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Abstract

Lung cancer heterogeneity is a major barrier to effective treatments and encompasses not only 

the malignant epithelial cell phenotypes and genetics, but also the diverse tumor-associated cell 

types. Current techniques used to investigate the tumor microenvironment (TME) can be time 

consuming, expensive, complicated to interpret, and often involve destruction of the sample. 

Here we utilize standard hematoxylin and eosin (H&E)-stained tumor sections and the HALO® 

Artificial Intelligence (AI) nuclear phenotyper software to characterize six distinct cell types 

(epithelial, mesenchymal, macrophage, neutrophil, lymphocyte, and plasma cells) in both murine 

lung cancer models and human lung cancer samples. CD3 immunohistochemistry and lymph 

node sections were used to validate lymphocyte calls, while F4/80 immunohistochemistry was 

used for macrophage validation. Consistent with numerous prior works, we demonstrate that 

macrophages predominate the adenocarcinomas while neutrophils predominate the squamous cell 

carcinomas in murine samples. In human samples, we show a strong negative correlation between 

neutrophils and lymphocytes as well as between mesenchymal cells and lymphocytes, and that 

higher percentages of mesenchymal cells correlate with poor prognosis. Taken together, we 

demonstrate utility of this AI software to identify, quantify and compare distributions of cell types 

on standard H&E-stained slides. Given the simplicity and cost-effectiveness of this technique, it 
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may be widely beneficial for researchers designing new therapies, and clinicians working to select 

favorable treatments for their patients.
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INTRODUCTION

The complexity of the tumor microenvironment is vast, with numerous cellular and 

structural patterns that are distinct in each cancer. Even within non-small cell lung cancer 

(NSCLC), a wide variety of histological variants leads to numerous possible diagnoses, each 

with its own preferred treatment regimen 1,2. Among the different subtypes of NSCLC, 

adenocarcinoma (ADC) and squamous cell carcinoma (SCC) are the most commonly 

diagnosed. Pathological assessment of patient biopsies has long been the standard for 

diagnosis, and pathologists are skilled at identifying the multitude of cell types, in addition 

to the malignant epithelial cells, that can be found in carcinomas 3-5. While the role of the 

pathologist will never be replaced, a method for less highly trained researchers to quickly 

and accurately assess the types of cells within a histological sample would greatly benefit 

the field. As the NSCLC treatments move towards the use of immunotherapy as a first line 

therapy for most cancers 2, assessment of the tumor microenvironment (TME) is critical.

ADC and SCC TMEs are very heterogeneous and contain numerous types of cells that are 

often collectively referred to as ‘stroma’. Commonly identified cell types in NSCLC TME 

include mesenchymal cells, plasma cells, macrophages, neutrophils, and lymphocytes 3,4,6,7. 

Although cells such as CD8+ T cells in the TME can be tumor eliminating, it is generally 

accepted that tumors reprogram the microenvironment to favor tumor promoting cells. In 

particular, mesenchymal cells, such as cancer associated fibroblasts (CAFs), can produce 

a variety of cytokines, including TGF-β that can create an immunosuppressive TME by 

repressing CD8+ T cells and increasing regulatory T cells 8,9. Similarly, tumor-associated 

neutrophils are also thought to be predominately immunosuppressive, in particular through 

production of arginase and reactive oxygen species 10,11. A high neutrophil to lymphocyte 

ratio (NLR) typically predicts poor overall survival and poor responses to immunotherapies 
12,13. However, current strategies to study the NLR of patients with cancer involves blood 

samples, but these may not represent the immune microenvironment at the site of the tumor.

ADC and SCC differ in their histology as well as genetic profiles, leading to divergent 

treatment options, with ADC possessing mutations allowing for more targeted therapies 

[1-3]. Among the many genetic alterations present in NSCLCs, mutations in genes such as 

KRAS, TP53, and EGFR are some of the most common. Mutations in KRAS and EGFR 
are more frequent in ADCs, with KRAS mutated in ~32% and EGFR in ~27% of tumors. 

However, mutations in these targetable genes are much less frequent in SCCs that instead 

have frequent mutations in TP53 (90%), PIK3CA and PTEN (15%) 1,14. In order to produce 

large amounts of histologically and genetically similar tumors, researchers have designed 

genetically engineered mouse models (GEMMs) of lung cancers to mimic patient genetics 
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and have used these models for systematic characterization of lung cancer TMEs. Data have 

shown that murine lung adenocarcinomas tend to attract macrophages 15-17, but if there 

are alterations in EGFR, LKB1 or late stage KRAS, neutrophils may be recruited to these 

tumors 18-20. In murine squamous lung cancers neutrophils predominate and are thought to 

drive a transition from ADC to SCC states 15,17,21,22.

Current methods to characterize the TME include flow cytometry, single cell RNAseq, 

mass cytometry, and other multiplexed immunohistochemistry approaches 4,6,23,24. Flow 

cytometry and standard single cell RNAseq are robust methods, but require a relatively 

large amount of live starting material that must be dissociated prior to experimental 

assessment. Dissociating tissues can lead to loss of fragile cell populations and erases spatial 

information. Spatial scRNAseq can overcome this hurdle, but is expensive to implement. 

Other options include spatial profiling through multiplexed immunohistochemistry, 

including imaging mass cytometry techniques such as fluidigm or spatial proteomics25,26. 

These are powerful approaches, but require specialized equipment, a large investment of 

money for reagents, and trained personnel to interpret results 23. Therefore, developing a 

TME quantification method that is more cost effective, faster to implement, and retains the 

sample is imperative to further research efforts and to provide clinicians a tool to help guide 

treatment for their patients.

In this study, we utilize the HALO® Artificial Intelligence (AI) nuclear phenotyper software 

by Indica Labs to identify differences in the TME in both human and murine NSCLC 

tissues. We investigated five murine models, including KrasG12D/p53-null, Pik3caE545K/

p53-null, EGFRT790M/L858R, KrasG12D/Lkb1-null, and Lkb1-null/Pten-null, to determine 

how the presence of these mutations alters the tumor microenvironment. We confirmed 

the accuracy of the algorithm with both correlation to IHC staining and by testing on 

lymphocyte-rich lymph node sections. We confirmed accumulations of macrophages in 

murine adenocarcinomas and neutrophils in murine squamous cell carcinomas in addition 

to further identifying differences in these tumors. In human samples, we uncovered 

extremely strong negative correlations between both mesenchymal cells and neutrophils with 

lymphocytes, and higher proportions of mesenchymal cells predicted poor overall survival.

METHODS

Mouse Models

Mouse models were: KRASG12D/p53-null lung adenocarcinoma27,28, KRASG12D/p53-
null/Ezh2-heterozygous and KRASG12D/p53-null/Ezh2-null lung adenocarcinoma 29, 

PIK3CAE545K/p53-null lung adenocarcinoma 30, EGFRT790M/L858R lung adenocarcinoma 
31, KRASG12D/Lkb1-null mixed lineage tumors 17,32, and Lkb1-null/Pten-null squamous 

cell carcinoma 15. All animal work was approved by University of Kentucky, Dana-Farber 

Cancer Center or Boston Children’s Hospital IACUC. Adult mice were allowed to inhale 

Cre- or FlpO-encoding virus to initiate autochthonous lung tumors. Mice housed at 

University of Kentucky all received 2.9x106 pfu of adenoviral Cre (University of Iowa). 

Historical banked tissues from previous studies were also used.
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Patient Samples

Patient tissue was obtained from the Markey Cancer Center Biospecimens Procurement and 

Translational Pathology Shared Resource Facility (BPTP SRF). A tissue microarray was 

prepared from patient biopsies from de-identified excess tissue. The array consists of three 

core biopsies from each patient, and there are a total of 83 adenocarcinoma, 102 squamous 

cell carcinoma, 14 adenosquamous and mixed histology tumors and 17 poorly differentiated 

tumors, including 2 large cell carcinoma, 1 giant cell carcinoma, 1 pleomorphic carcinoma, 

and 1 sarcomatoid carcinoma.

Histology and immunohistochemistry

All tissues were fixed with 10% neutral-buffered formalin overnight. They were 

then transferred to ethanol, embedded in paraffin, and sectioned at 4μm. CD3 

immunohistochemistry was performed by the Biospecimens Procurement and Translational 

Pathology Shared Resource Facility (BPTP SRF) at the Markey Cancer Center. Antigen 

retrieval was performed in Biocare Medical decloaking chamber at 95°C for 30 minutes 

with Dako Target Retrieval Solution, pH 9 (S236784-2). Endogenous peroxidase activity 

was quenched with Dako peroxidase block (K800021-5). Primary antibody for CD3 

(Dako IR503 ready-to-use) was added and incubated at room temperature for 45 minutes. 

Amplification was performed with Dako Envision anti-rabbit-HRP for 30 minutes at 

room temperature (K4003). Detection was performed with DAB for 10 minutes (Dako 

K346711-2). Slides were then counterstained with Harris’s hematoxylin. F4/80 staining 

was also carried out by the BPTP SRF. Antigen retrieval was performed on the Ventana 

Discovery Ultra system using the CC2 mild protocol (citrate pH 6 buffer, 32 minutes at 

91°C). Primary antibody, anti-F4/80 (Cell Signaling, #70776) was used at 1:200 for 1 hour 

at 37°C. Detection with performed with Ventana OmniMap anti-Rabbit-HRP for 20 minutes, 

followed by Ventana DAB. Slides were then counterstained with Mayer’s hematoxylin and 

blued with ammonia water. Dehydrated mounted slides were scanned with the Aperio slide 

scanner at 40x and 6 tumor containing regions of 355mm2 were selected and the HALO® 

classifier Multiplex IHC v3.0.4 was used to quantify the positively stained cells within the 

regions.

HALO® AI nuclear phenotyper algorithm

Histology slides were scanned at 20-40x with an Aperio AT2 scanner in brightfield mode. 

The scanner had an Olympus 20x objective with an optional 2x magnifier, with a resolution 

of 0.5μm/pixel at 20x and 0.25μm/pixel at 40x. The file format was .SVS, which is a tiled 

TIFF, that was then compressed to JPEG. Z-stacking was not used. The images were loaded 

into the HALO® program, and the AI nuclear phenotyper algorithm was trained for 556,930 

iterations using a total of 34,427 nuclei from 52 different samples. The accuracy of the final 

nuclear phenotyper algorithm was verified by pathologists at the Markey Cancer Center. 

For each murine lung sections, the tumors areas with approximately 50μm surrounding 

area were hand-annotated for analysis. For the KRAS/Lkb1-null tumors, adenocarcinoma 

and squamous cell carcinoma regions were manually sub-annotated by an experienced 

researcher.
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Statistics and reproducibility

Statistics were performed with GraphPad Prism version 9.2.0 and the statistical tests 

used and exact n are listed in the figure legends. The HALO software versions were: 

HALO v3.5.3577.214 and HALO AI 3.5.3577. For murine data, all tumors of a given 

subtype present on a slide were analyzed together. For the human data, results from three 

independent core biopsies were averaged. The n listed in the figures are biological replicates, 

which were individual mice or humans.

RESULTS

Training and Validation of Nuclear Phenotyper Algorithm for Human and Murine Lung 
Cancer

In order to profile lung cancer TME components using H&E-stained sections, we developed 

an algorithm that could reliably identify cell types in both patient and murine samples 

based on nuclear morphology. We used the HALO® AI nuclear phenotyper software 

and trained the software in iterations to identify six distinct cell types: epithelial cells, 

mesenchymal cells, plasma cells, macrophages, neutrophils and lymphocytes. Overall, 

556,930 iterations were run, using 34,427 nuclei from 19 human samples and 33 murine 

samples. Representative images of human squamous cell carcinoma (Figure 1A) and murine 

squamous cell carcinoma (Figure 1B) show all six subtypes of cells identified by the 

algorithm. Neutrophils, overlaid in light blue, were identified by their polymorphonuclear 

or segmented nuclei. Plasma cells, shown in orange, contained a characteristic perinuclear 

“hot” that is a light area adjacent to the nucleus. Tumor cells, or epithelial cells, 

overlaid in red, were identified by their generally large cell size, pleomorphic nucleus 

and dark nucleoli. Mesenchymal cells, in dark blue, had elongated and spindle-shaped 

nuclei resemble endothelial cells, smooth muscle, fibroblasts and malignant epithelial cells 

that have undergone an epithelial-mesenchymal transition (EMT). Lymphocytes, in green, 

were characterized by small cytoplasm containing a small but often dark and rounded 

nucleus. Lastly, macrophages, in yellow, were identified by their round nuclei and diffuse 

cytoplasmic area.

We next examined the concordance of the nuclear phenotyper algorithm with a traditional 

immunohistochemistry (IHC) approaches. First, we compared identification of lymphocytes 

using the algorithm to IHC staining of the T cell marker CD3 and observed a strong 

overlap in cell identification by the two methods (Figure 2A). We recently reported that 

when one copy of the gene encoding the histone methyltransferase EZH2 is deleted in 

KrasG12D/p53-null murine tumors, there are more abundant lymphocytes in the tumors29. 

Using tumors that were EZH2 wild-type, heterozygous and null, we compared directly the 

abundance of lymphocytes in the tumors as measured by the nuclear phenotyper algorithm 

and by CD3 IHC quantification (Supplementary Figures 1A+B). With both methods, we 

observed that EZH2 heterozygous tumors had statistically more lymphocytes as a percentage 

of total cells. The concordance of the two methods was also strong (Figure 2B). To further 

validate the ability of the algorithm to accurately identify lymphocytes and plasma cells, we 

examined murine lymph nodes. The lymph nodes of a murine sample can be seen with an 

abundance of lymphocytes, and lower numbers of the other cell types, which is expected for 

DuCote et al. Page 5

Lab Invest. Author manuscript; available in PMC 2024 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



typical lymph node (Supplementary Figure 1C). In contrast, the nuclear phenotyer identifies 

numerous other cell types, including abundant epithelial cells when a metastatic tumor is 

present in the lymph node tissue (Supplementary Figure 1D). Lastly, we used F4/80 IHC 

and compared to macrophages identified by the phenotyper and again observed a strong 

concordance between the methods (Figure 2C+D). Taken together, these data indicate that 

the HALO® AI nuclear phenotyper is an easy and reproducible way to identify changes to 

the tumor microenvironment.

Identification of Predominant Cell Types within Lung Cancer GEMMs

To further investigate the capabilities of the HALO® AI nuclear phenotyper algorithm, 

we examined H&E-stained tumors from four distinct lung cancer models: KRASG12D/

p53-null lung adenocarcinoma 27,28, PIK3CAE545K/p53-null lung adenocarcinoma 30, 

EGFRT790M/L858R lung adenocarcinoma31, KRASG12D/Lkb1-null mixed lineage tumors 
17,32. Consistent with numerous previous reports 15-17, all four models had large populations 

of macrophages at the site of the tumors. When considering the other abundant populations, 

the KRASG12D/p53-null model possessed the highest percentage of neutrophils relative 

to the other two models (Figure 3A); the PIK3CAE545K/p53-null model had the highest 

percentage of mesenchymal cells (Figure 3B); the EGFRT790M/L858R mutant model had the 

largest proportion of lymphocytes present (Figure 3C); and the KRASG12D/Lkb1-null had 

the most plasma cells (Figure 3D).

In addition to the KRASG12D/Lkb-null mouse model generating adenocarcinomas, it is 

also capable of creating tumors of adenosquamous and fully squamous histology 17,32. 

Again, consistent with several reports 17,21,22, the algorithm showed that squamous areas 

from the KRASG12D/Lkb-null model predominately recruit neutrophils (Figure 4A). We 

then explored the SCO model generated through biallelic deletion of the tumor suppressors 

Lkb1-null and Pten-null 15. Tumors from this model recruit a considerable number of 

neutrophils, indicated by the presence of large pockets of polymorphonuclear cells (Figure 

4B). Likewise, when we compared immune cell composition from squamous tumor models, 

neutrophils are predominating; however, among all the adenocarcinoma models it is 

macrophages that predominate (Figure 4C). The distinct tropisms of the adenocarcinoma 

and squamous cell carcinomas were particularly evident when the two tumors were 

juxtaposed, showing macrophages recruited toward the adenocarcinoma histology and 

neutrophils toward the squamous tumor (Supplementary Figure 2).

Characterization of Human Non-Small Cell Lung Cancer Cell Profiles

To examine the TME heterogeneity in human samples, we used a tissue microarray (TMA) 

that was generated from 216 NSCLC tumor samples. Using this TMA, we were able to 

recapitulate an accurate identification of the cells within the TME using the HALO® nuclear 

phenotyper algorithm in both ADC and SCC (Figure 5A+B). In contrast to our observations 

in the mouse models of NSCLC, we did not see any significant differences between the cell 

types present within these tumors (Figure 5C). The most commonly identified TME cell 

type was lymphocytes, in agreement with other work 4,7. The fact that the histotype did not 

predict cell infiltrations suggests that there are more heterogeneous factors contributing to 
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the recruitment of immune cells within the tumor stroma in human samples than are present 

in our genetically-defined mouse models.

When comparing the percentages of mesenchymal cells to lymphocytes, we observed a very 

significant negative correlation between the two populations (Figure 6A). Furthermore, we 

observed a strongly significant negative correlation between tumor infiltrating neutrophils 

and lymphocytes (Figure 6B). This finding may indicate that mesenchymal cells and 

neutrophils present in the tumor stroma are phenotypically detrimental to lymphocyte 

survival or recruitment. To further interrogate the relationship between all the immune 

infiltrates identified by the HALO® AI nuclear phenotyper we created a correlation 

plot (Figure 6C). Positive correlations were observed between mesenchymal cells and 

neutrophils, which suggests that the mesenchymal cells could be phenotypically attracting 

neutrophils and together supporting a highly immunosuppressed environment. A negative 

correlation was also observed between macrophages and lymphocytes, but the degree of the 

correlation was lower.

We last sought to determine if abundance of any cell types within the tumors predicted poor 

overall survival in this cohort. We observed that patients whose tumors were classified as 

mesenchymal low survived longer than patients whose tumors were classified mesenchymal 

high (Figure 6D). This result was similar whether we queried all causes of death or if 

we limited the cohort to lung cancer-specific death (Supplementary Figure 3A). However, 

with multivariate analysis, confounding variables of sex, age at diagnosis, and tumor 

histology reduced the significance of correlation of mesenchymal cells with poor survival 

(Supplementary Figure 3B+C, Supplementary Table 1). Although not significant, high 

lymphocyte abundance predicted better prognosis, while a higher number of plasma cells 

predicted worse prognosis (Supplementary Figure 3B+C).

DISCUSSION

While there are many methods to investigate the TME, some of these methods are expensive, 

time consuming, and often destroy the sample in the process of data generation. We present 

utilizing a HALO® AI nuclear phenotyper algorithm to examine the TME in NSCLC. This 

method boasts low overall costs, quick turnaround, and the ability to retain the original 

sample. Using both human and mouse histology samples, we were able to demonstrate 

the algorithm’s ability to identify varied TME cell types, validating it as a tool for 

researchers, and as a potential clinical tool for the selection of appropriate treatments. Using 

GEMMS that have known immune cell tropisms, we confirmed that the nuclear phenotyping 

algorithm works very well to define the neutrophil and macrophage populations in lung 

cancer. This is one of the many ways in which this software can be used to differentiate 

between the microenvironments of these subtypes of NSCLC. We further confirmed the 

efficacy of the algorithm by assessing lymph node sections, comparing the algorithm’s 

results to a more traditional IHC staining for CD3. The algorithm performed very well with 

each of these known data-sets and was able to provide additional information about the 

abundant cell types in the GEMMs examined.
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In a patient sample tissue microarray, the AI nuclear phenotyper provided a rapid and 

simple way to study the correlation of the different cell types at the tumor site. Our data 

demonstrate that neutrophils and lymphocytes are highly negatively correlated in human 

NSCLCs. This finding is in agreement with fresh patient tissue flow cytometry, which 

demonstrated that neutrophils are negatively correlated to CD8+ T cells 24. Given that CD8+ 

T cells are responsible for the elimination of malignant epithelial cells in immunotherapy 

contexts, a high neutrophil/low lymphocyte tumor may not respond well to immunotherapy, 

and this appears to be the case in patient samples 33. Furthermore, we show a strong negative 

correlation between mesenchymal cells and lymphocytes, and this is an additional avenue 

that could be explored for immunotherapy response. Given that the mesenchymal cell 

population also correlated with poor prognosis, further characterizing this heterogenous will 

be an important next step. Lastly, we observed numerous plasma cells in human NSCLCs, 

and recent reports have demonstrated that plasma cells may have a negative correlation 

to survival in lung cancer patients 34,35. These findings emphasize the importance of this 

program as a tool for researchers to understand the function of the TME, and the potential of 

this method to help determine patient treatment strategies. This easy-to-implement approach 

allows for specific understanding of the TME at the site of the tumor itself, and has potential 

to allow researchers to further investigate how abundance of different cell types influences 

the efficacy of therapies.

The data described here do not represent the first instance where AI has been suggested as 

a potential prognostic technique for histopathology. In fact, it has been predicted that AI 

will become a useful, if not necessary, tool for pathologists to triage slide analysis, quantify 

phenotypes and even to predict genetic alterations 36,37. However, there remain concerns 

about the ability of AI techniques to accurately differentiate between histopathologies, 

particularly if the algorithm was not trained on certain distinct patterns. Among proponents 

of the AI, it is widely accepted that the rigor of these algorithms will need to be tested 

abundantly to prove that their efficiency is equal to that of a pathologist before they are 

implemented as a prognostic technique 37. Therefore, the immediate implications of this 

technique are to allow translational research to begin to adopt this technique while further 

clinical validation is ongoing. While we specifically study NSCLC, we believe this artificial 

intelligence-based cell detection algorithm will have wider utility in many other diseases 

characterized by heterogenous chronic inflammation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Artificial Intelligence identifies nuclear phenotypes in human and mouse lung cancers
A) H&E-stained sample from a patient with squamous cell carcinoma (left). Same H&E-

stained image with different cell types identified by the HALO AI nuclear phenotyping 

algorithm overlaid with corresponding colors (right). Zoomed images show more detail of 

the different cell types identified in the tumor immune microenvironment. B) H&E-stained 

sample from KrasG12D/Lkb1-null mouse with squamous cell carcinoma (left), with the cell 

types identified by the HALO AI algorithm (right). Cell types are color-coded: epithelial/

tumor cells (red), mesenchymal cells (dark blue), neutrophils (light blue), plasma cells 

(orange), lymphocytes (green), and macrophages (yellow).
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Figure 2: HALO AI nuclear phenotyper algorithm accurately identifies cell types
A) Representative CD3 IHC staining of lung tumor with abundant tumor-infiltrating 

lymphocytes. Lymphocytes in the IHC are stained with anti-CD3 antibody and stained 

brown (left) with HALO AI nuclear phenotyping algorithm overlaid on the H&E-stained 

section (right). B) Correlation of percentages of CD3+ cells versus lymphocytes identified 

by HALO AI are graphed with Pearson’s correlation coefficient and R2 values indicated 

on graph, n= 24 mice total. C) Representative F4/80 IHC staining of lung tumor with 

abundant tumor-infiltrating lymphocytes. Lymphocytes in the IHC are stained with anti-

F4/80 antibody and stained brown (left) with HALO AI nuclear phenotyping algorithm 

overlaid on the H&E-stained section (right). D) Correlation of percentages of F4/80+ 

cells versus macrophages identified by HALO AI are graphed with Pearson’s correlation 

coefficient and R2 values indicated on graph, n= 24 mice total.
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Figure 3: Diverse genotypes of murine lung adenocarcinomas have predominant macrophage 
infiltration
A-D) Representative H&E-stained sections with different cell types identified by the 

HALO® AI nuclear phenotyping algorithm. Pie charts represent percentages of non-

epithelial cells. A) KRASG12D/p53-null lung adenocarcinomas, n=8. B) PIK3CAE545K/p53-
null lung adenocarcinomas, n=6. C) EGFRT790M/L858R lung adenocarcinomas, n=6. D) 
KRASG12D/Lkb1-null adenocarcinomas, n=9.
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Figure 4: Neutrophil infiltration predominates in genetically-defined murine lung squamous cell 
carcinomas
A+B) Representative H&E-stained sections with different cell types identified by the 

HALO® AI nuclear phenotyping algorithm. Pie charts represent percentages of non-

epithelial cells. A) KRASG12D/Lkb1-null squamous cell carcinomas, n=6. B) Lkb1-null/
Pten-null squamous cell carcinoma, n=6. C) Bar graph represents proportion of non-

epithelial nuclei for the indicated genetic mouse models of NSCLC, plotted as mean +/− 

SEM. * indicates p<0.02, ** p<0.006, *** p<0.001, **** p<0.0001 by one-way ANOVA 

with multiple comparisons and Holm-Šídák's multiple comparisons test.
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Figure 5: HALO AI nuclear phenotyper illustrates heterogeneity in patient NSCLC samples
A) Representative human squamous cell carcinoma. B) Representative human 

adenocarcinoma. C) Proportions of the different cell types within the tumor micro-

environment, SCC n=102, ADC n=83, ADSCC n=14, Poorly Differentiated n=17.
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Figure 6: Lymphocytes negatively correlate with neutrophils and mesenchymal cells, and 
mesenchymal cells predict poor prognosis in human samples
A) Correlation plot between percentages of mesenchymal cells and lymphocytes, Pearson’s 

correlation coefficient and p value indicated on graph. B) Correlation plot between 

percentages of neutrophils and lymphocytes, Pearson’s correlation coefficient and p value 

indicated on graph. C) Correlation matrix depicts relationships between all tumor-associated 

cell types. D) Kaplan-Meier survival plot between mesenchymal low vs mesenchymal high 

tumors split at median, p value shown is Mantel-Cox LogRank test, n=216 patients for all 

plots.
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