 2018; Schlegl 

et al., 2019; Tang et al., 2021b). In addition, anatomical consistency of the synthetic 

contents is critical for medical imaging applications. We proposed to evaluate the anatomical 

consistency of FOV extension results using a previously developed BC assessment tool 

(Xu et al., 2022), with the assumption that a biologically consistent image completion 

algorithm should generate CT slices that can be properly processed by the pre-trained 

segmentation model and reduce the measurement offsets caused by FOV truncation. We 

further integrated the developed FOV extension module into this BC assessment tool and 

evaluated the application validity for CT-based BC assessment under the context of routine 

lung screening.

2.3.1. Body Composition Assessment

Multi-level BC assessment using thorax CT.: Using the cross-sectional BC areas 

measured on axial slices selected at certain landmark as surrogate for whole-body BC 

evaluation is a well-established approach for CT-based BC assessment (Fintelmann et 

al., 2018; Troschel et al., 2019; Mathur et al., 2020). In this study, we followed the 

multi-level approach for thoracic CT introduced in Best et al. (2022), where axial slices 

at the level of the fifth, eighth, and 10th thoracic vertebral bodies (T5, T8, and T10) were 

selected for evaluation. The primary outputs included the accumulated subcutaneous adipose 

tissue (SAT) and muscle areas (cm2) measured at three levels. The measurements can be 

further divided by the height squared to form the muscle and SAT indexes (cm2/m2) for a 

normalized description of the body composition profile regardless of the size of the patient.

Implementation of fully automatic pipeline.: A deep learning pipeline was introduced in 

Bridge et al. (2022) to achieve fully automation of the above method. However, the pipeline 

was developed on chest CT scans of lung cancer patients prior to lobectomy, the protocol 

of which could be significantly different from routine lung screening CT. In Xu et al. 

(2022), we implemented a fully automatic multi-level BC assessment pipeline specifically 

for lung cancer screening LDCT scans with a similar two-stage framework. The pipeline 

consisted of a slice selection module based on a 3D regression model, which identified 

the levels of T5, T8, and T10 vertebral bodies from a CT volume, and a BC segmentation 

module implemented using 2D Nested U-Net (Zhou et al., 2018), which delineated the 

cross-sectional areas corresponding to each BC component. Once the two-stage semantic 
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FOV extension pipeline is developed, it can be integrated as an additional processing module 

after the slice selection module and before the BC segmentation module of the original 

BC assessment pipeline (Fig 2, A). Thus, the final evaluation outputs are the BC indexes 

evaluated on FOV extended slices, providing a correction for measurement offsets caused by 

FOV tissue truncation.

2.3.2. Evaluation on Synthetic Paired Data—We evaluated the performance of the 

developed model on the synthetic paired data generated using untruncated CT slices of 

subjects withheld from the training phase. Only cases generated by T5, T8, or T10 slices and 

with complete lung region in FOV were included to best represent the application scenario. 

In additional to a direct evaluation of pixel-wise difference in Hounsfield Unit (HU) based 

on Root Mean Square Error (RMSE), the following two evaluations were adopted:

Visual Turing test.: To evaluate the quality of synthetic contents, we designed a visual 

Truing test inspired by Chuquicusma et al. (2018) and Schlegl et al. (2019). For a random 

subsample of synthetic cases with moderate or severe truncation (TCI > 0.3), half of the 

cases were generated by the trained pipeline, while the other half were corresponding 

untruncated images of the selected samples. The order of the samples was randomly shuffled 

before presented to two clinical experts to independently classify each case into real or 

synthetic category. We also provided the readers with synthetic FOV pattern used in each 

sample. The mean accuracy and inter-rater consistency were recorded.

Correction of BC measurement shift.: The pretrained BC segmentation model was applied 

to untruncated, synthetic truncated, and reconstructed slices, with the segmentations on 

untruncated slices as ground-truth. We quantitatively evaluated the model’s capability to 

correct the BC assessment shifts caused by FOV truncation. First, the Dice Similarity 

Coefficients (DSC) were used to assess the improvements in agreement with the ground-

truth segmentations. Then, the performance was assessed by the reduction in the shift of 

BC measurements. In addition to measured area (cm2) of SAT and muscle, we included the 

mean attenuation (HU) of each of the considered body composition in the evaluation, in 

consideration of their potential implementation in applications (Pickhardt, 2022).

2.3.3. Evaluation on Lung Screening CT Volumes with Limited FOV—We 

evaluated the effectiveness of the FOV extension method on real lung screening CT 

data with systematic FOV truncation. The evaluation was conducted using the automatic 

multi-level BC assessment pipeline with FOV extension module integrated (Section 2.3.1). 

In application, the FOV extension module was only applied for slices with detected 

FOV tissue truncation (TCI > 0). As the ground-truth BC data were not available 

due to FOV truncation, the evaluation was based on human perceptual study and two 

indirect quantitative assessments: (1) intra-subject consistency; and (2) correlation with 

anthropometric approximations.

Expert review for application validity.: We designed a human perceptual study to evaluate 

the application validity of the pipeline output in BC assessment. The evaluation was based 

on a combined review for the quality of reconstructed images and BC segmentations. 

We formulated a quality score system with nine digital numbers from 1 (exceptional) 
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to 9 (poor). This quality score was further stratified into (1) Succeed – quality score ≤ 

3, for cases only with trivial defect or without any noticeable defect; (2) Acceptable – 

quality score between 4 and 6, for cases with certain defects but still can be included for 

downstream analysis; and (3) Failed – quality score ≥ 7, for cases that should be excluded 

from downstream analysis due major defects Two trained clinical experts were asked to 

independently review each case in a selected cohort. The quality scores were recorded 

together with comments for the identified primary quality issue in each case.

Intra-subject consistency.: Multiple screens (e.g., annually) for the same subject are 

usually conducted in lung cancer screening. Even though the BC profiles for the same 

individual may change over time, the overall correlation between measurements on the 

same subject should be stronger than the correlation between measurements on different 

individuals. However, this intra-subject consistency can be significantly reduced by the FOV 

limitation-caused tissue truncation. Under this assumption, the benefit of the proposed FOV 

extension method can be assessed by the improved overall correlation in BC measurements 

between longitudinal screens.

Correlation with anthropometric approximations.: An anthropometric approximation for 

whole-body fat mass (FM) and fat-free mass (FFM) computed from weight and height was 

given in Kuch et al. (2001). The method was developed by fitting a non-linear relationship 

with Bioelectrical Impedance Analyses results as ground-truth. FFM was expressed as

FFM kg = 5.1 × H1.14 × W 0.41  for men,
5.34 × H1.47 × W 0.33  for women,

(7)

with H and W  representing the height (m) and weight (kg) of the subject, respectively. 

FM was computed by subtracting FFM from the overall mass, i.e., FM (kg) = weight 

(kg) − FFM (kg). FM and FFM indexes (kg/m2) were defined by the estimated FM and 

FFM normalized by height (m) square. The correlation between measured BC indexes and 

anthropometric approximations were usually used to evaluate the validity of CT-based BC 

assessment (McDonald et al., 2014; Pishgar et al., 2021) (muscle index vs. FFM index, 

and SAT index vs. FM index). In our evaluation, we reported the improvement in these 

correlations as evidence in support of the effectiveness of the proposed method.

3. Experiments and Results

In this section, we introduce the data preparation, model development, and evaluation of 

the proposed semantic FOV extension method. Experiments and analyses were conducted 

in Python™ 3.7.4, PyTorch™ 1.9.0, CUDA™ 11.3, and R 4.1.2. The pretrained pipeline is 

available in the form of docker container and can be accessed by following the instructions 

at https://github.com/MASILab/S-EFOV.

3.1. Lung Screening CT Dataset

In this study, we included two lung cancer screening CT datasets.
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CT arm of National Lung Screening Trial (NLST).—NLST (Schaapveld et al., 2011) 

is the largest randomized controlled trial to evaluate the effectiveness of LDCT in lung 

cancer screening. 53,454 eligible participants were enrolled in the program from August 

2002 through April 2004. 26,722 were randomly assigned to the CT arm. Longitudinal 

data are available, with up to three annual screens for those who continuously enrolled 

and have not been diagnosed with lung cancer during previous screens. The anthropometric 

measurements, including height and weight, were self-reported at the time of enrollment 

right before the first screen. In this study, we randomly sampled 1,280 subjects from the CT 

arm of NLST, with 3,586 available LDCT scans in total.

Vanderbilt Lung Screening Program (VLSP).—VLSP (https://www.vumc.org/

radiology/lung) is an on-going LDCT-based lung cancer screening program conducted at 

Vanderbilt University Medical Center. In this study, we used the VLSP data to develop our 

two-stage pipeline as more untruncated cases are available. This included 1,490 CT scans 

of 887 subjects enrolled since 2013. All data were de-identified and acquired under internal 

review board supervision (IRB#181279).

The demographic and imaging protocol statistics of these two study cohorts are summarized 

in Table 1. The smaller DFOV in NLST could be explained by the strict requirement on the 

FOV size in the NLST imaging protocol, where including unnecessary amount of additional 

body tissue beyond the lung was even considered as a type of imaging quality issue (Gierada 

et al., 2009; Schaapveld et al., 2011). Although this restriction might not be strictly enforced 

by later lung screening programs equipped with more advanced scanner platforms than 

NLST (e.g., minimum requirement for 16-slice MDCT), optimization of the FOV to the lung 

field for each patient is still recommended (Kazerooni et al., 2014; American College of 

Radiology, 2022).

3.2. Data Preparation

3.2.1. Image Quality Review—We reviewed all selected lung screening LDCT scans 

and excluded cases with severe imaging artifacts. The type of imaging artifacts included: 

incomplete imaging data, imaging data corruption, beam hardening, cupping artifact, severe 

imaging noise, and non-standard body positioning. For all qualified images, the FOV mask, 

lung mask, and body mask were identified using the procedures described in Appendix B. 

We further reviewed the generated region masks and excluded those cases with significant 

defects. This combined review process filtered out 5 (0.3%) scans of the VLSP cohort and 

74 (2.1%) scans of the NLST cohort in total. We identified one VLSP scan and two NLST 

scans that are associated with cupping artifacts. This accounted for 0.06% in all included 

LDCT scans. For all included scans, the levels of T5, T8, and T10 were estimated using the 

vertebral level identification module developed in Xu et al. (2022). The per-slice TCI values 

were calculated based on Eq (6).

3.2.2. Candidate Slice Identification—We used the untruncated slices in the VLSP 

dataset to generate the synthetic data. As the intended application was focused on the BC 

assessment using the T5, T8, and T10 axial slices, we first defined an inclusion range to 

cover those slices with anatomy close to these locations. Briefly, we defined a linear body 
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part regression (BPR) score for each slice based on the relative location to T5 and T10 

levels, with T10 level of BPR score 0 and T5 level of BPR score 1. Then, all slices with BPR 

scores between −0.2 and 1.2 were marked as in-range slices. Among the in-range slices, we 

further filtered out those with zero TCI value, which indicated no tissue truncation in these 

slices. This process filtered out 89,992 slices from 1,018 CT volumes across 669 unique 

subjects. Among these subjects, we random sampled 549 subjects to form a training cohort, 

with 71,319 candidate slices in total. Within the remaining subjects, we identified those with 

at least one T5, T8, or T10 slice in the candidate slice set, and split them into a 60 subject 

validation cohort, and a 60 subject testing cohort. For the validation and testing cohort, we 

only considered the T5, T8, and T10 slices, which led to 148 slices for validation and 145 

slices for testing.

3.2.3. Synthetic Data Pairs—For preprocessing of the CT slices, the extraneous 

information outside the identified body mask (Section 3.2.1 and Appendix B), e.g., the 

scan tables and clothes, were removed by replacing the intensity of pixels with HU intensity 

of air. Then, the intensity window [−150, 150] (HU) was applied to highlight relevant 

tissues. The resulting slices, together with pre-identified body region masks, were further 

resized to 256 × 256 before the synthetic data generation procedure. We adopt the following 

configuration for the synthetic data generation procedure introduced in Section 2.2. The 

probability to generate three types of truncation patterns Pa, Pb, and P c, were set to 0.5, 0.3, 

and 0.2, respectively, with emphasis on the first two types of truncation patterns. RRFOV  was 

uniformly sampled in range [0.6, 0.9], which determined the size of RFOV. For the first two 

types of truncation patterns, the DFOV was automatically identified once RFOV was given. 

For the third type pattern generation, the RDFOV  was uniformly sampled in range [0.7, 1.0], 

which determined the size of DFOV. The offsets on two dimensions relative to the image 

center, XDFOV  and Y DFOV , were sampled in − D/2, D/2 , where D = 256 · 1 − RDFOV · RRFOV

was the dimension difference between the RFOV diameter and DFOV side length. This 

guarantees the generated DFOV contained inside the extent of RFOV. On the CT slice 

augmentation, the random scale ratio was sampled between 0.7 and 1.0. The maximum 

rotation degree was set as 15°. The maximum translation in ratio of the image dimension 

was 0.1 in the anterior-posterior direction and 0.2 in the transverse direction. As a result of 

this random augmentation of raw CT slice, the body region may extrude the original image 

border in some cases, resulting in inaccurate body bounding box assessment. We excluded 

these cases for the training of the body bounding box estimation model, while keeping them 

for the image completion model development.

In our implementation, the randomized synthetic sample generation procedure was 

integrated into the model training process and applied to each training CT slice when it 

was loaded. In contrast, the paired data used in validation and testing are pre-generated and 

specifically configured. Briefly, we generated 1,000 samples for each slice using the same 

randomized synthetic data generation procedure for training data. Cases with body regions 

that extruded the image boundary were excluded. To best represent the application situation 

in lung cancer screening, we excluded cases with incomplete lung regions. To balance the 

data regarding different truncation severity, we set the limit of maximum five cases for 
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each severity levels defined in Section 2.2 for each slice. This resulted in 2,600 samples for 

validation and 2,657 samples for testing.

3.3. Pipeline Development

The development of the models in the proposed two-stage pipeline was based on the same 

sets of training and validation data. The models were first trained on the training set, and the 

best epoch was selected as the one with the best performance on the validation set. For all 

models, the input slices were normalized from [−150, 150] to range [−1, 1], with non-FOV 

region imputed with value 0.

FOV border extension.—We implemented the body bounding box prediction model 

using ResNet-18 pre-trained on ImageNet as backbone, with the last layer replaced with a 

fully connected layer with four output channels representing the pixel-space coordinates of 

the bounding box. We empirically set the weight λ to 1500 to balance the MSE term and 

GIoU term in loss function (Eq 4). The model was trained with batch-size of 20, optimized 

using Adam optimizer with weight decay 1 × 10−4. The learning rate was set as 2 × 10−3. 

The model was trained for 200 epochs in total. The trained model achieved the performance 

of 0.976 ± 0.015 in IoU on testing samples. With the predicted bounding box, the extension 

ratio R defined as in Eq (5) was determined to extend the image border symmetrically 

to cover the estimated body region. Using the estimated Rest alone (set R = Rest in Eq 5) 

generated extended FOV covering complete body region only for 78.3% of cases in the test 

set, indicating the necessity of the extra extension R0. In our evaluation, a 5% extra extension 

R0 = 1.05  was able to consistently produce extended FOV border that covers the complete 

body region, with 98.4% success rate on the test set.

Image completion.—For image completion stage, we evaluated the three published 

methods mentioned in Section 2.1.2. The detailed training configurations are given in 

Appendix A.

3.4. Evaluations and Results

3.4.1. Evaluation on Synthetic Paired Data—We evaluated the developed FOV 

extension models on pre-generated synthetic paired data following the methods described 

in Section 2.3.2.

Visual Turing test.: We randomly sampled 100 synthetic samples with TCI > 0.3 from the 

withheld testing dataset (Section 3.2). We prepared the data following the practice of visual 

Turing test (Section 2.3.2). Two trained clinical experts independently classified each case 

into fake or real category. The mean accuracy of the two raters was 0.71, and inter-rater 

consensus was 0.68. On 35 out of 50 synthetic cases, at least one rater identified the case 

properly. These cases were associated with slightly higher TCI value (indicating more severe 

truncation) comparing to the rest of the cases (0.47 ± 0.11 vs. 0.42 ± 0.08). Fig 8 demostrate 

the results of three example cases selected from the synthetic group.

Correction of BC measurement shift.: Fig 6 shows the results on two samples for 

qualitative evaluation. Both samples were generated using slices without tissue truncation 
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(zero TCI value). The BC assessment results on untruncated slice were considered as the 

ground-truth measurements. The measurements on truncated slice and FOV extended slice 

were compared against the ground-truth to evaluate the effectiveness of the correction. In 

Fig 7, we use Bland-Altman plot to evaluate the capability of the method to systematically 

correct the underestimation of area (cm2) in the BC assessment caused by FOV truncation. 

Table 2 shows the effectiveness of the image completion method in restoring missing body 

tissues in the truncated regions, which was assessed by pixel-wise RMSE, DSC, and BC 

measurements including area (cm2) and attenuation (HU) of SAT and muscle. The metrics 

to characterize the difference between the ground-truth assessment and assessment without 

correction are included to provide a reference.

3.4.2. Evaluation on Real FOV Truncation Scans—In addition to the evaluation of 

synthetic FOV truncatic samples, we evaluated our pipeline on real lung cancer screening 

LDCT scans following the methods described in Section 2.3.3. Table 3 shows the statistics 

of the scan-wise truncation severity levels and the anthropometric characteristics of each 

level in the two included the lung screening LDCT datasets. NLST scans were associated 

with more severe truncation compared to VLSP scans, which consistent with the even 

restricted DFOV size in NLST compared to VLSP (Table 1). Scans with more severe 

truncation were associated with higher weight, BMI, and FM index in both of the datasets. 

For LDCT scans in both VLSP and NLST, we obtained the BC assessment results using 

both the original version of BC assessment pipeline developed in Xu et al. (2022) and the 

enhanced version with the FOV extension module integrated to correct the measurement 

offsets caused by FOV truncation.

Expert review for application validity.: We randomly sampled 100 NLST scans with 

moderate to severe tissue truncation (TCI > 0.3) and presented the FOV extended images 

and final segmentation masks to two trained clinical experts who independently reviewed 

and rated the quality of the results for downstream application. None of the cases were 

rated as Failed (quality score ≥ 7). 39 cases were labeled as Acceptable, with quality score 

between 4 and 6, by at least one rater and with at least one clear description for identified 

issue. Even with identifiable defects, these results were considered as valid for downstream 

analysis by both raters. Those labeled as Acceptable were associated with slightly higher 

TCI value (more severe truncation) comparing to those considered Succeed (0.46 vs. 0.43 

± 0.10). BMI distributions were similar between those labeled as Acceptable (28.7 ± 5.8) 

and those labeled as Succeed (28.6 ± 4.7). The identified defect include: (1) unrealistic 

scapula shape, 24 cases; (2) unrealistic intensity in subcutaneous region, 4 cases; (3) body 

extrude the image border, 2 cases; and (4) unrealistic breast implant shape in female, 1 

case. However, the inter-rater consistency was poor, with Intraclass Correlation Coefficient 

between the two raters being 0.15. By categorizing the ratings into Failed (score ≤ 3) and 

Acceptable (score > 3), the Cohen’s Kappa Coefficient was 0.09 (none to slight agreement) 

between the two raters. The distribution of rating scores given by the two raters is presented 

in Fig 9. Fig 10 shows the pipeline results, quality scores, and review comments on four 

cases included for this quality review.
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Intra-subject consistency.: For NLST, we identified all longitudinal pairs, e.g., the baseline 

screen and second follow-up screen of the same subject, which resulted in 3,110 pairs. As 

the time distance between two consecutive screens for the same subject was approximately 

fixed at one year based on NLST protocol, we put the identified pairs into two categories: 

1-year-pair (2,081 pairs) and 2-year-pair (1,029 pairs). In consistency with NLST, we 

identified those longitudinal pairs in VLSP with time distance between 0.5 and 1.5 years and 

categorized these pairs as 1-year-pair (505 pairs), while longitudinal pairs with time distance 

between 1.5 and 2.5 years were identified and categorized as 2-year-pair (191 pairs). The 

longitudinal pairs were further stratified into different truncation severity level, where the 

pair-wise severity level was defined as the maximum severity level of the two paired scans. 

The correlations between the measurement results on two longitudinal scans were assessed 

using Spearman’s rank correlation coefficients with and with FOV extension. Statistical 

significance in difference between the correlations with and with FOV extension were 

assessed by the method of Silver et al. (2004), which compared two dependent correlations 

with non-overlapping variables. The results are summarized in Table 4.

Correlation with anthropometric approximation.: We obtained the anthropometric 

approximations of FFM, and FM indexes (kg/m2) based on the formulas described in 

Section 2.3.3. For VLSP, the required height and weight data were obtained before each 

of LDCT screen, with 1,246 scans with available corresponding anthropometric metrics. 

For NLST, the anthropometric data were obtained at enrollment right before the baseline 

screens. For this reason, the effectiveness of the approximation in NLST was expected to 

be strongest for the baseline screens and decreased for the follow-up screens. Thus, we 

categorized the NLST scans based on screen years: 1) Screen-0 (1,232 scans); Screen-1 
(1,158 scans); and Screen-2 (1,112 scans). Screen-(0, 1, 2) represent the baseline screen, 

first follow-up screen, and second follow-up screen, respectively. We further categorized 

the scans by truncation severity levels. We assessed the correlation between measured 

SAT index and FM index and the correlation between muscle index and FFM index 

using Spearman’s rank correlation coefficients with and with FOV extension. Statistical 

significance in difference between the correlations with and with FOV extension were 

assessed by the method of Hittner et al. (2003), which compared two dependent correlations 

with overlapping variables. The results are summarized in Table 5.

4. Discussion

Effectiveness of semantic FOV extension.

In this work, we proposed a two-stage framework for semantic FOV extension of lung 

screening LDCT scans with limited FOV. For the first stage, our results indicated the trained 

model can successfully identify the bounding box of the complete body region given CT 

slice with limited FOV (third column of Fig 6). With an empirical extension ratio multiplier 

R0 = 1.05 , the model can reliably extend the FOV border as such it can cover the complete 

body region (Section 3.3). For the second stage, the proposed training strategy produced 

models that could effectively predict the missing tissues in truncated regions (Fig 6, Fig 

10, and Fig A.11). The proposed training strategy was effective for all three considered 
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general-purpose image completion methods. A detailed comparison of the performance of 

these methods is given in Appendix A.

In the visual Turing test, the mean accuracy of the two experts to discriminate synthetic 

image from the real image was only 0.71, even on the most difficult cases (TCI > 0.3) and 

with hints of the potential synthetic region of the image. The effectiveness of the image 

completion was confirmed by the reduction in pixel-wise RMSE (Table 2). The anatomical 

consistency of the predicted contents was further confirmed by the BC assessment result, 

including the improved agreement in BC segmentation with original slice (Fig 6,Table 2 and 

Fig 10) and the correction for the BC assessment offset caused by FOV truncation (Table 2 

and Fig 7).

Combining these observations, the proposed method successfully extended the FOV border 

and generated anatomical consistent contents in truncated regions.

Application validity for CT-based BC assessment in lung cancer screening.

To evaluate the application validity of the proposed method, we integrated the trained 

semantic FOV extension pipeline into a previously developed BC assessment pipeline as 

one additional processing module. The expert review of the application validity indicated 

that the results were reliable even on scans with relative severe FOV tissue truncation (TCI 

> 0.3). In certain cases that were associated with partially or entirely missing scapula, the 

reconstructed scapula bone structures could be distorted, which accounted for the primary 

cause of defect identified in expert review (Section 3.4.2, Fig 10 Case-2 and Fig 10 Case-4). 

However, the BC analysis results on these cases were still considered acceptable as most 

missing anatomical structures of BC components were recovered anatomically consistently 

(Fig 10).

The FOV extension correction significantly improved the overall intra-subject correlation 

for both SAT and muscle measurements in both of the two included datasets (Table 4). 

The improvement was consistent in both 1-year-pairs and 2-year-pairs. Lowered consistency 

were observed in 2-year-pairs, which could be explained by the longitudinal change in BC. 

The evaluation stratified by truncation severity level revealed that the overall improvement 

was mainly contributed by the significant improvement for those pairs with one or two scans 

with moderate to severe truncation. Among the pairs that consisted of scans with only trace 

truncation severity, slight decreases in longitudinal consistency of certain comparisons were 

observed after the FOV extension. This might be caused by the potential measurement error 

introduced by the decreased resolution due to the extension.

The overall correlations of SAT and muscle indexes with anthropometric approximated FFM 

and FM indexes were also improved significantly in both of the included datasets (Table 

5). The stratified evaluation indicated the improvement was more significant for those scans 

with moderate to severe truncation. In NLST, the overall improvement was consistent for 

all three screen years. The correlation decreased with the increase in time distance between 

the scan year and baseline. This could be explained by the longitudinal change in BC, while 

the anthropometric approximations in NLST were obtained at baseline. In both NLST and 

VLSP, it is common for each of the severity groups alone to have lowered correlations 
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compared to the overall dataset, even for those with none and trace truncation. This could 

be explained by the narrowed body composition distribution in each strata compared to the 

overall dataset (Table 3), where the variations in measurements themself could obscure the 

overall trend between the two measurements. Differences between VLSP and NLST were 

observed, where VLSP was associated with higher correlation between SAT index and FM 

index and lower correlation between Muscle index and FFM index. This can possibly be 

explained by the demographic difference between the two datasets (Table 1). Nevertheless, 

with the FOV correction, we find stronger correlations with anthropometric approximations 

in both VLSP (SAT index vs. FM index: 0.85; Muscle index vs. FFM index: 0.67) and 

NLST (Screen-0. SAT index vs. FM index: 0.82; Muscle index vs. FFM index: 0.75) 

comparing to the same correlations recently reported in (Pishgar et al., 2021) (SAT index 

vs. FM index: 0.80; Muscle index vs. FFM index: 0.62) on a subset of Multi-Ethnic Study 

of Atherosclerosis, where the BC measurements were derived by a semi-automatic regional 

assessment approach using routine chest CT. However, the effectiveness of this comparison 

may subject to the potential demographic difference between the cohorts included in these 

two studies.

These results indicated that the developed semantic FOV extension method improved the 

overall BC measurement quality and demonstrated the application validity of the method in 

opportunistic BC assessment using lung screening LDCT.

Limitations

Generalizability to limited FOV CT scans acquired with other clinical 
indications.—The semantic FOV extension method presented in this study was developed 

and tested on lung screening LDCT. These chest CT scans were acquired with specific 

imaging protocols, e.g., non-contrast, low dose, and optimized FOV, for a specific target 

population - older asymptomatic current and former heavy smokers, and for a specific 

clinical indication - early detection of lung cancer. Thus, the proposed method may not be 

well generalizable to CT scans acquired with different imaging protocols, target population, 

or clinical indications. Most noticeably, the cupping artifact, which is considered as common 

in CT scans with limited FOV (Ohnesorge et al., 2000; Hsieh et al., 2004; Sourbelle et al., 

2005; Ketola et al., 2021; Huang et al., 2021), was not addressed in this study. Although 

this decision was intentional based on the extremely low occurrence of this issue observed in 

both of the two included lung screening LDCT datasets (Section 3.2), we recognize this as 

a limitation in terms of generalizability of the presented method. Specifically, the developed 

method is only applicable when the FOV truncations are caused by RFOV and DFOV, or 

a combination of both, and the truncations in projection data caused by SFOV do not have 

significant impact on the reconstructed image intensity inside the CT FOV. In addition, the 

inability of the developed pipeline to process scans with common imaging artifacts, e.g., 

beam hardening artifact, severe imaging noise, and non-standard body positioning (Section 

3.2), may pose challenges for the application of the method in a more heterogeneous 

scenario. As the primary focus of this present study was on the application in lung screening 

LDCT, we left the development for a thorough solution to address these issues for future 

studies.
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To further characterize the generalizability and potential limitations when applying to 

conventional chest CT scans, we evaluated our developed method on a third dataset, which 

consisted of chest CT scans acquired with a broader spectrum of clinical indications in daily 

clinical practice. The details of this evaluation are presented in Appendix C.

Reference measurements for application validity assessments.—In the 

application validity assessments on real lung screening LDCT data (Section 2.3.3), we 

employed the anthropometric approximations for FM and FFM indexes initially developed 

in Kuch et al. (2001) as references to assess the FOV extension method’s effectiveness 

in correcting the BC measurement error introduced by FOV tissue truncation. Though the 

same method has been used in later study Pishgar et al. (2021) to provide references 

in assessing the validity of CT-based SAT and muscle measurements, the anthropometric 

assessments of BC are known to subject to lowered sensitivity (Thibault et al., 2012). Other 

validated whole body BC measurements, e.g., those obtained by Bioelectrical Impedance 

Analysis or Dual-energy X-ray Absorptiometry, can provide validated references to assess 

the improvement in BC measurement accuracy (Thibault et al., 2012). In addition, using 

the raw projection data of the scans truncated by limited RFOV and DFOV to recover the 

missing tissues would provide the ultimate references to assess the effectiveness of the FOV 

extension method in real application (Section 2.2.2). However, due to limitations of the data 

source we were unable to perform these analyses.

5. Conclusion and Future Work

In this paper, we proposed a two-stage framework for slice-wise semantic FOV extension 

for lung screening LDCT scans with body tissue truncation caused by limited FOV. In 

the first stage, given a CT slice with incomplete body region, we predicted the extent 

of the complete body in the form of axis-aligned minimum bounding box. Based on this 

estimation, the original FOV border was extended to cover the estimated complete body 

region. The second stage was formulated as an image completion problem, where the model 

was trained to impute the missing body tissues in extended space. To generate paired data 

for both model development and evaluation, we designed a synthetic sample generation 

procedure simulating the FOV determination mechanism during CT acquisition. To evaluate 

the anatomical consistency of the generated body tissues, we utilized the pre-trained models 

in a previously developed deep learning BC assessment pipeline for lung cancer screening 

LDCT. In addition, we integrated the developed semantic FOV extension method into 

the BC assessment pipeline and evaluated the effectiveness of the method to correct BC 

assessment shift in the real application.

We developed the semantic FOV extension pipeline on a large lung cancer screening cohort. 

Evaluation results on synthetic samples indicated the developed pipeline can effectively 

identify the extent of the complete body and generate anatomically consistent tissues in 

the truncated regions. The pipeline also consistently corrected the BC measurement shifts 

caused by FOV truncation for CT slices with various truncation severity. To evaluate the 

validity on real FOV truncated data, we applied the BC assessment pipeline with semantic 

FOV extension module on the FOV truncation scans in VLSP and a subsample of the CT 
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arm of NLST. We observed improvements in overall intra-subject consistency and overall 

correlation with anthropometric approximations for FFM and FM in both datasets.

The proposed method demonstrates the possibility for extending the FOV of CT image from 

the semantic image extension perspective. Instead of utilizing the CT projection data as 

mainly focused by current literature, our method seeks to solve the problem by learning 

a deep representation for complete body structures from a large dataset with complete 

body structures in FOV. For this reason, the developed method only requires data in the 

image domain as input, making it possible to extend the limited FOV in applications where 

the CT projection data are not available. However, the methodology is only applicable to 

certain types of limited FOV where the truncations are caused by RFOV and DFOV, or a 

combination of both, and the cupping artifacts that are associated with truncations caused by 

SFOV do not manifest.

From the clinical point-of-view, our work provides a solution for the prevalent issue of 

limited FOV in opportunistic CT-based BC assessment. Compared to the currently widely 

adopted solution of regional assessment, our method allows for the whole axial slice 

evaluation which is better correlated with full body evaluation and makes use of all visible 

anatomical information in the FOV. As such, BC assessment with our method has the 

potential to be more realistically correlated with clinical outcomes. A rigorous clinical 

comparison of the two approaches may be a valuable future study direction. In addition, 

the fully automatic BC assessment for lung screening LDCT has the potential to extend the 

value of the LDCT-based lung cancer screening, especially with the semantic FOV extension 

correction proposed in this work.
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Appendix A.: Comparison of General-purpose Image Completion Methods 

for Stage-2

Following the strategy described in Section 2.1.2, we evaluated the following three general-

purpose methods for image completion:

• pix2pix (Isola et al., 2017). The method employed a conditional generative 

adversarial network (cGAN) to provide a solution for general-purpose image-to-

image translation problems where image completion was among the example 

applications. The cGAN model learned a transformation from observed image 

space to target image space. The objective was to optimize the generator to 

produce predictions that cannot be distinguished by an adversarially trained 

discriminator, which is known as the adversarial loss. In addition to the 
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adversarial loss, a traditional L1 loss was also included to encourage the 

generator to produce a fake image that is near to the ground-truth. The final 

objective function was a combination of these two terms. The FOV region mask 

was not required for either the training or inference phase for pix2pix.

• PConv-UNet (Liu et al., 2018). The method was based on the concept 

of partial convolution (PConv) which was a replacement for the normal 

convolution to handle the existence of invalid region in input images. In partial 

convolution operation, a mechanism was designed such that the outputs were 

only conditioned on valid pixels specified by a binary mask. The mask was 

updated through each layer in the forward pass, leading to a gradually shrinking 

invalid region. After passing through a sufficient number of stacked layers, the 

invalid region would eventually vanish. The method used a UNet-like structure 

similar to pix2pix as the generator, replacing all normal convolutional layers with 

partial convolution layers. The loss function contained multiple terms targeting 

both per-pixel reconstruction accuracy and semantic composition. This included 

(1) L1 loss; (2) perceptual loss and style loss based on features extracted by a 

pretrained VGG-16 model; and (3) total variation loss. A valid region mask was 

required during both the training and inference phase.

• RFR-Net (Li et al., 2020). Instead of imputing all missing regions in a single 

pass, the Recurrent Feature Reasoning (RFR) network took a recurrent strategy 

to first infer the contents near the valid region and then use the information as 

clues for further inference iteratively. In each iteration, the newly updated area 

was identified as the difference between the initial mask and the updated mask 

after several partial convolution layers. The missing features in this area were 

filled with a feature reasoning module with a UNet-like structure. The features 

generated in each iteration were merged to form a final feature map to generate 

the reconstructed image. In addition, an attention mechanism was introduced 

to improve the semantic consistency of the generated contents, especially with 

image contents at a far distance. The loss function was similar to PConv-UNet, 

including (1) L1 loss; and (2) perceptual loss and style loss based on features 

extracted by a pretrained VGG-16 model. A valid region mask was also required 

for both training and inference stages.

In training, we set the batch-size to 20 and total training epoch to 80 for all three methods. 

For PConv-UNet and RFR-Net, we set the first 40 epoch in initial training mode and the 

last 40 epochs in finetune mode. For the convenience of reproducing and comparison, we 

followed the original literatures (Isola et al., 2017; Li et al., 2020; Liu et al., 2018) for the 

configuration of other training settings, which included the number of layers in models, the 

balancing weights of loss function terms, the optimization configurations, and learning rates.

We characterized the difference between three image completion solutions. Fig A.11 shows 

the results on the same synthetic sample by the three methods, where the generated 

reconstruction images are compared with the ground-truth image. The residue maps are 

shown as the heatmaps. The quantitative comparison of the three image completion methods 

is given in Table A.6. As shown in Fig A.11 and Table A.6, all three models were 
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able to impute anatomically plausible contents in the truncated regions and correct the 

BC measurement offset. However, there was a size change in the reconstructed image 

generated by the pix 2 pix model (Fig A.11). This could be caused by the emphasis of 

the loss function toward the semantic consistency by the adversarial term instead of the 

reconstruction accuracy. The pix2pix model was originally optimized for image-to-image 

translation of natural images in which size change is irrelevant (Isola et al., 2017). However, 

this property was undesired for medical image applications like BC assessment. This caveat 

was further confirmed by the inferior performance in BC measurement correction comparing 

to two other methods (Table A.6). For PConv-UNet and RFR-Net, both methods maintained 

the size of the subject. On qualitative evaluation, RFR-Net generated anatomical structures 

closer to the ground-truth, which was a possible advantage of its recurrent inference strategy 

(Fig A.11). This observation was further confirmed by the quantitative results in Table A.6 

as RFR-Net outperformed the other two methods consistently for all considered metrics.

Fig. A.11. 
Comparison between three image completion methods for the missing tissue imputation 

in truncated region. The reconstructed slices show the direct outputs of each method. The 

difference maps are generated by subtracting the reconstructed slices with ground-truth slice.
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Table A.6.

Quantitative comparison of the three general-purpose image completion models. The 

evaluation was based on pixel-wise RMSE and DSC, as well as the BC measurements 

including area (cm2) and attenuation (HU) of SAT and muscle, using the untruncated slice 

and the segmentation and measurements on it as ground-truth. RMSE=Root Mean Square 

Error. DSC=Dice Similarity Coefficients. BC=Body Composition. SAT=Subcutaneous 

Adipose Tissue. HU=Hounsfield Unit. SD=Standard Deviation. CI=Confidence Interval.

Image Completion Method

Metric pix2pix PConv-UNet RFR-Net

Pixel-wise RMSE (HU), Mean ± SD 7.48 ± 4.48 6.52 ± 4.05 6.12 ± 4.09

Dice Similarity Coefficient, Mean ± SD 0.96 ± 0.04 0.96 ± 0.04 0.97 ± 0.03

SAT Area (cm2), RMSE (95% CI) 9.83 (9.11, 10.70) 8.79 (8.14, 9.66) 7.42 (6.79, 8.26)

SAT Attenuation (HU), RMSE (95% CI) 1.91 (1.80, 2.04) 1.48 (1.40, 1.60) 1.20 (1.13, 1.29)

Muscle Area (cm2), RMSE (95% CI) 3.95 (3.67, 4.29) 3.58 (3.32, 3.91) 3.28 (2.99, 3.63)

Muscle Attenuation (HU), RMSE (95% CI) 1.16 (1.10, 1.24) 1.02 (0.96, 1.09) 0.89 (0.84, 0.97)

Appendix B.: Identification of Body, Field-of-view, and Lung Masks

The development and evaluation of the proposed method replied on multiple binary masks 

specifying certain regions in thoracic CT volume. This included the FOV mask, lung mask, 

and body mask. Here, we describe the solutions we employed in our study to automatically 

generated these masks.

FOV mask.

As introduced in Section 2.2.2, once the cross-sectional FOV pattern is determined, it is 

replicated through all cross-sectional slices in a CT volume. The pixels inside this 3D 

FOV region are considered valid, with intensity value representing the HU of the physical 

material at the represented spatial location, while the pixels in the non-FOV region are 

without any physical correspondence and need to be imputed with a predefined value to 

form the final square shape image. In the DICOM standard, this value is termed Pixel 

Padding Value, which, by its design, should be outside of the range of normal HU for the 

ease of identification of the non-FOV regions in application. However, in real application, 

depending on the scanner manufactures, the value may fall in the normal range of HU or 

without specification in the header data structure. For this reason, we designed the following 

algorithm to retrieve the FOV mask following a data-driven approach.

With the assumption that the imputation value is constant across all axial slices of the 

same CT scan, the intensity variation along the vertical direction of the axial plane is zero 

in the non-FOV cross-sectional region. On the contrary, this variation is non-zero for the 

FOV cross-sectional region due to the intensity difference of different materials and intrinsic 

noise during data acquisition. Based on this observation, we obtained the FOV masks by 

identifying the cross-sectional region with non-zero vertical intensity variations. This trick 

reliably retrieved the FOV masks for most of the lung screening CT scans in our study 
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cohort. In a small amount of CT scans, mainly in the NLST, the lower bound of intensity 

window was set as −1000 (HU of air), which lead to zero vertical intensity variation regions 

even inside the FOV region. We mitigated the problem by retrieving the convex hull of the 

identified non-zero vertical intensity variation region.

When padding and resizing the CT slices with FOV truncation and corresponding FOV 

masks as described in Section 2.1, care must be taken to avoid the interpolation between 

the FOV and non-FOV regions, as the operators may lead to unrealistic pixel values near 

the FOV borders. If such interpolation is unavoidable, a certain amount of recession of FOV 

regions and corresponding intensity correction are necessary to eliminate the artificial pixel 

values. The amount of this recession can be estimated by applying the same operator on the 

floating-point binary FOV masks, and identifying the pixels with value between zero and 

one.

Lung mask.

The lung masks were generated using the segmentation model developed in (Hofmanninger 

et al., 2020), with pretrained model available at (https://github.com/JoHof/lungmask). The 

model was based on 2D UNet and performed prediction of lung region on individual slices. 

The model was developed on a large and diverse cohort with wide range of variation in FOV.

Body mask.

We used the morphology-based 3D body mask identification tool initially developed in 

(Tang et al., 2021a) for body region identification in abdominal and whole-body CT. The 

method converted the input image into a binary mask using HU threshold of −500. Then, 

the largest connected region was identified, which was followed by slice-wise hole filling 

operation to impute the lung regions.

Appendix C.: Generalizability on Conventional Chest CT beyond Lung 

Cancer Screening

The primary target of this present study was to develop a solution for the systematic 

FOV truncation problem for lung screening LDCT, which was a prohibitive factor for the 

application of opportunistic BC assessment (Section 1). In Section 3, we demonstrated the 

effectiveness and application validity of the developed FOV extension method. However, 

it is unknown if the developed method can be generalized to clinically acquired chest CT 

beyond lung cancer screening. In this additional evaluation, we sought to characterize the 

generalizability and potential limitations of the developed FOV extension method, as well 

as the enhanced BC assessment pipeline, for opportunistic BC assessment using routine 

diagnostic chest CT images. As the primary interest was to characterize on how many 

and on which types of cases the method would fail, the evaluation was mainly based on 

qualitative visual assessment.

The Longitudinal ImageVU (LiVU) cohort was a retrospective chest CT study cohort 

initially designed for longitudinal evaluation of incidental lung nodule, which was sampled 
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from the ImageVU system (https://victr.vumc.org/our-programs/), a large medical imaging 

databank that collects the routine diagnostic imaging studies conducted at Vanderbilt 

University Medical Center (VUMC). The inclusion criteria of LiVU selected those 

ImageVU subjects with three consecutive chest CT studies in five years, without any 

additional selection criteria. As such, the associated chest CT scans were acquired with 

a broad spectrum of clinical indications. We randomly sampled 953 subjects from the LiVU 

cohort, and selected one scan per subject to form an evaluation dataset. All data were 

de-identified under internal review board supervision (IRB#181279). Particularly, the scan 

dates were randomly shifted with up to one year. The the de-identified scan dates located 

between 2000 and 2019, with most (94.1%) of them after 2014. 57 scans with keyword 

“DERIVED” or “SECONDARY” included in the DICOM tag “Image Type Attribute (0008, 

0009)” were excluded, as these scans were not acquired directly from the CT scanners 

and were processed, e.g., affine transformed, before saving as DICOM data. We identified 

15 intravenous (IV) contrast cases with significantly lowered intensity in SAT and skeletal 

muscle comparing to the standard HU scale. These 15 CT scans were acquired from a same 

dualsource CT scanner (Siemens ® SOMATOM Force ™) with ultra low-dose technique 

implementation. We excluded these scans as the technique is known to impact quantitative 

imaging analyses (Wang et al., 2015) and lack of generalizability (Vonder et al., 2021). 

This led to a dataset consists of 881 scans acquired from 12 model types of 5 scanner 

manufacturers. Table C.8 shows the characterization of the imaging protocol of this dataset.

The developed multi-level BC assessment pipeline with FOV extension correction was 

applied on this dataset. We reviewed the quality of generated results which include both 

the FOV extended images, and the BC segmentation masks at the three levels. 151 (17.1%) 

cases were identified with certain types of defects. The failure rate was higher in the 

contrasted cases, with 19.5% (115 out of 591) compared to 12.4% (36 out of 290) in 

non-contrast cases. We identified 19 (2.2%) FOV truncation cases associated with cupping 

artifacts, where the developed pipeline failed to process. The segmentation module failed on 

64 (7.3%) pleural effusion cases, as the module failed to distinguish the high intensity region 

in the lung from the muscle tissue. We identified 52 (5.9%) cases with non-standard body 

positioning. In addition, 20 (2.3%) cases were failed due to severe image noise or beam 

hardening artifact caused by metal implant. Typical examples of each failure mode are given 

in Table C.7.

In conclusion, we observed a significant higher failure rate in the LiVU dataset. This could 

be explained by the deviations in both of the scan protocols and patient characteristics 

comparing to the lung screening LDCT datasets. For instance, the occurrence of cupping 

artifact in scans with FOV truncation was significantly more frequent in the LiVU dataset 

than in the two included lung screening LDCT datasets (Section 3.2). In addition, a 

significant portion of the scans in LiVU dataset were with IV contrast, while IV contrast is 

usually not included in the lung cancer screening protocols (Gierada et al., 2009; Kazerooni 

et al., 2014). Pleural effusion was more prevalent in the routine clinical scenarios that 

requiring a chest CT study comparing to the asymptomatic screening context. The standard 

body positioning for lung screening LDCT, with both arms above head, may not be required 

or difficult to implement in certain clinical indications. All these factors contribute to the 

challenges for the generalization of the developed method on routine clinical chest CT scans.
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Table C.7.

Representative cases for identified failure mode in LiVU dataset. All images are displayed 

using window [−150, 150] HU. FOV=Field-of-view. BC=Body Composition. 

SAT=Subcutaneous Adipose Tissue.

Failure 
Mode

Explanation Input FOV Extended BC Segmentation

Body 
Positioning

Non-standard body 
positioning with 
arms in FOV, 
resulting in addition 
area measured 
comparing to 
normal positioning.

Cupping 
Artifact

The increased 
intensity at the 
FOV border causing 
shift from standard 
HU. The method 
cannot mitigate this 
artifact, resulting 
in inaccurate BC 
segmentation.

Intravenous 
Contrast

Typical observed 
failure pattern 
associated with 
contrasted scans. 
Parts of muscle and 
SAT are missing 
in the segmentation 
mask.

Pleural 
Effusion

The segmentation 
module failed to 
distinguish the high 
intensity region in 
the lung (pleural 
effusion) from the 
muscle tissue.

Beam 
Hardening 
Artifact

Severe imaging 
noise and beam 
hardening artifact 
associated with 
metal implant, 
resulting in 
inaccurate BC 
segmentation.
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Table C.8.

Image protocol information of sampled LiVU dataset. SD=Standard Deviation.

Parameter Value

Effective mAs ± SD 131.9 ± 81.1

kVp ± SD 108.6 ± 16.9

Display FOV (cm) ± SD 37.7 ± 4.9

No. case with IV contrast (%) 591 (63.8)
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• A two-stage framework for anatomically consistent field-of-view extension of 

CT

• Operating in image domain without requirement for CT projection data

• Demonstrated application validity in opportunistic body composition 

assessment using lung screening CT
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Fig. 1. 
Typical FOV truncation in lung screening CT and its impact on body composition 

assessment. The presented examples are simulated using two lung screening CT scans 

with complete body at least at the level of the fifth thoracic vertebral body. As the same 

truncation pattern replicates across all cross-sectional slices for the same scan, the cubic 

or tube-like shape of the field-of-view region and the resulting artificial body surface can 

be clearly identified in 3D view (top row). The cross-sectional truncation effect is detailed 

by the blue segments and red segments indicating the true boundary of the human body 

and the artificial boundary of FOV respectively (second row). The resulting segmentation 

masks for SAT and muscle are overlaid with highlighted cross-sectional slices (second row). 

The offsets between assessment results based on truncated slices and complete slices are 

presented in the bar plots (third row). BMI=Body Mass Index. SAT=Subcutaneous Adipose 

Tissue.
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Fig. 2. 
The scheme of the proposed two-stage FOV extension method and its integration with body 

composition assessment pipeline. (A) The body composition assessment pipeline with the 

FOV extension module integrated as a preprocessing step. (B) Given a CT slice with FOV 

truncation as input, the stage-1 model extends the display FOV based on the predicted 

bounding box of the complete body. (C) The stage-2 model imputes missing tissues in the 

truncated region. LDCT=Low-dose CT. FOV=Field-of-view.
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Fig. 3. 
The simulation of synthetic training data and the self-supervised model training of the 

two proposed stages. (A) The training samples are generated using cross-sectional slices 

with complete body, by applying synthetic FOV as the intersection of RFOV and DFOV 

simulating the FOV determination procedure during CT acquisition. (B) The input data for 

the stage-1 model are the simulated slices with tissue truncation which are cropped at the 

DFOV. The bounding box of the complete body is pre-determined, shifted, and rescaled in 

corresponding with the cropping operation to serve as the ground-truth for stage-1 model 

development. The model is developed using ResNet-18 as the backbone, and a loss function 

consisting of a MSE term and a Generalized IoU term. (C) The input data for the stage-2 

model are the simulated slices and FOV patterns in the original image space. The initial 

slices with complete body in FOV are used as the ground-truth. We evaluate three published 

general-purpose image completion methods detailed in Appendix A. FOV mask input may 

or may not be required depending on the image completion method. LDCT=Low-dose CT. 

FOV=Field-of-view. DFOV=Display FOV. RFOV=Reconstruction FOV.
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Fig. 4. 
Typical FOV patterns in lung screening CT. The images are shown using HU window 

[−1200, 300]. The FOV borders are highlighted in red. The FOV patterns are the results 

of the intersection between a circular reconstruction fieldof-view and a square display 

field-of-view. HU=Hounsfield Unit. FOV=Field-of-view.
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Fig. 5. 
Simulation of typical FOV truncation patterns using a CT slice with complete body in 

FOV. The patterns are determined by a circular RFOV and a squared DFOV (A.1, A.2, 

and A.3). Artificial tissue truncation is generated by imputing the pixels outside of CT 

FOV with background intensity. The slices are further cropped at the DFOV, simulating the 

DFOV selection during CT acquisition procedure (B.1, B.2, and B.3). FOV=Field-of-view. 

RFOV=Reconstruction Field-of-view. DFOV=Display Field-of-view.
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Fig. 6. 
Typical results of the developed FOV extension method on synthetic FOV truncation 

samples. The two ground-truth slices are selected at the fifth and eighth thoracic 

vertebral body levels from two patients with dramatically different body composition 

profiles. Synthetic FOV masks are applied to the raw slices, generating slices with 

tissue truncation. The predicted complete body bounding box is compared against the 

ground-truth bounding box. The anatomical consistency of the generated structures is 

evaluated by a prior developed BC assessment tool. The correction for BC assessment 

offset is demonstrated using the bar plots that compare the measurements on truncated or 

reconstructed slices against measurements on paired untruncated slices. FOV=Field-of-view. 

BC=Body Composition. SAT=Subcutaneous Adipose Tissue.

Xu et al. Page 38

Med Image Anal. Author manuscript; available in PMC 2024 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Correction of FOV truncation caused BC assessment offset by the proposed FOV extension 

method. The Bland-Altman plots compare the slice-wise body BC assessment performed 

on truncated or reconstructed slices with measurement performed on paired untruncated 

slices. The data are collected on 1,940 synthetic FOV truncation slices with mild to 

severe truncation severity level. SD=Standard Deviation. FOV=Field-of-view. BC=Body 

Composition.
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Fig. 8. 
Example cases in visual Turing test to assess the effectiveness of the image completion stage 

(Section 3.4.1). Two clinical experts were asked to identify synthetic cases independently 

from a mixed set of equally numbered synthetic and real cases. All three demonstrated 

cases are selected from the synthetic group, where the reconstructed (synthetic) slices were 

provided along with the truncation patterns to the raters instead of the real slices. For Case 
1, both raters misclassified it as real. For Case 2, one rater classified it as real while the 

other rater classified it as synthetic. For Case 3, both raters successfully identified the case 

as synthetic. TCI=Tissue Truncation Index.
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Fig. 9. 
Distribution of quality scores given by two expert raters on the FOV extension quality of 100 

random NLST scans with moderate to severe tissue truncation. The quality score system was 

defined from 1 (exceptional) to 9 (poor). As none of the sampled scans was assigned with 

score higher than 6 (Failed), we reduce the range as from 1 to 6 in the confusion matrix plot.
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Fig. 10. 
Results of BC assessment with FOV extension (image grid) and expert reviews (blue 

box) on lung screening LDCT with limited FOV. The pipeline identifies the axial slices 

corresponding to the T5, T8, and T10 vertebral bodies from 3D chest CT volume (first 

column). The FOV of each slice is extended with missing body tissue imputed (second 

column). The measurements of BC are based on the segmentation masks predicted on 

the FOV extended images (third column). The four selected cases are among the 100 

NLST scans with moderate to severe truncation (TCI > 0.3) included for the expert quality 

review conducted with two trained experts (Section 3.4.2). All CT slices are displayed using 
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window [−150, 150] HU. BC=Body Composition. FOV=Field-of-view. BMI=Body Mass 

Index. TCI=Tissue Truncation Index.
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Table 1.

Characteristics of study cohorts. SD=Standard Deviation.

Characteristics VLSP NLST

Demographic

 No. of subject 887 1280

 No. of female (%) 399 (45.0) 527 (41.2)

 Age at baseline (y) ± SD 64.0 ± 5.6 61.4 ± 4.9

 BMI at baseline (kg / m2) ± SD 28.3 ± 6.0 27.7 ± 4.8

Imaging

 No. of scans 1490 3586

 Effective mAs ± SD 45.6 ± 30.3 36.9 ± 7.9

 kVp ± SD 119.0 ± 4.3 121.0 ± 4.4

 Display FOV (cm) ± SD 36.9 ± 3.6 33.4 ± 3.4
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