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SUMMARY

Longitudinal microbiome data provide valuable insight into disease states and clinical responses 

but are challenging to mine and view collectively. To address these limitations, we present 

TaxUMAP, a taxonomically-informed visualization for displaying microbiome states in large 

clinical microbiome datasets. We used TaxUMAP to chart a microbiome atlas of 1,870 cancer 

patients during therapy-induced perturbations. Bacterial density and diversity were positively 

associated, but the trend was reversed in liquid stool. Low diversity states (dominations) remained 

stable after antibiotic treatment, and diverse communities had a broader range of antimicrobial 

resistance genes than dominations. When examining microbiome states associated with risk for 

bacteremia, TaxUMAP revealed that certain Klebsiella species associated with lower risk for 

bacteremia localize in a region of the atlas that is depleted in high-risk enterobacteria. This 

indicated a competitive interaction that was validated experimentally. Thus, TaxUMAP can chart 

comprehensive longitudinal microbiome datasets, enabling insights into microbiome effects on 

human health.

Graphical Abstract
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eTOC

Schluter, Djukovic, Taylor et al. present TaxUMAP—a taxonomically-informed visualization tool 

for microbiome datasets. TaxUMAP charts an atlas of patient microbiome states, facilitating 

the exploration of microbiome effects on health. The authors observed competitive interactions 

between certain low bacteremia risk-associated Klebsiella spp. and other high-risk enterobacteria, 

which they validated experimentally.

INTRODUCTION

The gut microbiome contains the most numerous and diverse bacterial community in the 

human body. Some species of gut bacteria have been associated with human health 1,2, for 

example by reducing the risk of gut colonization by incoming pathogens3,4 . Antibiotics 

perturb the microbiota composition5, reduce the density of strict anaerobes associated 

with resistance to pathogen colonization6,7 and lead to dominations by antibiotic-resistant 

bacteria that increase the risk of bacteremia in immune-compromised patients8,9.

The dominations of the gut microbiome that happen after antibiotics are strongly associated 

with higher risks of bacteremia in cancer patients receiving systemic chemotherapy8,9,14. 

But establishing causal effects for even such strong clinical associations remains difficult. 

Finding the mechanisms underlying other patient outcomes, such as cancer progression 

and response to therapy where any association with microbiome composition is perhaps 

indirect, may be even harder15. Experimental tests of cause-and-effect relationships between 
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the microbiome and host phenotypes are easier in animal models; however, due to different 

ecological and host environments, among other factors, the experimental findings only 

sometimes translate to humans16. Large longitudinal datasets of patient microbiomes 

provide an alternative: the longitudinal data collected from patients—as they experience 

microbiome compositional changes in response to treatments such as antibiotics—could 

be mined to infer relationships of cause and effect17. This is conceptually similar to how 

“natural experiments”, events or policy changes in real life, can enable economists to study 

the impacts of these phenomena in human societies18.

Here we introduce a technique to study large-scale microbiome data in the context of 

clinical and host metadata. The method, called TaxUMAP, extends the Uniform Manifold 

Approximation and Projection (UMAP)19,20 to include hierarchical taxonomic relations 

between the bacterial sequencing variants identified in a sample to cluster microbiome 

community samples with similar global ecosystem features while retaining fine-grained 

differences. We use TaxUMAP to chart an atlas of microbiome compositions using >10,000 

samples from 1,870 patients hospitalized at Memorial Sloan Kettering to receive allogeneic 

hematopoietic stem cell transplantation (allo-HCT)21,22. We use the atlas to explore 

microbiome states associated with a high risk of bloodstream infections. We find a region of 

the atlas enriched for certain species of Klebsiella that seem to exclude other enterobacteria 

associated with a high risk of infection. This observation was intriguing: independent studies 

have shown that the same types of Klebsiella are important for resistance to colonization 

by pathogenic Enterobacteriaceae in mice23,24. We then isolated strains from corresponding 

patient samples and experimentally validated their ability to outcompete pathogenic isolates 

in vitro and in vivo. Our results illustrate how TaxUMAP facilitates the identification of 

ecological mechanisms in the gut microbiome with implications for host health.

RESULTS

TaxUMAP charts an atlas from longitudinal clinical microbiota data.

We built TaxUMAP to visualize a large longitudinal microbiome data set obtained from 

hospitalized cancer patients21 and extract biological insights. Our work has previously 

shown that the microbiome perturbations experienced by these immune-compromised 

patients can exacerbate certain bacterial populations’ health effects and make them more 

visible25. HCT is a complex procedure with three phases: pre-transplant chemotherapeutic 

conditioning (phase I), a prolonged period of low immune cell counts (neutropenia, 

phase II), and immune reconstitution (phase III, Figure 1A). The duration of each phase 

varies among patients. We split samples into early, mid, and late-phase, providing a 

comparable pseudo time point (Figure 1B-D). Anti-infective drugs are administered to 

patients prophylactically during phase I and II and as needed during any phase for patients 

with suspected infections. Antibiotics cause collateral damage to the gut ecosystem5,7,11. 

The microbiota α-diversity tends to drop from phase I to phase II, and to stay low in phase 

III (Figure 1C, D)10.

A fecal microbiome can contain hundreds or even thousands of different bacterial taxa. An 

ideal way to map the microbiome states effectively should reduce the data dimensionality 

without losing crucial detail. Common ordination methods such as principal component 
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analysis (PCA), or principal coordinate analyses using UniFrac distances (PCoA) can be 

applied to allo-HCT patient data, but they only resolve the most frequently observed, low 

diversity, single-taxon enriched microbiota states (Figure 1E) at the expense of many other 

distinct states of microbiota composition that become less visible. The recently developed 

nonlinear dimensionality reduction method UMAP20 is especially useful for working with 

large sample numbers and high data dimensionality26 and reveals microbiota states left 

unclear in other methods (Figure 1F). However, it needs crucial biological similarity 

information in the form of taxonomic relationships between ASVs. To demonstrate this, 

we simulated 1,000 bacterial compositions from 600 AVSs belonging to 30 hypothetical 

species, ten families, and 2 phyla (Figure 1G). While the UMAP places samples with similar 

species composition together, it neglects similarities between samples based on higher 

taxonomic levels (Figure 1F, G). When applying UMAP to our patient samples at the ASV 

level, for example, samples dominated by different ASVs from the genus Akkermansia (in 

shades of purple, highlighted by circles, Figure 1F), or the family Enterobacteriaceae (in 

shades of red, highlighted by rectangles, Figure 1F) end up far from each other.

Our open-source TaxUMAP algorithm combines ecological distance matrices computed at 

different taxonomy levels. Depending on the research question, each taxonomic level can be 

emphasized or disregarded by the user. The resulting taxonomically aware pairwise sample 

distances matrix is the input for UMAP. When applying this technique to our in silico 
data (Figure 1G), formerly separate clusters of samples with different species but similar 

families are now embedded significantly closer together (Figure 1H). In our patient data, 

the highlighted clusters that were artefactually far apart (Figure 1F) are now moved together 

(Figure 1I), facilitating a biologically interpretable visualization.

Atlas annotation with clinical data reveals collateral damage caused by antibiotics.

The TaxUMAP atlas can be annotated by charting clinical metadata onto microbiome states. 

For example, we can see that while the dataset has slightly more men than women, the 

atlas reveals that sex does not play an important role since patients of both sexes visit 

the same regions (Figure 2A). Nor does the underlying disease (Figure 2B). Every patient, 

independent of sex or disease, received antibiotic prophylaxis. Phase I samples fall in the 

bottom left corner of the map (Figure 2C), with the earliest samples (Figure 2D) preceding 

anti-infective treatment (Figure 2E). Antibiotics precede changes in the gut microbiome 

composition, particularly a loss of diversity (Figure 2F) and reduction in the relative 

abundances of obligate anaerobes (Figure 2G, S1A). Alongside these high-level shifts in 

the microbiome, the consistency of stool also changes from well-formed to semi-formed 

and liquid (Figure 2H). The total bacterial density (16S rRNA gene copies per gram of 

stool) varies widely, from ~1010 copies per gram of stool, to almost undetectable in some 

samples (Figure 2I, S1B, limit of detection: 2.84 copies/g stool). Bacterial density correlates 

positively with community diversity in non-liquid samples but negatively in liquid samples 

(Figure S1C). Microbiome compositional data alone suffers from a lack of total population 

density information. Comparing microbiota composition (Figure 1I) with bacterial loads 

(Figure 2I) reveals that states enriched in Streptococacceae or Staphylococcaceae tend 

to have the lowest densities. Similarly, low-diverse states populated predominantly by 

Enterobacteriaceae or Enterococcaceae also exhibit low population densities in many 
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samples; however, they also include samples with high bacterial loads, indicating that 

these bacteria can expand in numbers in the gut during periods where they dominate the 

community (Figure 1I, 2I).

The high temporal frequency of the longitudinal data allows us to analyze consecutive time 

points from the same patient and assess compositional volatility (Figure 2J). We could 

find volatile switches, defined as a compositional turnover of 90% or more between two 

consecutive days, throughout the entire atlas (Figure S1D), indicating that any microbiome 

state in allo-HCT patients is prone to a sudden change. Interestingly, the endpoints of 

volatile switches, which tended to be localized in low-diversity states, also harbored some 

of the most stable states, i.e. where volatility scores were the lowest (Figure 2J, blue). This 

suggests that the microbiota, once injured, may remain depleted, possibly due to continued 

selection pressure, for example by antibiotics or because, according to ecological theory, less 

diverse microbiome ecosystems tend to be more stable27,28.

To test if microbiome domination states persist due to continuous antibiotic pressure, we 

analyzed antibiotic treatment records and correlated them to microbiome composition and 

diversity (Figure S1E). The data showed that several low-diversity intestinal domination 

states could persist beyond the antibiotic administration window. Biodiversity recovered 

slowly after the last day of antibiotic treatment, and the diversity loss had a typical half-life 

of 9 days (Figure S1F). The half-life for eight of the most frequent domination states 

post-antibiotics showed that Enterococcus (the most frequent) has a half-life of 6.4 days 

after antibiotics, while Streptococcus (the second most frequent) has 15.5 days half-life 

(Figure S1G). While antibiotics may persist in the gut lumen even after administration was 

stopped, these results suggest that the persistence of dominations might at least partly be 

due to the nature of the dominating species or the interactions between the rest of the 

microbiome, including the host, with the dominating species.

To understand how antibiotics drive these shifts in microbiome composition, we analyzed 

shotgun metagenomic sequences from 395 samples from 49 unique patients. As done 

before29, we counted each sample’s unique, qualitative antibiotic resistance genes (ARG). 

Plotting the number of unique ARGs identified in each sample on the TaxUMAP suggested 

a negative association with bacterial α-diversity (Figure 2F, K): there were more diverse sets 

of antimicrobial resistance genes in ecologically diverse microbial samples than in samples 

dominated by a single taxon (Figure 2K, S1H). This was an interesting observation because 

domination states tend to occur after antibiotics, and they are assumed to be caused by 

selection pressures benefiting antibiotic resistant taxa. Our results suggest, however, that 

antibiotics, which deplete ecological diversity, act consistent with a model where they purge 

antimicrobial resistance genes from the ecological community that do not convey resistance 

to the applied antibiotic, and thereby these antibiotics may also decrease the diversity of the 

antimicrobial resistance gene pool.

We performed a statistical analysis of the diversity-depleting effects of different 

antibiotics to show how antibiotics can increase the abundance of a specific antimicrobial-

resistance gene. Similar to previous results7, we identified significant associations between 

piperacillin/tazobactam, metronidazole, meropenem and vancomycin with microbiome 
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diversity loss (see Figure S1I for a full list). Then, we investigated which ARGs correlated 

with administering those four antibiotics. As expected, the number of genes statistically 

significantly correlated with the antibiotics was only a fraction of the total number of the 

ARGs (Figure S1J). ARGs significantly associated with resistance to these four antibiotics 

include blaZ (encoding a beta-lactamase) and mecA (an alternative penicillin-binding 

protein) of S. aureus a taxon that in our data increased in abundance with the administration 

of the beta-lactam antibiotic piperacillin/tazobactam, as well as several genes of the vanA 
operon associated with vancomycin resistance in E. faecium, a taxon that increased in 

abundance with the administration of oral vancomycin. We detected vanA in 54.5% of our 

shotgun-sequenced samples, all of which showed a sequence identity of >98% with the 

matched vanA gene of E. faecium (Figure S1K). Vancomycin is among the most frequently 

administered antibiotics in these patients (24.6% of all administrations). We detected the 

presence of vanA in 7,589 samples using a PCR test (Figure S1L). We saw that those 

PCR-positive samples were localized across the TaxUMAP, but more frequently in the 

low-diversity samples dominated by Enterococcus (Figure 2L). This agrees with the notion 

that strong selection for vancomycin resistance, facilitated by the antibiotic-induced loss 

of obligate anaerobe bacteria, which might otherwise hinder its expansion4,30,31, drives 

enterococcal domination. In support of this idea, the patients who were vanA positive 

already in phase I, i.e. before vancomycin prophylaxis, tended to lose more diversity in 

phases II and III (Figure S1M) and become dominated by Enterococcus (Figure S1M).

Risk of bloodstream infection changes with microbiota ecology.

To investigate how strong selection and gut microbiota ecology affect patients’ health, we 

turned to the most immediate impact of altered microbiome community in these patients: the 

translocation of gut bacteria into the blood leading to life-threatening bacteremia32. Previous 

studies have linked gut dominations by Enterococcus and gram negative proteobacteria 

to bacteremia8,9. For our analyses, we, therefore, selected the last stool sample collected 

⩽7 days before a patient developed an enterococcal or gamma proteobacterial bacteremia 

(Figure 3A). This showed—consistent with previous studies—that most enterococcal 

infections followed Enterococcaceae domination and most gamma proteobacterial infections 

followed gamma proteobacteria domination. To identify specific ASVs associated with 

infection, we compiled a list of 10 candidate ASVs that were either the most abundant 

or had the largest increase before infections (see methods). BLAST analysis revealed that 

their 16S rRNA gene sequences matched the bloodstream isolate; each of these 10 ASVs 

are therefore a potential risk factor for gut-to-blood translocation, especially if they were 

enriched in patients who later had a BSI relative to similar patients who did not have 

a BSI. To test this statistically, we conducted a multivariate Bayesian logistic regression 

comparing BSI-cases to matched samples from uninfected patients (methods, Figure 3B); 

the model takes as input the abundances of all 10 candidate ASVs in a stool sample and 

predicts the infection risk (AUC: 0.73, Figure 3C-E). The posterior distributions confirmed 

that 3 out of those 10 ASVs—one belonging to the Enterococcaceae and two to the gamma 

proteobacterial Enterobacteriaceae family—were positively associated with a higher risk of 

infection (Figure 3C). We displayed the calculated risk score predicted by the model on the 

atlas to chart regions of highest infection risk (Figure 3B). While high-risk samples (Figure 

3B) localize in both the Enterococcaceae- and Enterobacteriaceae-dominated regions (Figure 
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3D), the enterobacterial-enriched region (Figure 3B inset) had the highest risk. This region 

is enriched in ASV-3, classified as a group of Escherichia-Shigella and further characterized 

by metagenomic sequencing (Figure 3E, Figure 4).

Interestingly, the model revealed that ASV-36 was negatively associated with infection 

(Figure 3C). Visual inspection of the TaxUMAP confirmed that ASV-36 is enriched in 

a low-risk sub-region of the Enterobacteriaceae-enriched region (Figure 3D). ASV-3 and 

ASV-568, two Enterobacteriaceae taxa positively associated with infection, were highly 

abundant in directly adjacent regions. This suggested that high risk associated ASV-3 may 

not co-occur with low risk associated ASV-36; this exclusion was supported by comparing 

the relative abundances of ASV-3 and ASV-36 across all samples (Figure 3F). ASV-36 had 

made it to the list of 10 candidates because it was highly abundant preceding three BSI cases 

where the bacteria isolated from the patient’s blood were annotated as “Klebsiella sp.”. The 

16S rRNA gene sequence of ASV-36 precisely matches several species of the Klebsiella 
genus, including K. michiganensis and K. oxytoca (Figure S2), but not K. pneumoniae.

Experiments validate ASV-36-Klebsiella ability to exclude bacteria associated with high 
infection risk.

Our analysis so far shows that ASV-36-Klebsiella contribute negatively to the infection risk 

model, and the TaxUMAP suggested this ASV may exclude other bacteria associated with 

higher risk of infection like ASV-3-E. coli. This finding was especially intriguing because 

two recent studies showed in mice that similar strains of Klebsiella could protect against 

pathogenic Enterobacteriaceae by mechanisms of nutrient competition23,24. Our results 

suggest ASV-36-Klebsiella could be an ecological competitor of other bacteria associated 

with high risk of infection in humans.

We then sought to characterize ASV-36-Klebsiella beyond the resolution of 16S amplicon 

sequencing. We first analyzed the subset of 16 shotgun-sequenced samples from 4 unique 

patients containing ASV-36-Klebsiella and identified eight metagenomically-assembled 

genomes (MAGs, Figure S2). Two of those MAGs came from one patient and matched 

K. michiganensis; six other MAGs came from another patient and matched K. grimontii. We 

then obtained 17 strain isolates by plating patients’ stool samples on selective MacConkey 

agar (Table S1). Whole genome sequencing allowed the construction of a phylogenetic 

tree of the 17 ASV-36 isolates, which also comprised type strains and the murine K. 
michiganensis ARO112 strain23, as well as the high-risk associated ASV-3 isolates (Figure 

4A). The tree shows that isolates from the same patient are clonal, indicating a larger inter- 

than intra-individual variability among strains subsumed by ASV-36-Klebsiella. A larger 

phylogenetic tree constructed from our isolates alongside all published genomes containing 

the ASV-36-Klebsiella 16S rRNA gene sequence shows that isolates from three patients 

colocalized in the branch defined mostly by K. michiganensis genomes, while isolates 

obtained from one patient positioned on the branch dominated by K. oxytoca genomes 

(Figure S2). These results indicate that ASV-36-Klebsiella represents several related species 

of Klebsiella, including K. oxytoca and K. michiganensis, but not K. pneumoniae.

The TaxUMAP atlas (Figure 3D) suggested a competitive exclusion between ASV-36-

Klebsiella and other, potentially more virulent Enterobacteriaceae, such as ASV-3. If this 
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was the case, therefore, an established community of ASV-36-Klebsiella would interfere 

with ASV-3 colonization. To validate this mechanism experimentally we isolated 5 different 

ASV-3 strains (Table S1), and confirmed they classify as E. coli. To test our first 

hypothesis—that an established ASV-36-Klebsiella community could prevent ASV-3-E. coli 
colonization, as suggested by the TaxUMAP—we performed a simple experiment to test the 

minimum requirement for such competition. We first established communities of each of 

the 17 isolated strains in vitro by growing them in LB media to stationary phase. We then 

introduced ASV-3-E. coli and measured their growth compared to their growth in a sterile 

LB flask. If ASV-3-E. coli and ASV-36-Klebsiella shared an ecological niche, including 

similar or identical nutrient requirements, we would expect a growth reduction of ASV-3-E. 
coli. Indeed, after 12 more hours of incubation, ASV-3-E. coli reached densities of up to 108 

CFUs when unimpeded by an established ASV-36-Klebsiella (Figure 4B). But the counts 

dropped precipitously if their niche was previously colonized by ASV-36-Klebsiella (Figure 

4B). Out of the 17 ASV-36-Klebsiella isolates, 11 entirely prevented expansion of all five 

tested ASV-3-E. coli isolates (limit of detection: 1x106 CFUs/100μl, see Methods). The 6 

remaining ASV-36-Klebsiella isolates also strongly inhibited expansion of ASV-3-E. coli. 
In summary, every one of the tested ASV-36-Klebsiella isolates prevented expansion of 

ASV-3-E. coli. This, together with the findings from ARO112 in mice23, suggests that the 

phenotype of ecological exclusion is conserved across a taxonomic group that includes K. 
oxytoca and K. michiganensis, potentially explaining the pattern seen on the TaxUMAP 

which suggests mutual exclusivity (Figure 3D).

In vitro competition reveals carbon sources that provide an advantage to ASV-36-Klebsiella 
over ASV-3-E. coli.

In order to determine the conditions that would favor ASV-36-Klebsiella versus ASV-3-E. 
coli, we quantified their fitness ratio through direct competition in BIOLOG Phenotype 

MicroArray- PM1 and PM2a plates containing 190 different carbon sources. The post-

competition ratio measured after 24h (Figure 5) showed that the majority of the tested 

carbon sources favored ASV-36 in aerobiosis: when we analyzed carbon sources where 

the ASV-36 to ASV-3 ratio was significantly different from the one in the inoculum we 

saw that ASV-36 outcompeted ASV-3 on 76 carbon sources (61%, p<0.05 after multiple 

hypothesis correction from linear mixed-effects model; experiment run in triplicate; Table 

S2). In anaerobic conditions, ASV-36 outcompeted ASV-3 on 59 carbon sources (49%, 

p<0.05 after multiple hypothesis correction, linear mixed-effects model; experiment run in 

triplicate; Table S3). Forty-three of the tested carbon sources favored ASV-36 regardless 

of the presence of oxygen (Figure 5, upper right quadrant). This includes metabolites such 

as the sugars sucrose and maltose, known to be available to gut bacteria and important for 

their fitness33,34. From this observation, we hypothesized the existence of simple common 

chemical characteristics across carbon sources that favor ASV-36; but a correlation of the 

competition index (ASV-36 to ASV-3 ratio) with the molecular weights, as well as with the 

number of carbons in each carbon source showed no significant trend (Figure S3). Of note, 

however, the in vitro experiments revealed that the outcome of the competition in certain 

carbon sources might change with oxygen levels: 10 of the carbon sources that favored 

ASV-3 in anaerobic conditions changed to favoring ASV-36 in aerobic conditions (Figure 5, 

lower right quadrant), while one carbon source worked in the opposite direction, i.e. favoring 
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ASV-36 in anaerobic conditions but ASV-3 in aerobic conditions (D-Lactic Acid Methyl 

Ester, Figure 5, upper left quadrant). This indicates that a switch from anaerobic to aerobic 

environments provides an almost exclusive advantage to ASV-36. All together, these results 

indicate that perturbations which compromise the anaerobiosis of the gut lumen would tend 

to favor ASV-36-Klebsiella.

AS-36-Klebsiella are more competitive in vivo.

Our in vitro assays showed that environmental conditions could alter the outcome of 

competition between ASV-36 and ASV-3. The implications of this context-dependent fitness 

for patients’ microbiomes are difficult to extrapolate: nutrients available in the gut depend 

on several factors including diet35,36 and the microbiome composition of other gut bacteria 

that will also consume and release metabolites37,38. Several factors can impact anaerobiosis, 

including the host’s intestinal inflammation an epithelial damage39-41, which is frequent in 

allo-HCT patients, and could raise the concentration of oxygen in the lumen.

To evaluate competition between ASV-3 and ASV-36 in vivo, we conducted two types 

of experiments, measuring competition either during simultaneous inoculation (Figure 6A, 

“race scenario”), and in the form of successive invasion into an established community 

(Figure 6B, “invasion scenario”). In both scenarios, we first treated mice with a cocktail of 

antibiotics (ampicillin, vancomycin and neomycin: AVN).

In the first experiment, we mono-colonized mice with ASV-3-E.coli or ASV-36-Klebsiella 
and colonized one group with a mixed culture in 1:1 ratio. Both ASV-3 and ASV-36 could 

colonize the gut after AVN treatment (Figure 6A), and, as expected23, their abundances 

decreased over time during microbiome recovery from antibiotics. A joint analysis with 

a mixed effects model of the CFU time series data indicated that in mono-colonized 

mice, ASV-3 CFU counts decreased 73% faster than ASV-36 counts (coefficient ASV-36: 

−0.045, and ASV-3: −0.078, p<10−3 and p=0.017, respectively) and that this ASV-3 

decrease was further accelerated in the mix with ASV-36 (p=0.06), whereas the ASV-36 

decrease was significantly slowed in presence of ASV-3 (p=0.003). This suggested that 

in co-colonized animals and over time ASV-36 could outcompete ASV-3 (Figure 6A, 

Table S4). Next, to determine if host-induced environmental perturbations impacted the 

advantage of ASV-36 mixed with ASV-3, we conducted an additional experiment (Figure 

6A) where we treated mice with dextran sodium sulfate (DSS) in addition to AVN. DSS 

is a model for inflammatory bowel disease (IBD) that leads to increased oxygenation of 

the gut, perturbs the intestinal barrier function and increases intestinal permeability more so 

than what is typically observed in IBD patients42; DSS treatment thus constitutes a major 

perturbation to epithelial homeostasis that is also expected in chemotherapeutically treated 

cancer patients. In AVN+DSS treated mice inoculated with both ASV-3 and ASV-36, ASV-3 

decreased 240% faster than ASV-36 (coefficient ASV-36: −0.029, and ASV-3: −0.099, 

p<10−3 and p=0.017, respectively), a stronger effect than in mice not treated with DSS 

(Figure 6A). Taken together, these results show that while in mono-colonized mice, both 

ASVs’ CFU counts decrease over time, ASV-36-Klebsiella outcompete ASV-3-E. coli in 
vivo when inoculated simultaneously, and that this competitive advantage is robust to 

extreme environmental perturbations.
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Next, we asked if previous colonization by ASV-36 would impair ASV-3 colonization when 

invading the gut at a later time, or vice versa, similar to our in vitro assay (Figure 4). To 

test this, we first colonized mice with ASV-36 or with ASV-3, and one week later, we 

orally gavaged the other strain (with corresponding mono-colonized controls Figure 6B). 

Consistent with our “race” scenario experiments, we observed an accelerated decline of 

ASV-3 in mice previously colonized by ASV-36 (Figure 6B, p=0.065). In summary, the 

data obtained from our in vivo experiments support a model where ASV-36 colonizes the 

mouse gut more robustly and may benefit from ASV-3 presence, while ASV-3 clearance is 

accelerated in the presence of ASV-36.

DISCUSSION

Here we present TaxUMAP, a taxonomy-aware tool to display large longitudinal clinical 

microbiome data. Across all our samples, antibiotic-exposed and not exposed, the most 

diverse gut microbiota samples—which tended to be those collected prior to antibiotic 

treatment—also harbored the most diverse repertoire of antimicrobial resistance genes. This 

may result from fierce competition between commensal microbes that wield antibiotics to 

kill other species and have counteracting resistance mechanisms as part of the microbial 

warfare arsenal43,44. Antibiotic exposure was associated with reduced microbiota diversity 

and the number of antimicrobial resistance genes. This correlation between the number 

of resistance genes and microbiota diversity may result from selection for resistance to 

specific antibiotics. This finding has implications for interpreting metagenomic counting of 

antimicrobial resistance genes: antibiotics select for specific genes rather than expanding the 

antibiotic resistance gene repertoire overall. Therefore, a large resistance repertoire could be 

part of a diverse microbiome flora. We also saw that microbiota α-diversity correlates with 

the total bacterial load when we corrected for stool consistency. This observation confirms 

that stool consistency is an important—though often neglected—variable45.

Related bacteria can form nutrient-exchanging food webs with potentially mutually 

beneficial effects on their growth37; however, most microbiome species and bacterial 

taxa generally compete with one another28,47-49. Such facilitation or interference could 

reveal tangible microbiome engineering principles if the direction of interactions could be 

identified49. We investigated facilitation or interference between strains with a plausible 

causal health effect on hospitalized patients. The TaxUMAP atlas suggested that ASV-36-

Klebsiella, associated with a reduced risk for BSIs, exclude high BSI-risk associated ASV-3-

E. coli. By testing if high-risk associated ASV-3 isolates would establish themselves in 

an existing community of ASV-36-Klebsiella we confirmed experimentally the exclusion 

suspected from the TaxUMAP visualization.

Such an exclusion effect might be expected when cell densities in an established culture 

are already high. Many nutrients might have been consumed such that newly arriving 

stains fail to grow on this spent medium, but only when the competing strains share 

nutrient requirements and can utilize the same available nutrients rather than facilitate each 

other by cross feeding37. When we tested the growth capacity of ASV-36-Klebsiella and 

ASV-3-E.coli in different nutrient sources we found a range of carbon sources in which 

both strains can grow. Among carbon sources that boosted ASV-36 growth in both aerobic 
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and anaerobic conditions are beta-Methyl-D-Glucoside, D-cellobiose, sucrose, inositol, that 

were previously described to provide growth advantage to protective K. oxytoca strains 

over multidrug-resistant K. pneumoniae24 Interestingly, aerobiosis favored ASV-36 in more 

carbon sources than what was observed in anaerobic conditions. This might be relevant 

for patients receiving antibiotics and suffering from gut inflammation, since both factors 

may increase oxygen in the gut50,51. Thus, our in vitro results demonstrate that ASV-36 

and ASV-3 might compete for a niche and that this competition might be tilted in favor of 

ASV-36 in a more oxygenated environment.

Our experiments in vivo indicate that ASV-36 outcompetes ASV-3, and we provide evidence 

that ASV-36 may interfere with ASV-3. However, since ASV-3 clearance from the gut of 

mice appeared to occur generally more rapidly, the impact of this accelerated clearance 

via interference from ASV-36 in patients is unclear. Nevertheless, when we tested how 

staggered colonization would impact ASV-3 colonization levels, we confirmed that ASV-3 

remained the poorer colonizer when ASV-36 was first to colonize the gut, as well as when 

ASV-3 was given the advantage of the first colonizer.

Our experiments demonstrate that ASV-36 outcompetes ASV-3 both in antibiotic-treated 

animals, with or without an epithelial barrier damaged by DSS, both in simultaneous and 

staggered co-colonization experiments. These results agree with recent mouse studies where 

related strains of Klebsiella competitively excluded pathogenic Enterobacteriaceae23,24. Our 

study indicates that the same mechanism occurs in patients: a low-risk gram-negative 

enterobacterium could exclude the subsequent establishment of pathobiont enterobacteria 

in a perturbed microbiome, thereby reducing the risk of infection. In addition to the ongoing 

attempts to utilize complex consortia for therapeutic approaches, low-risk relatives of health-

risk species may be mined for potential interventions.

STAR METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the lead contact, Dr. Joao B. Xavier (xavierj@mskcc.org).

Materials availability—All unique/stable reagents generated in this study are available 

from the Lead Contact without restriction.

Data and code availability

• Sequencing files generated by whole genome sequencing of bacterial isolates 

have been submitted to NCBI and are publicly available (Table S1 and key 

resources table). Genomes used for the construction of phylogenetic trees are 

publicly available (key resources table). This paper analyzes existing, publicly 

available patients’ data. The accession numbers for the datasets are listed in the 

key resources table.

• The TaxUMAP algorithm is available on GitHub (https://github.com/jsevo/

taxumap). DOI is listed in the key resources table.
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• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Bacterial strains—All bacterial strains were routinely grown on MacConkey agar plates 

(BD MacConkey II agar) in both aerobic and anaerobic conditions at 37°C for 24-48h. 

Anaerobic conditions inside the anaerobic chamber were maintained with a gas mix 

containing 5% carbon dioxide, 7.5% hydrogen and nitrogen as a balance. Hydrogen levels 

were maintained above 3%.

Mouse model—Mice used in this study were C57BL/6J specific pathogen-free mice 

purchased from The Jackson Laboratories. Animals were 6-8 weeks old females. During the 

study, mice were single-housed in autoclaved cages with ad libitum access to autoclaved 

and acidified reverse osmosis water (pH, 2.5 to 2.8) and irradiated feed (LabDiet 5053, 

PMI, St Louis, MO). The animal holding room is maintained at 72 ± 2 °F (21.5 ± 1 °C), 

relative humidity between 30% and 70%, and a 12:12 hour light:dark photoperiod. Animal 

use is approved by Memorial Sloan Kettering Cancer Center's IACUC. The institution’s 

animal care and use program is AAALAC-accredited and operates in accordance with the 

recommendations provided in the Guide.

Human participants—Data obtained from human participants analyzed in this study has 

been previously published and is publicly available. The accession numbers for the datasets 

are listed in the key resources table.

METHOD DETAILS

Isolation of ASV-36 and ASV-3 strains—For isolation, patients’ samples with high 

relative abundance (>90%) of desired ASVs were plated on MacConkey agar plates (BD 

MacConkey II Agar). Plates were incubated in aerobic conditions at 37°C for 24-48h. 

Individual colonies were picked, and Sanger sequenced to confirm their identity based on 

16S rRNA gene. For whole genome sequencing (WGS) a single colony was grown overnight 

in LB liquid media. Next day 1ml of the culture was centrifuged at 15 000rpm for 5 

minutes and pellet was subjected to DNA extraction with Qiagen Fast DNA Stool Mini Kit. 

Nextera XT DNA Library Preparation Kit was used for library generation according to the 

manufacturer's instructions. Libraries were quantified with Quant-iT™ dsDNA Assay Kit, 

normalized and sequenced using MiSeq Reagent Kit V3. Comprehensive Genome Analysis 

tool in PATRIC (Wattam et al., 2017) was used for sequence processing: genomes were 

assembled using SPAdes (Bankevich et al., 2012) and annotated using RAST Tool Kit 

(Brettin et al., 2015). Phylogenetic Tree tool in PATRIC was used for codon tree generation 

from 1,000 randomly selected single-copy genes by using the RAxML (Stamatakis, 2006). 

Genome sequences are available at NCBI (Table S1).

Phylogenetic tree of ASV-36-Klebsiella—The Klebsiella genomes that contain the 

same 16S gene sequence as ASV-36 were obtained from NCBI. The previously studied 

strains K. oxytoca CAV1374, K. oxytoca KCTC1686, K. michiganensis strain ARO112, 

and K. sp. Kd70 TUC-EEAOC were also included and they belong to ASV-36 as well. 
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All Klebsiella genomes including the metagenome-assembled genomes (MAGs) and our 

isolated ASV-36-Klebsiella strains were annotated using prokka (Seemann, 2014) and the 

core genome alignment was generated by roary (Page et al., 2015) to further construct the 

phylogenetic tree using FastTree2 (Price et al., 2010). The K. pneumoniae reference genome 

K. pneumoniae subsp. pneumoniae HS11286 that does not belong to ASV-36 was used to 

root the tree. The species information was taken from the NCBI genome annotation.

Assembly of Klebsiella genomes—The draft genomes were assembled from 16 

shotgun samples (1042X, FMT.0009X, FMT.0009Y, FMT.0103Y, 668DD, 668T, 668EE, 

668Y, 668CC, 668FF, 668X, 668GG, 668Z, 668W, 668MM, 668BB; accessible from 

Bioproject PRJNA545312) which contain at least 1% of ASV-36-Klebsiella based on 16S 

amplicon sequencing. The assembly pipeline was downloaded from the Bhatt lab github 

repository (https://github.com/bhattlab/bhattlab_workflows) and installed locally. Briefly, 

the computational workflows used Megahit (Li et al., 2015) for genome assembly and both 

Metabat2 (Kang et al., 2019) and CONCOCT (Alneberg et al., 2014) for metagenomic 

binning.

Ecological invasion experiments—Competitive exclusion of ASV-3-E. coli isolate 

invasion by resident ASV-36-Klebsiella was tested by challenging established ASV-36-

Klebsiella communities with ASV-3-E. coli. To generate an established ASV-36-Klebsiella 
community to be invaded by ASV-3-E. coli, ASV-36 strains were grown in liquid LB 

medium from fresh overnight culture until reaching stationary phase. To do this ASV-36-

Klebsiella strains AD9, AD10, AD11, AD12, AD30, AD31, AD32, AD33, AD34, AD35, 

AD36, AD37 were grown for 12h and strains AD38, AD39, AD40, AD41, AD42 were 

grown for 20h. The ASV-36-Klebsiella incubation times were selected based on the different 

growth rates among our isolates that resulted in some of the isolates reaching the stationary 

phase earlier than the others. Once the ASV-36-Klebsiella isolates reached the stationary 

phase they were inoculated (1:50) with ASV-3-E. coli isolates in the exponential phase 

of growth. As a control, LB medium not containing ASV-36-Klebsiella culture was also 

inoculated with ASV-3-E. coli. After 12h of incubation in aerobic conditions at 37°C and 

with shaking cultures were plated on MacConkey agar and colony forming units (CFUs) of 

ASV-3-E. coli in mixed cultures were compared to those observed when ASV-3-E. coli were 

grown alone. All ASV-36-Klebsiella isolates were tested against all ASV-3-E. coli isolates 

making a total of 85 tested combinations. The limit of detection was 1x106 CFUs/100μl. 

This limit was due to the fact that detection of both competing strains was done on the 

same agar plate. Overgrowth of ASV-36-Klebsiella on more concentrated plates prevented a 

higher resolution that could allow a lower limit of detection of ASV-3-E. coli.

Competition in different nutrients—To test in which conditions ASV-36-Klebsiella 
might outcompete ASV-3-E.coli we setup in vitro competition assay that tested their growth 

in different carbon sources in BIOLOG Phenotype MicroArray (PM) 1 and 2a in presence 

or absence of oxygen. A single colony of ASV-36 (AD9 strain) and ASV-3 (AD24 strain) 

was used to inoculate 5ml of LB, after which cultures were grown overnight at 37°C and 

with shaking. Next day, both cultures were centrifuged at maximum speed for 5 minutes and 

re-suspended in M9 minimal media lacking carbon source. This washing step was performed 
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twice. After the third and final centrifugation step, strains were re-suspended in M9 minimal 

media until reaching the same OD600 absorbance of 0.05. ASV-36 and ASV-3 were mixed 

in 1:1 ratio and 100ul was aliquoted in each well of the BIOLOG PM1 and PM2a plates. 

Each BIOLOG plate contains 95 different carbon sources and allows for assessing the 

growth capacity of tested strains on each one of them, meaning that we tested 190 carbon 

sources in total. Plates were incubated inside of plate readers at 37°C and with shaking 

both inside the anaerobic chamber (anaerobiosis) and on the bench top (aerobiosis). After 

24h aliquots from each well were serially diluted and plated on MacConkey agar plates. 

ASV-36 and ASV-3 colonies were counted and ASV-36 to ASV-3 ratio was determined for 

each BIOLOG well. The initial inoculum was plated the same way to determine the starting 

ASV-36/ASV-3 ratio. Experiment was done in triplicate. The limit of detection for aerobic 

growth was 1x106 CFUs/100μl, and for anaerobic growth 1x105 CFUs/100μl.

In vivo competition assays—In order to test the outcome of ASV-36-Klebsiella and 

ASV-3-E. coli competition in vivo the following experiment was performed. We treated 

6-8 weeks old C57BL/6J female mice with a cocktail of ampicillin (0.5g/l), vancomycin 

(0.5g/l) and neomycin (1g/l) for one week in drinking water. Antibiotics were changed 

once during the course of the treatment. Animals were single housed in autoclaved cages. 

Autoclaved water supplemented with antibiotics and 5053 irradiated food was provided ad 
libitum. The day after antibiotic cessation animals were orally gavaged with ~107 CFUs 

of ASV-36-Klebsiella, ASV-3-E. coli or 1:1 mix of both strains in PBS. To test whether 

profound epithelial damage could alter the result of competition, one group of animals 

was treated with the same antibiotic cocktail and 3% dextran sodium sulfate (DSS) in 

the drinking water for a week. The water with antibiotics and DSS was changed once, as 

previously mentioned. Animals were orally gavaged with ~107 CFUs of 1:1 mix of ASV-36 

and ASV-3 the day after treatment withdrawal. To test how invasion by ASV-3 and ASV-36 

strains would affect competition in mice that were already colonized with opposite strains, 

mice were treated with the antibiotic cocktail as in the previous experiment. One day after 

removal of the antibiotics two groups of mice were orally gavaged with ~108 CFUs of 

ASV-36 and ASV-3 respectively. After one week the same animals were re-challenged with 

opposite strains (a group that was initially gavaged with ASV-36 was now gavaged with 

~108 CFUs of ASV-3 and vice versa). At the same time, 2 other groups were orally gavaged 

with ~108 CFUs of ASV-36 alone and ~108 CFUs of ASV-3 strain alone as a control. In all 

of the experiments the levels of colonization were monitored by collecting fecal pellets and 

plating them in MacConkey agar plates.

vanA PCR from rectal swabs—Data obtained from clinical records; rectal swabs are 

routinely collected and analyzed for presence of the vanA gene via PCR on the same day a 

corresponding stool sample was taken.

α-diversity calculation—We calculate the inverse Simpson index (s) in sample i based 

upon the n relative ASV abundances (p) using the following equation: si = 1 ∕ ∑j = 1
n pij

2 .

Pseudo time visualization of clinical samples—While HCT is a strictly planned 

therapy, per patient variability arises. This leads to different clinical and medication 
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exposures per patient per day, and for visualization purposes of trends over treatment 

regimens, we harmonize this by introducing a pseudo time that splits each patient’s 

treatment timeline into 9 segments corresponding to 3 points per each of the 3 clinical 

phases. We provide an antibiotic exposure summary table (Table S5) for each of the three 

phases, and visualize antibiotic exposure per treatment day as well as per pseudo timepoints 

(Figure S4).

The TaxUMAP algorithm—The TaxUMAP algorithm is publicly available as a package 

for the Python programming language and as a command line application. We provide 

an extensive online tutorial on https://github.com/jsevo/taxumap, including data used in 

the manuscript, as well as smaller published data sets for exploration. The algorithm 

starts by calculating the sample-by-sample distances on ASV relative abundances. The 

algorithm allows users to choose from a range of different distance metrics; here, we used 

the cityblock distance d on relative abundances throughout, defined as dij = ∑t = 1
T ∣ pt − qt ∣

between samples i and j represented by the composition vectors p and q, i.e. the element-

wise absolute difference in each taxon t out of all T  taxa. Then, the algorithm calculates 

additional sample-by-sample distance metrics based on user-chosen taxonomic aggregations 

of the relative abundances of bacterial taxa. For example, the sample by sample distances 

at the genus level are calculated by first summing the relative abundances of all ASVs 

belonging to the same genus and then calculating the L1-norm (or user defined distance 

metric) across all samples. The ranges of the sample-by-sample cityblock distances are 

the same for each taxonomic aggregation, but their magnitudes are on average equal or 

smaller at higher taxonomic aggregations. The TaxUMAP algorithm allows users to scale 

different taxonomic aggregations by assigning a weight to each aggregation; here we chose 

to weight distances at ASV, family, and phylum level equally, discarding distances at other 

levels. We also set this as the default implementation and explain in the documentation 

and tutorials how to change these settings (Figure S5). For example, a researcher may 

be less interested in phylum-level differences between samples but choose to weigh more 

heavily how dissimilar samples are with respect to their genus composition. The choice 

of the default implementation was inspired by the traditional importance of phylum level 

difference in microbiome samples (Ley et al., 2006), the reported conservation of important 

traits at the family level (Goldford et al., 2018), and the ASV level as the highest resolution 

data available to us. Before applying the UMAP algorithm (McInnes et al., 2018b), 

the weighted distance matrices are added. The UMAP algorithm is then applied with a 

minimum distance of dmin = 0.05 ∕ ∑i = 0
T wi, where wi is the weight at taxon level i of 

T  taxonomy levels, 120 neighbors, 103 epochs. Each of these parameters can be altered by 

the user. We provide recommendations on the minimum distances and neighborhoods in the 

online documentation.

Analysis of TaxUMAP performance—We simulated 1,000 microbiome compositions 

(simSamples) of 600 simulated ASVs (simASVs), with taxonomic relationships assigned 

randomly such that simulated genera will have the same number of simASVs on average, 

the simulated families the same number of genera on average, etc. We simulated 2 phyla, 

with a total of 10 families, with a total of 30 genera for the 600 simASVs. The simASV 

abundances in a simSample were drawn from the distribution of ASV relative abundances 
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observed in our patient dataset, and normalized to ensure they sum to 1 in a simSample. 

We assigned color schemes to the simulated taxonomy that visually separates the two 

simulated phyla (red-orange colors, and blue-green colors, respectively), with a unique 

color for each simulated genus. We then computed UMAP and TaxUMAP projections 

on the L1 sample by sample distances of the simulated dataset. For TaxUMAP, we used 

the same weights per taxonomic level as in the main analyses (i.e. phylum=family=ASV, 

and zero weights for other taxonomic levels). While non-linear dimensionality reduction 

techniques such as TaxUMAP prevent a simple interpretation of local and global distances 

between embedded data points, here we compute the 2-dimensional Euclidean distance 

between simSamples with the same dominant simulated genus in the UMAP or, respectively, 

TaxUMAP embedding, to test the improved visual appearance of TaxUMAP over naïve 

UMAP. We repeated this process for 10 simulated datasets. This enabled a statistical 

analysis of clustering of samples that are simulated to be biologically more similar, i.e. 

have the same dominant genus even if driven by different simASVs.

Identification of risk-associated ASVs—To analyze the associations between the 

microbiome bacterial composition and identified bacteria of a BSI, we sought to associate 

relative ASV abundances with a risk score. For this we took the following steps: 1) match 

BSI organism to its bacterial family, 2) identify a list of candidate translocating ASVs 

in BSI-preceding stool samples, 3) analyze the risk of the ASVs to cause bacteremia by 

comparing their abundances in BSI cases vs. control samples.

Step 2) Identification of candidate taxa: We chose ASV candidates from among ASVs 

belonging to the same family as the BSI causing bacterium. We selected ASVs that 

were most abundant and/or increased the most in the seven days prior to a BSI event. 

The resulting list includes specific candidate translocator ASVs. We appended a single 

ASV, ASV_6997, to this list corresponding to a singleton Citrobacter BSI which could 

not be analyzed as the other, repeatedly observed BSIs. Manual inspection showed that 

the corresponding stool sample prior to the Citrobacter infection (sample 727C) was 

enriched for an Enterobacteriaceae ASV, ASV_6997, the sequence of which was mapped 

to Citrobacter sedlakii via BLAST.

Step 3) Matching case and control samples from uninfected patients: We created a 

matched case-control data set: case samples were the stool samples closest in time prior to a 

BSI event; controls were samples from patients without recorded BSI event chosen such that 

the sex of the patient and the clinical phase of the HCT therapy during which a sample was 

collected matched; we chose 4 controls for every case sample.

Step 3) Bayesian logistic regression: We performed a Bayesian logistic regression using 

the matched cases-control data with a constrained intercept, a, of −1.38, i.e. inverse logit(a) 

= 0.2, such that our model assumes the defined case-control probability a priori, with 

standard Normal predictor coefficient prior distributions. We implemented the model using 

the pymc3 package for the Python programming language and sampled 4 independent 

posterior chains using the No-U-turn sampling method (Homan and Gelman, 2014). For 

posterior predictions, we used the relative abundances of predictor taxa in a given sample 
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and calculated the mean predicted probability of BSI from 10,000 posterior samples with 

an intercept correction a∗ = ap − log((1 − τ) ∕ τ ∗ y ∕ (1 − y)),, where y is the fraction of cases, 

ap the posterior intercept estimate, and τ the population incidence rate of BSIs (King et al., 

2010).

QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis of the patients’ data—In all the analysis of the patients’ data significance 

was defined as a p-value lower than 0.05. For each of the plots the statistical test that was 

applied is stated in the legend of the figure, together with a p-value and sample size. Where 

applicable, confidence intervals are displayed.

Competition in different nutrients—Generalized linear mixed-effects model 

implemented in Matlab 2020a was used to determine which carbon sources had ASV-36 to 

ASV-3 ratio significantly different than the one detected in corresponding starting inoculum. 

Briefly, the model determined how different are ASV-36 CFU counts in each of the tested 

carbon sources with respect to the inoculum and for each of the biological replicates:

ASV36CFUs ∼ 1 + metaboliteCategorical + (1 ∣ Replicate)

where “ASV36CFUs” represents ASV-36 CFUs in a metabolite of interest, 

“metaboliteCategorical” represents 190 different carbon sources and inoculum that is treated 

as the reference category. The distribution used for the model was binomial. The model 

yielded p-values for each of the carbon sources that were then subjected to false discovery 

rate (FDR). Values of FDR that were lower than 0.05 were considered significant. Estimates, 

standard errors (SE), p-values and FDR predicted by the model are displayed in Table S2 

for aerobic conditions and Table S3 for anaerobic. The model was implemented in the 

MATLAB programming language.

In vivo competition assays—A linear mixed-effects model was used to determine the 

effects of ASV-36 presence on ASV-3 CFU counts in colonized mice over time. In all of 

the experiments the levels of colonization were monitored by collecting fecal pellets and 

plating them in MacConkey agar plates. We analyzed ASV-3 or ASV-36 counts over time in 

mono-colonized mice using the model formula:

CFUs ∼ 1 + Time + (1 ∣ MouseID),

where Time is a continuous variable representing the days of the experiment; we accounted 

for repeated measurements from the same mouse by including a random intercept term. 

To analyze the effect of co-existence in co-colonized mice, we jointly inferred interaction 

coefficients between time, mixed inoculation, and DSS addition, pooling information across 

all CFU measurements

CFUs ∼ (1 + Time∗Mix)∗ASV + (1 ∣ MouseID),
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where Mix is a boolean variable that represents co-inoculation and is zero in the mono-

colonized control. The model included interaction terms between Mix and Time, as well as 

the interactions between these combined terms and the ASV measured. To analyze the effect 

of DSS perturbation, we performed a similar analysis and modeled the CFU counts observed 

with the model formula:

CFUs ∼ (1 + Time)∗ASV + (1 ∣ MouseID)

We analyzed the invasion experiment in a similar way. To model the effect of presence of a 

resident ASV on the dynamics of an invader, we modeled the CFU counts observed with the 

formula:

CFUs ∼ (1 + Time∗Resident)∗ASV + (1 ∣ MouseID)

where Resident is a boolean variable that represents the presence of a previously inoculated 

resident, and is zero in the mono-colonized control. Interference results and p-values are 

provided in Table S4.
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HIGHLIGHTS

• TaxUMAP charts a patient microbiome atlas with ecological and clinical 

context

• Biodiversity and bacterial density are generally positively correlated

• Antibiotics deplete biodiversity and reduce the antimicrobial resistance genes’ 

numbers

• Certain Klebsiella spp. are associated with a lower bacteremia risk by gut 

pathogens
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Figure 1. The TaxUMAP algorithm effectively visualizes different microbiome states.
A) Three distinct clinical phases of a HCT therapy. B) Gut microbiome bacterial 

compositions over time from one patient; bars represent the relative taxon abundances 

measured in a stool sample by 16S rRNA gene sequencing. C) Compositions in 12,546 

samples; clinical phases at collection indicated. D) Bacterial α-diversity (inverse Simpson 

index) over pseudo-time by assigning each sample to an early, mid, or late phase of the 

respective clinical phase (shading as per colors in A) during which a sample was obtained; 

mean (black solid) and median (black dashed) diversity (n=12,546, shaded: 95%C.I. of the 

mean). E) ASV level principal component, and principal coordinate plots of all samples 

(unweighted- and weighted UniFrac distances). F) UMAP embedding at the ASV level. G) 

Comparison between UMAP and TaxUMAP on a simulated data set; colors indicate the 

hypothetical genus, indicated on the simulated taxonomy tree, with the highest abundance 

in a sample. H) Euclidean distances between in silico generated samples with the same 

dominant family in UMAP vs. TaxUMAP embedding (n=1,000, ***:p<10−4, Wilcoxon rank 

sum test). I) TaxUMAP embedding of patient samples. E, F, I) color by most abundant 

taxon.
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Figure 2. The atlas of the HCT bacterial gut microbiota using TaxUMAP.
Each scatter plot is accompanied by histograms (grey) of the displayed metadata 

distribution. A) Samples from female and male donors, with B) different diseases. C) 

Samples from different clinical phases; phase I samples are concentrated in a distinct region 

corresponding to D) samples taken early during therapy. In the same region, samples are 

concentrated where no anti-infective administrations were recorded in the 7 days prior to 

sample collection (E). F) Bacterial α-diversity (measured by the inverse Simpson index). G) 

Relative abundances of obligate anaerobe commensal taxa. See also Figure S1A. H) Stool 

composition (liquid, semi-formed, formed stool). I) Total bacterial abundance estimated 

by total 16S gene copy numbers per gram of stool. See also Figure S1B-C. J) Volatility 

of the bacterial community (most volatile in red: volatility >0.9; least volatile in blue: 

volatility<0.1). See also Figure S1D-G. K) Unique antimicrobial resistance phenotypes 

detected per sample. See also Figure S1H-K. L) Vancomycin-resistance conveying vanA 
gene detected in rectal swab. See also Figure S1K-M.
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Figure 3. BSI risk scores across the TaxUMAP suggests reduced risk-associated ASV-36-
Klebsiella may exclude high risk-associated Escherichia.
A) TaxUMAP visualization of samples followed by a BSI within the next week, no 

infection (grey), BSI by gamma proteobacteria (dark red), or enterococcal species (green); 

histogram shows relative frequencies of blood isolate taxa. B) TaxUMAP of the mean a 

posteriori predicted BSI risk per sample from a Bayesian logistic regression comparing 

stool compositions between BSI cases and uninfected patients using the log10-relative 

ASV abundances of 10 predictor ASVs, the histogram shows the distribution of posterior 

risk predictions across all samples; inset: magnified region with the highest predicted risk 

samples. C) Posterior coefficient distributions (circle: mean, box: HDI50, whiskers HDI95). 

D) High risk samples are located in the Enterobacteriaceae dominated TaxUMAP region 

(top: TaxUMAP with samples labeled by the most prevalent taxon as in Figure 1I); ASV-3 

and ASV-568 (increased risk) and ASV-36 (reduced risk) relative abundances across the 

TaxUMAP and in the magnified Enterobacteriaceae dominated region. E) Receiver-operator 

characteristic of the Bayesian model. F) Relative abundances of ASV-3 and ASV-36 

across all samples where Enterobacteriaceae represented the most abundant family (red), 

or not (black). Blood isolate organism abbreviations) EFVR: E. faecium vancomycin 

resistant, Esch: Escherichia, KP: K. pneumoniae, Ebct: Enterobacter, EF: E. faecium, 
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P: Pseudomonas, SM: Stenotrophomonas maltophilia, EVR: Enterococcus vancomycin 

resistant, EFlis: E. faecalis, K: Klebsiella, C: Citrobacter; abbreviations in ROC, E) TPR: 

true positive rate, FPR: false positive rate.
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Figure 4. Ecological interference by ASV-36-Klebsiella isolates prevents expansion of BSI-
associated ASV-3-Escherichia isolates in in vitro competitive exclusion assays.
A) Phylogenetic tree representing 17 ASV-36-Klebsiella isolates and five ASV-3-E. coli 
isolates; colors indicate isolates coming from the same patient. See also Figure S2 and Table 

S1. B) Results of ecological invasion assays. Bars represent mean CFU counts of ASV-3-E. 
coli isolates after 12h of incubation. Rows correspond to each of the ASV-3-E. coli isolates: 

red and orange bars represent isolates grown in absence of a resident ASV-36-Klebsiella 
community; other bars correspond to ASV-3-E. coli CFUs grown in presence of different 

ASV-36-Klebsiella isolates. The colors of the bars and their order indicate which of the 17 

ASV-36-Klebsiella strains represented on the tree in A) was used as a competitor in the 

assay. Error bars: standard deviation, symbols indicate three independent experiments. CFU: 

colony forming unit.
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Figure 5. ASV-36-Klebsiella and ASV-3-E. coli in vitro competition results depend on the 
available nutrients and oxygen concentration.
On the left is the scheme representing the setup of in vitro competition experiments. On 

the right is a scatter plot representing log10 ratio of ASV-36 to ASV-3 after 24 hours of 

growth in 190 tested carbon sources in aerobic and anaerobic conditions. ASV-36-Klebsiella 
outcompetes ASV-3-E. coli in 59 different carbon sources in the absence of oxygen, (upper 

half of the scatter plot; p < 0.05 after multiple hypothesis testing; linear mixed-effects 

model; N=3 independent experiments). In aerobiosis the number of carbon sources that favor 

ASV-36 rises to 76 (right half of the plot; p < 0.05 after multiple hypothesis testing; linear 

mixed-effects model; N=3 independent experiments). In blue are marked carbon sources that 

favor ASV-36, in red those that favor ASV-3 and in gray those in which ASV-36 to ASV-3 

ratio differences were non-significant with respect to the inoculum. The numbers of carbon 

sources favoring ASV-36 (blue) and ASV-3 (red) are displayed. See also Figure S3, Table S2 

and Table S3.
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Figure 6. ASV-36-Klebsiella and ASV-3-E. coli competition in the gut of antibiotic and DSS 
treated animals favors ASV-36.
A) ASV-36-Klebsiella outcompetes ASV-3-E. coli in vivo in a mouse model of antibiotic-

induced co-colonization and in the model of epithelial damage through antibiotic treatment 

in combination with dextran sodium sulfate (DSS) when both strains are inoculated 

simultaneously (“race scenario”). CFU counts collected over time show a significantly 

faster decline of ASV-3 in mix with ASV-36 (p<10−3, linear mixed effects model, N=5 

per group). B) ASV-36-Klebsiella outcompetes ASV-3-E. coli in vivo in a mouse model of 

antibiotic-induced co-colonization when strains are orally gavaged in a staggered manner 

(“invasion scenario”). ASV-3 levels decrease faster in the group of animals pre-colonized 

with ASV-36 (p=0.065, linear mixed effects model; N=5 animals per group). See also Table 

S4.
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Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

AD9 This paper SRR14131380

AD10 This paper SRR14131379

AD11 This paper SRR14131378

AD12 This paper SRR14131376

AD24 This paper SRR14131383

AD25 This paper SRR14131382

AD26 This paper SRR14131381

AD30 This paper SRR14131374

AD31 This paper SRR14131373

AD32 This paper SRR14131372

AD33 This paper SRR14131389

AD34 This paper SRR14131387

AD35 This paper SRR14131386

AD36 This paper SRR14131385

AD37 This paper SRR14131384

AD38 This paper SRR14131400

AD39 This paper SRR14131399

AD40 This paper SRR14131388

AD41 This paper SRR14131377

AD42 This paper SRR14131375

AD48 This paper SRR16077561

AD49 This paper SRR16077560

Chemicals, peptides, and recombinant proteins

Ampicillin Nova Plus Cat#0781-9408-80

Vancomycin hydrochloride Fisher Scientific Cat#J62790.06

Neomycin sulfate hydrate Fisher Scientific Cat#J61499.14

Dextran Sulfate Sodium Salt Fisher Scientific Cat#AAJ6278722

LB broth, Miller Fisher Scientific Cat#BP1426-500

Critical commercial assays

MacConkey agar II Fisher Scientific Cat#B21172X

BIOLOG PM1 plates Fisher Scientific Cat#NC9040419

BIOLOG PM2A plates Fisher Scientific Cat#NC0058821

QIAamp Fast DNA Stool Kit Qiagen Cat#51604

Quant-iT dsDNA Assay Kit, High Sensitivity Invitrogen Cat#Q33120

Nextera XT DNA Library preparation kit Illumina Cat#FC-131-1096

MiSeq Reagent Kit v3 Illumina Cat#15043895
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Deposited data

Liao et al. (2021); Yan et al. (2022) SRA PRJNA394877, PRJNA607574, 
PRJNA606262, PRJNA548153, 
PRJNA545312

Genomes of the isolates reported in this paper This paper PRJNA545312; PRJNA606262; 
PRJNA607574

Genome of Klebsiella sp. Kd70 TUC-EEAOC SRA PRJNA285494

Genome of Klebsiella michiganensis strain ARO112 SRA PRJNA590204

Genome of Klebsiella oxytoca strain CAV1374 SRA PRJNA246471

Genome of Klebsiella oxytoca KCTC 1686 SRA PRJNA65523

Genome of K. pneumoniae subsp. pneumoniae 
HS11286

SRA PRJNA84387

Genome of K. michiganensis DSM25444 SRA PRJNA388837

Genome of K. grimontii 06D021 SRA PRJEB21765

Genome of K. oxytoca DSM5175 SRA PRJNA543274

Genome of E. coli ATCC11775 SRA PRJNA472652

Experimental models: Organisms/strains

Mouse: C57BL6/J The Jackson Laboratory JAX Cat#000664; RRID: 
IMSR_JAX:000664; Room #EM03

Oligonucleotides

PCR for Sanger sequencing: 16S Forward 27F 5’-
AGAGTTTGATCMTGGCTCAG-3’

IDT N/A

PCR for Sanger sequencing: 16S Reverse 803R 5’-
CTACCRGGGTATCTAATCC-3’

IDT N/A

Software and algorithms

TaxUMAP This paper https://github.com/jsjse/taxumap; DOI: 
10.5281/zenodo.7958500

Python v3.7.9 Python python.org

Matlab v2020a Matlab https://www.mathworks.com/products/
matlab.html

Bhatt lab workflow for the genomes’ assembly Siranosian et al., 2022 github.com/bhattlab/bhattlab_workflows

PATRIC Comprehensive Genome Analysis Tool Wattam et al., 2017 https://www.bvbrc.org/app/
ComprehensiveGenomeAnalysis

Prokka Seemann, 2014 https://github.com/tseemann/prokka

Roary Page et al., 2015 https://github.com/sanger-pathogens/Roary

FastTree2 Price et al., 2010 http://www.microbesonline.org/fasttree/

LIFE SCIENCE TABLE WITH EXAMPLES FOR AUTHOR REFERENCE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit monoclonal anti-Snail Cell Signaling Technology Cat#3879S; RRID: AB 2255011

Mouse monoclonal anti-Tubulin (clone DM1A) Sigma-Aldrich Cat#T9026; RRID: AB 477593

Rabbit polyclonal anti-BMAL1 This paper N/A

Bacterial and virus strains

pAAV-hSyn-DIO-hM3D(Gq)-mCherry Krashes et al.1 Addgene AAV5; 44361-AAV5

AAV5-EF1a-DIO-hChR2(H134R)-EYFP Hope Center Viral Vectors Core N/A
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Cowpox virus Brighton Red BEI Resources NR-88

Zika-SMGC-1, GENBANK: KX266255 Isolated from patient (Wang et al.2) N/A

Staphylococcus aureus ATCC ATCC 29213

Streptococcus pyogenes: M1 serotype strain: strain 
SF370; M1 GAS

ATCC ATCC 700294

Biological samples

Healthy adult BA9 brain tissue University of Maryland 
Brain & Tissue Bank; http://
medschool.umaryland.edu/btbank/

Cat#UMB1455

Human hippocampal brain blocks New York Brain Bank http://nybb.hs.columbia.edu/

Patient-derived xenografts (PDX) Children's Oncology Group Cell 
Culture and Xenograft Repository

http://cogcell.org/

Chemicals, peptides, and recombinant proteins

MK-2206 AKT inhibitor Selleck Chemicals S1078; CAS: 1032350-13-2

SB-505124 Sigma-Aldrich S4696; CAS: 694433-59-5 (free base)

Picrotoxin Sigma-Aldrich P1675; CAS: 124-87-8

Human TGF-β R&D 240-B; GenPept: P01137

Activated S6K1 Millipore Cat#14-486

GST-BMAL1 Novus Cat#H00000406-P01

Critical commercial assays

EasyTag EXPRESS 35S Protein Labeling Kit PerkinElmer NEG772014MC

CaspaseGlo 3/7 Promega G8090

TruSeq ChIP Sample Prep Kit Illumina IP-202-1012

Deposited data

Raw and analyzed data This paper GEO: GSE63473

B-RAF RBD (apo) structure This paper PDB: 5J17

Human reference genome NCBI build 37, GRCh37 Genome Reference Consortium http://www.ncbi.nlm.nih.gov/projects/
genome/assembly/grc/human/

Nanog STILT inference This paper; Mendeley Data http://dx.doi.org/10.17632/wx6s4mj7s8.2

Affinity-based mass spectrometry performed with 57 
genes

This paper; Mendeley Data Table S8; http://dx.doi.org/
10.17632/5hvpvspw82.1

Experimental models: Cell lines

Hamster: CHO cells ATCC CRL-11268

D. melanogaster: Cell line S2: S2-DRSC Laboratory of Norbert Perrimon FlyBase: FBtc0000181

Human: Passage 40 H9 ES cells MSKCC stem cell core facility N/A

Human: HUES 8 hESC line (NIH approval number 
NIHhESC-09-0021)

HSCI iPS Core hES Cell Line: HUES-8

Experimental models: Organisms/strains

C. elegans: Strain BC4011: srl-1(s2500) II; 
dpy-18(e364) III; unc-46(e177)rol-3(s1040) V.

Caenorhabditis Genetics Center WB Strain: BC4011; WormBase: 
WBVar00241916

D. melanogaster: RNAi of Sxl: y[1] sc[*] v[1]; 
P{TRiP.HMS00609}attP2

Bloomington Drosophila Stock Center BDSC:34393; FlyBase: FBtp0064874

S. cerevisiae: Strain background: W303 ATCC ATTC: 208353

Mouse: R6/2: B6CBA-Tg(HDexon1)62Gpb/3J The Jackson Laboratory JAX: 006494
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Mouse: OXTRfl/fl: B6.129(SJL)-Oxtrtm1.1Wsy/J The Jackson Laboratory RRID: IMSR_JAX:008471

Zebrafish: Tg(Shha:GFP)t10: t10Tg Neumann and Nuesslein-Volhard3 ZFIN: ZDB-GENO-060207-1

Arabidopsis: 35S::PIF4-YFP, BZR1-CFP Wang et al.4 N/A

Arabidopsis: JYB1021.2: 
pS24(AT5G58010)::cS24:GFP(-G):NOS #1

NASC NASC ID: N70450

Oligonucleotides

siRNA targeting sequence: PIP5K I alpha #1: 
ACACAGUACUCAGUUGAUA

This paper N/A

Primers for XX, see Table SX This paper N/A

Primer: GFP/YFP/CFP Forward: 
GCACGACTTCTTCAAGTCCGCCATGCC

This paper N/A

Morpholino: MO-pax2a 
GGTCTGCTTTGCAGTGAATATCCAT

Gene Tools ZFIN: ZDB-MRPHLNO-061106-5

ACTB (hs01060665_g1) Life Technologies Cat#4331182

RNA sequence: hnRNPA1_ligand: 
UAGGGACUUAGGGUUCUCUCUAGGGACUUAG
GGUUCUCUCUAGGGA

This paper N/A

Recombinant DNA

pLVX-Tight-Puro (TetOn) Clonetech Cat#632162

Plasmid: GFP-Nito This paper N/A

cDNA GH111110 Drosophila Genomics Resource 
Center

DGRC:5666; FlyBase:FBcl0130415

AAV2/1-hsyn-GCaMP6- WPRE Chen et al.5 N/A

Mouse raptor: pLKO mouse shRNA 1 raptor Thoreen et al.6 Addgene Plasmid #21339

Software and algorithms

ImageJ Schneider et al.7 https://imagej.nih.gov/ij/

Bowtie2 Langmead and Salzberg8 http://bowtie-bio.sourceforge.net/bowtie2/
index.shtml

Samtools Li et al.9 http://samtools.sourceforge.net/

Weighted Maximal Information Component Analysis 
v0.9

Rau et al.10 https://github.com/ChristophRau/wMICA

ICS algorithm This paper; Mendeley Data http://dx.doi.org/10.17632/5hvpvspw82.1

Other

Sequence data, analyses, and resources related to the 
ultra-deep sequencing of the AML31 tumor, relapse, 
and matched normal

This paper http://aml31.genome.wustl.edu

Resource website for the AML31 publication This paper https://github.com/chrisamiller/
aml31SuppSite

PHYSICAL SCIENCE TABLE WITH EXAMPLES FOR AUTHOR REFERENCE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

QD605 streptavidin conjugated quantum dot Thermo Fisher Scientific Cat#Q10101MP

Platinum black Sigma-Aldrich Cat#205915

Sodium formate BioUltra, ≥99.0% (NT) Sigma-Aldrich Cat#71359

Chloramphenicol Sigma-Aldrich Cat#C0378
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Carbon dioxide (13C, 99%) (<2% 18O) Cambridge Isotope Laboratories CLM-185-5

Poly(vinylidene fluoride-co-hexafluoropropylene) Sigma-Aldrich 427179

PTFE Hydrophilic Membrane Filters, 0.22 μm, 90 
mm

Scientificfilters.com/TischScientific SF13842

Critical commercial assays

Folic Acid (FA) ELISA kit Alpha Diagnostic International Cat# 0365-0B9

TMT10plex Isobaric Label Reagent Set Thermo Fisher A37725

Surface Plasmon Resonance CM5 kit GE Healthcare Cat#29104988

NanoBRET Target Engagement K-5 kit Promega Cat#N2500

Deposited data

B-RAF RBD (apo) structure This paper PDB: 5J17

Structure of compound 5 This paper; Cambridge 
Crystallographic Data Center

CCDC: 2016466

Code for constraints-based modeling and analysis of 
autotrophic E. coli

This paper https://gitlab.com/elad.noor/sloppy/tree/
master/rubisco

Software and algorithms

Gaussian09 Frish et al.1 https://gaussian.com

Python version 2.7 Python Software Foundation https://www.python.org

ChemDraw Professional 18.0 PerkinElmer https://www.perkinelmer.com/category/
chemdraw

Weighted Maximal Information Component Analysis 
v0.9

Rau et al.2 https://github.com/ChristophRau/wMICA

Other

DASGIP MX4/4 Gas Mixing Module for 4 Vessels 
with a Mass Flow Controller

Eppendorf Cat#76DGMX44

Agilent 1200 series HPLC Agilent Technologies https://www.agilent.com/en/products/
liquid-chromatography

PHI Quantera II XPS ULVAC-PHI, Inc. https://www.ulvacphi.com/en/products/xps/
phi-quantera-ii/
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