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Abstract

Background: The isolation of cell-free DNA (cfDNA) from the bloodstream can be used 

to detect and analyze somatic alterations in circulating tumor DNA (ctDNA) and multiple 

cfDNA targeted sequencing panels are now commercially available for FDA-approved biomarker 

indications to guide treatment. More recently, cfDNA fragmentation patterns have emerged as a 

tool to infer epigenomic and transcriptomic information. However, most of these analyses used 

whole-genome sequencing, which is insufficient to identify FDA-approved biomarker indications 

in a cost-effective manner.

Patients and methods: We used machine-learning models of fragmentation patterns at the first 

coding exon in standard targeted cancer gene cfDNA sequencing panels to distinguish between 

cancer vs. non-cancer patients, as well as the specific tumor type and subtype. We assessed this 

approach in two independent cohorts: a published cohort from GRAIL (breast, lung, and prostate 

cancers, non-cancer, N=198) and an institutional cohort from the University of Wisconsin (UW; 

breast, lung, prostate, bladder cancers, N=320). Each cohort was split 70/30% into training and 

validation sets.

Results: In the UW cohort, training cross validated accuracy was 82.1%, and accuracy in the 

independent validation cohort was 86.6% despite a median ctDNA fraction of only 0.06. In the 

GRAIL cohort, to assess how this approach performs in very low ctDNA fractions, training and 

independent validation were split based on ctDNA fraction. Training cross validated accuracy was 

80.6%, and accuracy in the independent validation cohort was 76.3%. In the validation cohort 

where the ctDNA fractions were all <0.05 and as low as 0.0003, the cancer vs. non-cancer AUC 

was 0.99.

Conclusion: To our knowledge, this is the first study to demonstrate that sequencing from 

targeted cfDNA panels can be utilized to analyze fragmentation patterns to classify cancer types, 

dramatically expanding the potential capabilities of existing clinically used panels at minimal 

additional cost.
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INTRODUCTION

Profiling of genomic driver alterations in cancer has become increasingly important, not 

only for studying the biological underpinnings of cancer, but also in identifying clinically 

actionable alterations for targeted therapies in clinical trials and practice. Historically, tumor 

samples have been required, but obtaining tissue specimens for molecular profiling is 

not always feasible and can be especially challenging in the metastatic setting. Cell-free 

DNA (cfDNA) from cancer patients provides a minimally invasive approach for assessing 

molecular events in the tumor by detecting alterations in the tumor-derived cfDNA, also 

called circulating tumor DNA (ctDNA)1. This is a mature technology, with multiple 

commercially available next-generation sequencing (NGS) ctDNA panels2. These panels 

primarily profile the coding regions of select oncogenes and tumor suppressors, as they are 

designed for the identification of targetable DNA alterations for FDA-approved biomarker 

indications to guide treatment selection.

The stability of cfDNA in circulation is dependent on its association with proteins and 

protein complexes which offer protection against DNAses found in the blood3, 4. The 

nucleosome complex is the most common protector of cfDNA which is reflected in the size 

distribution of cfDNA fragments showing a mode fragment size of 167 bp corresponding to 

the wrapping of DNA around a single nucleosome, with a smaller proportion of fragments 

at 334 bp corresponding to a di-nucleosome complex5–8. Other studies have also described 

smaller peaks at a periodicity of approximately 10 bp at lower fragment sizes representing 

the accessibility of DNA minor grooves to endonuclease cleavage as it wraps around the 

histone complex, as well as the binding of transcription factors or other small DNA binding 

proteins7–11. Distinct fragmentation patterns around the transcription start site (TSS) have 

been shown to reflect binding of transcriptional machinery, and these fragmentation patterns 

have been demonstrated to correlate with gene expression9, 12–16. Additionally, coverage 

depth of ctDNA at both the TSS and the first exon-intron junction have been shown to 

mirror gene expression, with weaker but still significant correlations extending into the 

gene body and transcription termination sites15. The study of cfDNA fragmentation patterns 

has been referred to as “fragmentomics” and cancer patients display unique fragmentomic 

patterns that have been used to non-invasively investigate the biology of the tumor17–19. The 

use of fragmentomics for differentiating between cancer and heathy patients with machine 

learning models has recently been reported through its use to infer nucleosome binding17, 20, 

copy number alterations21, gene expression14, transcription factor binding profiles22, 23, and 

DNAse processing motifs24. These models have also been used to differentiate between 

specific cancer subtypes. For example, the use of fragmentation patters as a surrogate for 

gene expression was able to differentiate between lung adenocarcinoma and squamous 

cell carcinoma with an AUC of 0.9014. Similarly, this study was also able to differentiate 

between molecular subtypes of diffuse large B cell lymphoma (DLBCL) with a strong 

correlation between the predicted subtype and the predictions of standard assays for DLBCL 
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subtype classification14. Recently, the analysis of cfDNA fragmentation patterns around 

known DNA accessibility sites and transcription factor binding sites was able to differentiate 

between ER+ and ER-breast cancer subtypes with an overall AUC of 0.9623. Additionally, 

in silico fragment size filtering has been applied to increase the sensitivity of mutation 

detection, as tumor-derived cfDNA tends to form smaller fragments than cfDNA from 

typical immune cell sources21, 25, 26. However, to our knowledge, none have reported 

successful identification of multiple cancer types.

Almost all clinical fragmentomic studies to date have utilized whole-genome sequencing 

(WGS) to assess fragmentation patterns across the genome in an unbiased manner27. While 

WGS has the advantage of breadth of coverage, there is generally low sequencing depth 

making it unsuitable for cfDNA somatic alteration detection as it has poor sensitivity, 

especially at low ctDNA fractions28. Conversely, cfDNA targeted panels allow for deeper 

sequencing at areas of interest, which are typically coding regions of important cancer 

genes. Previous cfDNA fragmentomics analyses have generally focused on WGS which 

affords probing of fragmentation patterns at all genomic regions in an unbiased manner, as 

the investigated biological phenomena are typically not unique to regions profiled by target 

panels (e.g. exonic regions). For example, many analyses of fragmentation patterns have 

focused on the assessment of histone binding, which requires relatively uniform read support 

across large areas of the genome7, 9, 17, 20, 23. This type of read support is not provided by 

targeted panel sequencing.

While previous studies have focused on fragmentation patterns across the whole genome, 

we hypothesized that cfDNA fragmentation patterns in the coding regions of important 

oncogenes and tumor suppressors could provide important insights for distinguishing 

between tumor and normal samples, as well as between different tumor types and subtypes. 

Given its known association with gene expression9, 14, 15, we specifically focused on 

fragmentation patterns overlapping the first coding exon of targeted genes. To evaluate this, 

we examined the fragmentomic patterns in both a publicly available multi-cancer cfDNA 

dataset profiled using the GRAIL cfDNA assay29, as well as an institutional multi-cancer 

cohort profiled using a custom cfDNA panel. We found that analysis of the fragmentation 

patterns of first coding exons could distinguish between cancer types as well as between 

cancer vs. normal. The use of fragmentation patterns from targeted cfDNA panels would 

allow for the advantages of both variant calling and fragmentomics in a single assay which 

could be leveraged on any existing panels that are already commercially available.

METHODS

UW patient cohort

Peripheral blood samples were collected from patients with metastatic cancer enrolled in 

an IRB-approved liquid biopsy collection protocol at the University of Wisconsin-Madison 

(2014–1214), as well as from two ongoing clinical trials (NCT03090165, NCT03725761).
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UW cfDNA sample collection, preparation, and sequencing

Blood was collected in 10 mL K2 EDTA (BD Vacutainer) or CellSave™ preservative 

blood collection tubes (Menarini Silicon Biosystems). Whole blood was processed within 

4 hours (EDTA) or 36 hours (CellSave) from time of collection and was centrifuged at 

300xg for 10 minutes. Plasma (3–6 mL) was harvested and centrifuged at 1500xg for 10 

minutes, then stored at -80°C. cfDNA was isolated from 2–6mL plasma using the QIAamp 

Circulating Nucleic Acid kit (Qiagen). Germline DNA (gDNA) was isolated from matched 

peripheral blood mononuclear cells using the DNeasy blood and tissue kit (Qiagen) and 

fragmented using the NEBNext Ultra II FS DNA module (New England Biolabs). The 

Agilent Bioanalyzer high sensitivity DNA chip was used to quantify and assess cfDNA 

and fragmented gDNA quality. 50ng cfDNA or 50ng fragmented gDNA were subjected 

to library preparation with unique molecular indexes using the xGen Prism DNA library 

preparation kit (Integrated DNA technologies). For samples with less than 50ng available 

cfDNA, 1, 10, or 25ng DNA input was used. 8–12 libraries were pooled at 500ng per 

library followed by hybridization and capture with a custom 822-gene panel using the 

xGen hybridization capture of DNA libraries kit (Integrated DNA technologies). Paired end 

sequencing (2x150bp) was performed on a NovaSeq 6000 at the University of Wisconsin 

sequencing core, with a target depth of 20 million reads per germline sample and 50 million 

reads per cfDNA sample.

Sequencing data processing

UW sequencing was aligned to the hg38 genome using BWA-mem30 (v0.7.17) followed 

by deduplication of the aligned BAM files with Connor v0.6.1 (https://github.com/umich-

brcf-bioinf/Connor) which uses both start-stop position and UMIs along with filtering of 

low quality reads. A minimum family size threshold of 1 (-s 1) was used to keep all 

unique reads. BAM files were filtered for properly paired reads (samtools flags -f3 -F2308), 

sorted by read name, then converted to BEDPE files using bedtools31 (v2.30.0) bamtobed 

using the -bedpe flag. The start and stop positions of each read were extracted from the 

BEDPE file to yield a BED file of the sequencing reads to use for subsequent overlaps. 

GRAIL cfDNA sequencing data and metadata29 were accessed and downloaded through the 

European Genome Archive (Dataset ID EGAD00001005302). As raw FASTQ files were not 

available, the hg19-prealigned BAM files were deduplicated using start-stop position and 

UMI followed by BAM to BED conversion as described above for the UW samples.

Fragmentomics

For each sample, a global fragmentation distribution was calculated from the BED file by 

extracting the read insert size from the mapped end of the template and the mapped start of 

the template (stop – start) and then counting the number of reads at each size. The number 

of reads at each size was divided by the total number of reads in the sample to return the 

proportion of reads at each fragment size. Individual fragment distributions were plotted 

using the proportion of reads at each fragment size.
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Shannon Entropy for first coding exon

Canonical exon coordinates were downloaded as BED files from the UCSC Genome 

Browser using the Table Browser tool for both hg38 and hg19 (https://genome.ucsc.edu/cgi-

bin/hgTables). The BED file of each cfDNA sample was then overlapped with the respective 

exon file (hg38 for UW data, hg19 for GRAIL data) using bedtools intersect (v2.30.0) to 

yield reads overlapping with canonical exons. A minimum of 1 bp overlap was required 

for a read to be considered overlapped with an exon of interest. Reads overlapping the first 

coding exon of each gene were extracted, and a fragment size distribution was calculated for 

each gene using only the reads overlapping exon 1. Throughout the manuscript, references to 

“exon 1” or “E1SE” refer to the first coding exon of the respective gene or genes. Shannon 

entropy was calculated with the entropy function from the “entropy” package (v1.3.1) in 

R (v4.0.4) using the count of read fragments at each fragment size. This returned a single 

Shannon entropy value for reads overlapping the first exon of each gene in each sample. 

Given the association between the number of fragments analyzed and Shannon entropy 

(Figure 2F), with low fragment count leading to a less accurate estimation of Shannon 

entropy, we required a minimum of 500 reads to overlap an exon across all samples to be 

included in the final dataset.

GRAIL training, cross validation, and independent validation

Using the E1SE values for each gene in the GRAIL panel as features, multinomial 

regression using a generalized linear model with elastic net penalty (GLMNET) was used 

to predict cancer types. Samples were split into 70% training and 30% validation with low 

ctDNA fraction samples placed in the validation cohort. For all model training, a range of 

α and λ values were selected using latin hypercube sampling, and the best AUC on 10-fold 

cross validation was used select the final parameters. To estimate performance in the training 

cohort, 10-fold cross validation was performed, and training and parameter fitting (using 

10-fold cross validation nested within the training set of each fold) was performed within 

each fold separately to avoid any information leakage. Predictions from the hold-out test 

sets for each fold were combined to calculate accuracy and ROC curves. A final model 

was then trained using the full training cohort. The independent validation cohort was then 

entered into the model to yield prediction scores, again with no information leakage between 

training and validation. These prediction scores were used to calculate accuracy and ROC 

curves.

UW training, cross validation, and independent validation

A similar approach was used for the UW cohort, which was also split into 70% training 

and 30% training. However, due to more missing ctDNA fraction data and imbalanced 

tumor types, the split was random while stratifying by tumor type, such that the relative 

proportions were similar across training and validation. Otherwise, training, cross validation, 

and independent validation were all performed the same as in GRAIL.

Identification of somatic mutations in the UW cohort

Somatic variant identification was performed using VarDictJava v1.8.332 in paired sample 

mode using standard filter settings. Somatic mutations were required to have a minimum 
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of 10 supporting reads, a minimum of 20 total reads covering the position, and up to 2 

mismatches in the cfDNA samples, and a minimum of 20 total reads in the matched gDNA 

samples. For SNVs, the average mapping quality of mutation supporting reads was required 

to be at least 50 and the average distance of the mutant allele from the nearest read end 

was required to be at least 15 bases. We then conservatively removed germline mutations 

and somatic mutations related to clonal hematopoiesis of indeterminate potential (CHIP) by 

removing mutations to have more than 1 supporting read in any gDNA sample and removing 

any of 4,938 CHIP related mutations compiled by Bick et al.33. Lastly, mutations in the 

low-complexity genomic regions and shared common mutations in dbSNP (dbSNP_G5) 

were discarded.

Copy number analysis in the UW cohort

Deduplicated BAM files were further filtered for uniquely mapped reads with high mapping 

quality using sambamba v0.8.2 (-F “mapping quality >= 30 and not ([XA] != null or [SA] !

= null)”. Using the deduplicated, filtered, sorted, and indexed bam files as input, we ran 

CNVkit v0.9.934 to call somatic copy number alterations. CNVkit is a read-depth approach 

and utilizes both targeted and non-targeted regions to infer copy number more evenly across 

the genome. An accessibility bed file was created (cnvkit.py access -s 10000) to remove 

unmappable regions (i.e. large stretches of “N” characters) from the reference genome. 

CNVkit was run in batch mode for all cfDNA samples with a flat reference, which assumes 

equal coverage in all bins. Bin-level read depth was corrected for GC content, sequence 

repeats, and target density, and individually compared with the flat reference to calculate 

read depth ratio (log2). Genes with copy number gain or loss were identified using the 

genemetrics command with minimum absolute log2 copy ratio threshold (log2) of 0.5. 

Genes with less than three bins (probes) and read depth (depth) less than 1000 in each 

sample were discarded. CN was only used to compare against E1SE in our analysis. As 

ctDNA fraction impacts both fragmentomic patterns and copy number, copy number was 

therefore not corrected for tumor content.

Estimation of ctDNA fraction in the UW cohort

The proportion of tumor-derived cfDNA (ctDNA fraction) was estimated based on VAF 

of autosomal somatic mutations. VAF in autosomes is elevated if a mutant allele is 

accompanied by deletion of the other allele (i.e., loss of heterozygosity, LOH). Assuming 

a diploid tumor model and that the mutation with the highest VAF displays LOH, ctDNA 

fraction and the highest VAF can be related as ctDNA fraction = 2
1

V AF + 1
. To account for 

stochastic variation, we modeled the mutant allele read count with a binomial distribution 

as suggested by Vandekerkhove et al.35 and calculated what the true VAF would be if the 

observed mutant allele read count was a 95% quantile outlier. After calculating ctDNA 

fraction for each somatic mutation in a given sample, the highest estimate of ctDNA fraction 

was used for the given sample as the mutation with the highest VAF is the most likely to be 

clonal. While the classification of LOH for the highest VAF is an assumption, many other 

reports utilize this method when analyzing targeted cfDNA sequencing15, 35–41. Data for 
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ctDNA fraction for samples from the GRAIL cohort were obtained from their previously 

published report29 in the supplemental data (Source Data Fig. 2; tab “Fig_2f”)

Data Availability

Raw sequencing data from the GRAIL dataset is available at the European Genome Archive 

(Dataset ID EGAD00001005302). Our institutional protocol did not allow unrestricted 

public access to the raw sequencing data. Therefore, data sharing requests must be submitted 

to the University of Wisconsin-Madison for approval. For samples from the two clinical 

trials (NCT03090165, NCT03725761), these trials are still ongoing, and data sharing 

requests must be submitted to the trial organizers.

RESULTS

Overview of two independent targeted ctDNA panels and cohorts

We examined two cohorts of cfDNA profiled using targeted cancer gene exon panels. The 

first was a previously published multi-cancer cohort of 198 cfDNA samples assessed using 

the commercial assay from GRAIL, covering 508 genes (~2MB) at a sequencing depth of 

>60,000X across breast, lung, and prostate cancer patients along with healthy donors29. The 

second cohort was an institutional multi-cancer cohort from the University of Wisconsin 

(UW) with 320 samples across breast, lung, bladder, prostate, and neuroendocrine prostate 

cancers. Profiling was performed using a custom panel broadly covering the exons of 822 

cancer genes, covering ~2.4MB of the genome at an average sequencing depth of 3,042X. 

Details of differences between GRAIL and UW cohorts can be found in Supplemental 

Methods. Previous reports have shown that nucleosome positioning and other DNA-binding 

factors can affect cfDNA fragmentation patters at transcription start sites (TSS) which can 

inform gene expression patterns7, 14. This correlation was shown to additionally extend to 

exon 1 of genes14 which we hypothesized could be used to inform tumor of origin using 

cfDNA sequencing from targeted panels which cover these regions in greater depth. To 

quantify the cfDNA fragmentation patterns at each exon 1 analyzed, the exon 1 Shannon 

entropy (E1SE) of the distribution was calculated which summarizes the diversity of 

fragments in the region. We then use these E1SEs to train models to predict tumor type. 

Both the UW and GRAIL cohorts were split into 70% training in which cross-validation 

was used to assess performance, and 30% independent validation In the GRAIL cohort, 

training was specifically performed on the 70% samples with the highest ctDNA fraction, 

and validation was performed on the lowest 30% by ctDNA fraction (Figure 1).

Fragment distributions in targeted panels

The narrow breadth of genomic coverage in targeted panels compared to WGS may bias 

fragmentomic patterns. When we assessed the total distribution of fragment sizes from 

each targeted panel, the average global fragment distributions within each phenotype 

across both cohorts and assays were similar. In both, we observed a main peak at 167bp 

corresponding to a single nucleosome, as well as a smaller peak at 334bp corresponding to 

two nucleosomes. In addition, we observed subnucleosomal peaks at smaller fragment sizes 

with roughly 10 bp periodicity which likely corresponding to the accessibility of DNA minor 

grooves to endonuclease digestion as the DNA wraps around the histone core, as well as 
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the binding of transcription factors and other DNA-binding proteins7, 8 (Figure 2A, 2B). The 

fragment distribution from these targeted panels was similar to previously published cfDNA 

fragment patterns which use WGS8, 12, 14, 17, 21, 26, 42, suggesting that fragmentomics might 

be successfully applied to targeted exon panels (Figure S1A, S1B).

Fragmentomic patterns from WGS around the transcription start site (TSS), have been 

shown to infer binding of transcriptional complexes, and thus gene expression9, 12–16. 

Previous reports measuring the diversity of fragments in these TSS regions using Shannon 

entropy has found strong correlations between this metric and gene expression14. Repressed 

genes contain high nucleosome occupancy at their TSS, leading to a more uniform 

distribution of fragment reads at 167 bp14, 16, 43–46. In contrast, actively expressed genes 

have more open chromatin at their TSS, allowing the cfDNA originating from this region 

to be cleaved in a more random manner, leading to a more diverse distribution of DNA 

fragment sizes14, 16, 43–46. These changes can be detected out to 2000 bp from the TSS, 

which overlaps most first coding exons7, 14, 47. Additionally, when we compared the 

fragment coverage around the TSS and first coding exon in highly expressed vs. lowly 

expressed genes from deep WGS in a separate cohort48, we found that the lower coverage 

observed at the TSS of highly expressed genes extended well into the first coding exon, 

indicating that fragmentation profiles in the first coding exon are linked to gene expression 

(Figure S2). This is important because the majority of standard targeted cancer gene panels, 

including the GRAIL and UW panels, do not include the TSS in most cases and instead start 

at the first coding exon of targeted genes. Epigenetics of the first coding exon can influence 

transcription49–51, and correlation between gene expression and fragmentomic patterns at 

the first exon of genes14, 16 and at the first exon-intron junction15, 16 have been described.

To assess the diversity of fragment sizes at the first coding exon of each gene, Shannon 

entropies were calculated for each individual gene in the respective sequencing panels for 

each patient using the distribution of fragment sizes overlapping the first coding exon. 

We defined this metric as Exon 1 Shannon Entropy (E1SE). To visualize the relationship 

between E1SE and fragment size distribution, we plotted the fragment distributions of all 

analyzed genes from highest to lowest E1SE within individual samples from each cohort, 

and noted that as expected, high E1SE genes were depleted in fragments around the mode of 

167 bp with an increased proportion of fragments at lower (<120 bp) and higher (>200 bp) 

sizes (Figure 2C, 2D; individual representative sample shown for each cohort). Conversely, 

low E1SE genes displayed a higher proportion of fragments at the mono-nucleosome peak 

(167 bp) suggesting a more closed chromatin structure at exon 1 of those genes. These 

observations are consistent with previously reports which assessed the diversity of cfDNA 

fragments at gene TSSs14. We additionally noted that the E1SE of the androgen receptor 

gene (AR) was significantly higher in prostate cancer samples compared to all other cancer 

types and normal samples in both the GRAIL and UW cohorts (Figure S3A, S3B). Further, 

AR E1SE was observed to be higher in high ctDNA fraction prostate cancer samples, but 

not lung cancer or breast cancer samples, suggesting that the high AR E1SE originates from 

tumor-derived cfDNA (Figure S4). This example highlights how differences in E1SE levels 

could help distinguish between tumor types and subtypes.
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Copy number alterations are common in cancer and can affect the number of reads mapping 

to each gene which could potentially bias the measurement of fragment size diversity via 

E1SE. However, we did not observe a clear relationship between copy number and E1SE 

(Figure 2E). E1SE did start to trend up at very high copy numbers, though this should be 

interpreted with caution as there were only a small number of high copy number genes 

across our samples. Another possible influence on E1SE is the total number of observations 

used in its calculation, which corresponds in our application to the number of fragments 

analyzed per exon. Variation in depth of sequencing at each exon can occur through 

variations in targeted probe pull-down efficiency and other technical factors. To isolate this 

effect from copy number, we analyzed the effect of the number of fragments per exon on 

E1SE only in copy number neutral regions. The total number of reads mapped to an exon 

did not affect E1SE above a count of ~100 (Figure 2F). GC content has also been shown 

to potentially bias cfDNA sequencing and various studies have corrected for this bias when 

performing fragmentomics analyses through shallow whole genome sequencing17, 20, 23. 

However, we did not find a significant correlation between exon 1 GC content and E1SE 

in either cohort (Figure 2G, 2H), possibly because these panels target a much smaller 

proportion of the genome and are comprised primarily of coding DNA. Thus, we sought 

to assess the potential utility of E1SE in classifying and subtyping tumors using targeted 

panel fragmentomics, while simultaneously allowing for standard ctDNA somatic alteration 

identification.

E1SE fragmentomics distinguishes tumor subtypes

First, we examined if the E1SE fragmentation patterns could be used to reliably classify 

different cancer types in our institutional cohort and panel. The UW cohort contained 320 

samples from patients with metastatic disease from six different tumor types: breast cancer 

(N = 100), bladder cancer (N = 22), lung cancer (N = 39), and prostate cancer (N = 144). In 

addition, we had samples from patients with metastatic neuroendocrine prostate cancer (N = 

15, NEPC), a molecularly and clinically distinct subtype of prostate cancer.

Fragmentomic differences are subtle, and many studies use machine learning approaches 

to assess fragmentomic biomarkers. We used elastic-net regression to train a multi-class 

classifier to distinguish the different tumor types in the UW cohort, which was split into 

70% training and 30% independent validation. In the training cohort, we utilized 10-fold 

cross validation to assess performance and compared this to the independent validation. We 

found that in the training cohort, the E1SE model was able to distinguish the different tumor 

types with an overall accuracy of 82.1% on cross-validation. The performance was similar 

in the independent validation cohort, with an overall accuracy of 86.6% (Figure 3A). We 

additionally tested the performance of the model using the middle and last coding exon of 

each gene and found that accuracy was highest when using the first coding exon (Figure S5). 

When we examined the ROC curves for each tumor type, the AUCs for all tumor types were 

≥0.89 (bladder cancer = 0.98, breast cancer = 0.98, lung cancer = 0.89, prostate cancer = 

0.99, NEPC = 1.00, Figure 3B) indicating that E1SE is able to distinguish between tumor 

types and subtypes. These results were achieved despite a median ctDNA fraction of only 

0.06 (Table S1). Prediction accuracy remained high across ctDNA fractions, though numbers 

are small in some subgroups (Figure 3C). We additionally analyzed the prediction scores for 
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each sample within each cancer type to determine if incorrect predictions within a cancer 

type were biased toward a certain cancer. In all cancer types, the majority of samples had 

prediction scores matching the diagnosed cancer type for that patient (Figure 3D).

E1SE fragmentomics distinguishes tumor types and tumor vs. normal in low ctDNA 
fraction samples

Given the multiplicity of targeted cfDNA sequencing platforms currently in clinical and 

research use that can differ quite substantially in targeted genes and depth of sequencing, 

we sought to test whether our approach was reproducible, robust, and independent of 

the specific targeted sequencing panel used. Due to differences in panel construction, an 

independent model would be needed for each platform of interest. We therefore performed 

a similar approach in the GRAIL panel and cohort, which contained 198 samples from 

patients with lung cancer (N=49), breast cancer (N=48), prostate cancer (N=54), as well 

as patients without cancer (N=47)29. Approximately 347 of the genes overlap between 

the GRAIL and UW targeted sequencing panels. Because of the different panel designs, 

model training was performed again using the GRAIL cohort and panel. The median ctDNA 

fraction in the GRAIL cohort was 0.076 and the depth of sequencing was much higher 

than in our institutional cohort allowing an order of magnitude greater resolution of very 

low ctDNA fraction samples. Therefore, we sought to investigate the sensitivity of E1SE in 

distinguishing tumor types and normal samples at low ctDNA fractions. To assess this, we 

split the GRAIL cohort into 70% training and 30% validation based on ctDNA fractions, 

where the validation cohort consisted of the samples with the lowest ctDNA fractions, all 

<0.0481, and the training cohort contains all remaining samples.

We found that in the training cohort, the E1SE model was able to distinguish the different 

tumor types with an overall accuracy of 80.6% on cross-validation. Remarkably, in the 

independent validation, even at these low ctDNA fractions, the E1SE model had an overall 

accuracy of 76.3% (Figure 4A). As with the UW cohort, we additionally tested model 

performance using the middle and last coding exon of each gene and found that accuracy 

was highest when using the first coding exon. (Figure S5). When we examined the ROC 

curves for each tumor type, the AUCs were all ≥0.83 (breast cancer = 0.90, lung cancer = 

0.83, prostate cancer = 0.91, tumor vs. normal = 0.99, Figure 4B). Prediction accuracy was 

high in ctDNA fractions down to 0.001, with an accuracy of 85.7% in samples with ctDNA 

fractions from 0.001 to 0.01 (Figure 4C). Unsurprisingly, accuracy was 0% in predicting 

tumor type in ctDNA fractions <0.001, thus identifying the lower limit of distinguishing 

different tumor types with this approach. Notably, when considering the three tumor types 

grouped together into a single “cancer” category, the accuracy of distinguishing cancer 

samples from normal samples was 100% in samples with ctDNA fraction <0.001, with 

the lowest ctDNA fraction being 0.0003. When we analyzed the prediction scores for each 

cancer type, as with the UW cohort, the majority of samples were correctly predicted as their 

true cancer type (Figure 4D).

Assessing performance as a function of sequencing depth

Since the cost of NGS is not trivial, we wanted to evaluate how performance of the E1SE 

fragmentomics model varied as a function of depth of sequencing. To do this, we performed 
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down-sampling of GRAIL cohort after the de-duplication step as this assessed the effect 

of unique read depth on model performance. Due to the increased depth of sequencing 

from the GRAIL data, we were able to down-sample all samples to 100, 50, 25, 10, 

5, and 1 million de-duplicated reads which correspond to sequencing depths of roughly 

15000X, 7500X, 3750X, 1500X, 750X, and 150X respectively for a 2Mb panel. After 

down-sampling, E1SE were calculated as described above. This down-sampling process was 

repeated ten times at each level to account for variability, and the resulting E1SE tables were 

used for model training, with assessment being performed in the independent validation 

cohort as above. Interestingly, we found that reduced sequencing had only a modest impact 

on model performance, with AUCs between 100 million and 10 million reads remaining 

stable for breast (0.841 vs 0.888), prostate (0.929 vs 0.942), lung (0.814 vs. 0.781), and 

tumor vs. normal (1.00 vs 0.996) (Figure 5A). Predicting tumor vs. normal is particularly 

robust, with the mean AUC remaining close to 1 when down-sampled to 1M reads (AUC 

= 0.996). Similarly, down-sampling was found to have limited effect on the accuracy of 

the model, both overall and within cancer types down to 1 million reads (Figure 5B). 

These results indicate that high levels of depth are not required for tumor type prediction 

using fragmentomics approaches within targeted panels and allows for its application to 

sequencing depths used in standard variant calling.

DISCUSSION

Fragmentomic patterns of cfDNA are non-uniform and may reflect transcriptional and 

epigenetic changes from their cell of origin, thus providing complementary information 

to the ctDNA somatic alteration information currently used in clinical practice. However, 

a major challenge with current fragmentomic approaches is the requirement for WGS, 

which cannot be cost-effectively used to identify somatic alterations and thus is not the 

current standard for clinical assays. Herein, we describe the first fragmentomic approach 

that can use existing targeted cancer gene cfDNA panels to accurately classify tumor 

vs. normal as well as tumor types and subtypes, which performs in the same range 

as commercial WGS fragmentomics approaches17, 18. This approach remains accurate at 

distinguishing different tumor types and subtypes down to a ctDNA fraction of 0.001. 

At this ctDNA fraction, the GRAIL assay only has a sensitivity for detecting variants of 

65–75%28. The ability to distinguish prostate cancer adenocarcinoma from NEPC suggests 

that fragmentomics on targeted panels may also be useful in identifying clinically relevant 

biological subtypes for other cancers, though additional samples are needed to develop such 

signatures. Remarkably, this approach is nearly perfect at distinguishing tumor vs. normal 

samples even in samples with ctDNA fractions ranging from 0.001 to 0.0003. Sensitivity at 

such low ctDNA fractions suggests potential clinical applications such as multi-cancer early 

detection (MCED) and minimal residual disease (MRD) detection.

The applicability of fragmentomics to standard targeted ctDNA panels represents a 

tremendous practical advancement to the field. Most of the existing clinical ctDNA data are 

from this type of assay and will continue to be, barring a precipitous decrease in sequencing 

costs. Fragmentomics represents an essentially “free” orthogonal information stream that 

can complement the somatic alteration detection for which these assays are currently being 

used. A single assay therefore could provide multiple layers of information depending on 
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ctDNA fraction. Tumor type from fragmentomics can be identified reliably down to 0.1% 

ctDNA with high depth of sequencing, lower than many assays can even reliably detect 

somatic alterations28, 52, 53. Below that, tumor vs. normal can still be identified using 

fragmentomic approaches. Since ctDNA fraction is unknown prior to sequencing, a single 

unified assay provides the maximum data regardless, and is also cost effective. In addition, a 

single targeted panel cfDNA sequencing assay allows for maximal use of a plasma sample, 

as splitting a sample for multiple assays can decrease the sensitivity of each, especially 

at very low ctDNA quantities. Of note, while ctDNA fraction is a useful metric for these 

analyses, it is not always possible to obtain due to the lack of germline sequencing, which 

is required for accurate ctDNA fraction estimation. An advantage of our fragmentomics 

approach is that it does not require germline sequencing and could be applied to standard 

commercial target ctDNA sequencing panels which commonly omit germline sequencing.

In conclusion, fragmentomics of standard targeted ctDNA panels is not only feasible, but 

can accurately distinguish tumor site of origin, tumor subtypes, and tumor vs. normal even 

in low ctDNA samples. A single assay combining fragmentomics and somatic alteration 

detection provides tremendous performance, logistical, and cost benefits compared to 

separate assays for each. This approach merits incorporation into all existing and future 

targeted ctDNA studies considering its implementation can be performed without any 

additional sample or additional sequencing cost. The institutional assay described herein 

is currently being tested in multiple clinical trials across cancer types.
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HIGHLIGHTS

• cfDNA fragmentomics in targeted cancer gene panels, not just WGS, can 

infer key phenotypic features of cancer

• Fragmentomics models of standard targeted cfDNA panels can distinguish 

between cancer types and subtypes

• Fragmentomics models of standard targeted cfDNA panels can distinguish 

cancer vs. normal
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Figure 1: Schematic of fragmentomics experimental setup.
Liquid biopsies from patients from two independent cohorts with various cancer types are 

collected and cfDNA is isolated using targeted exon panels. Unique histone distributions 

across cancer types lead to variable fragmentation patterns at targeted exons. Exon 1 shows 

particular variability due to its proximity to promoter regions and is correlated with gene 

expression. The diversity of fragmentation distributions at each coding exon 1 are measured 

via Shannon entropy for each sample. Machine learning models are built to predict tumor 

type for each cohort, with training performed on 70% of the data and 30% withheld for 

validation. Ten-fold cross validation performed on the training data. In the UW cohort, 

samples are randomly selected for training and validation, while the GRAIL cohort is trained 

on high ctDNA samples and validated on low ctDNA samples.
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Figure 2: cfDNA fragmentation patterns from targeted panels
Average total fragment distribution across tumor types in the (A) GRAIL and (B) UW 

datasets respectively. Heatmap of the fragment size distributions at exon 1 across all genes 

from the GRAIL targeted panel (C) and UW targeted panel (D) in a single representative 

sample from each cohort. Genes are ordered by exon 1 Shannon entropy (E1SE) with 

high E1SE genes at the top and low E1SE genes at the bottom. Fragment size proportions 

are normalized within each fragment size across all genes analyzed. Plot demonstrates 

that genes with high E1SE are depleted for fragments near the mono-nucleosome peak 

(167bp) and enriched for fragments at lower (<120 bp) and higher (> 200 bp) sizes, while 

genes with low E1SE display the opposite pattern. (E) Copy number calls from the UW 

cohort compared to Shannon entropy. Copy number was calculated for each gene for each 

patient. Each point represents a single gene-patient pair. Copy number data was binned as 

shown, and Shannon entropy distributions are shown for each bin. E1SE was normalized 
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by centering and scaling on a per-gene basis before plotting. This transforms the E1SE 

distribution for each gene such that the mean is zero and the standard deviation is one, 

eliminating inter-gene variability. Data from all genes and patients are plotted. Only the 

UW cohort was used because the exact panel design was required to accurately determine 

CN, but this was not available for the GRAIL cohort (F) Shannon entropy as a function of 

fragments per exon in the UW cohort at copy number neutral regions (Log2 ratio between 

-0.5 and 0.5). Correlation between GC content and mean Shannon entropy at each exon 

analyzed in the (G) GRAIL cohort and (H) UW cohort.
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Figure 3: Predicting tumor type in the UW panel and cohort
The UW data was split into 70% training and 30% independent validation, the latter of 

which is shown. Performance was assessed by (A) confusion matrix of classifier accuracy in 

CV data comparing predicted vs. actual phenotypes and (B) ROC curves of classifier AUCs 

in CV data. (C) Accuracy as a function of ctDNA fraction in CV data. ctDNA fractions 

ranged from 0.003–0.771. NEPC samples are not shown due to the lack of germline 

sequencing for this cohort which are required for ctDNA fraction estimation. Only samples 

with available germline sequencing, and thus ctDNA fraction estimation, are shown. The 

number of samples in each ctDNA fraction bin are: <0.01: n = 10; 0.01–0.1: n = 21; 0.1–1.0: 

n = 26. (D) Radar plots depicting the prediction score, where each plot represents one 

pathologic diagnosis (noted in bold above the plot), and each line in the plot represents 

model prediction for a single patient. The vertices of each graph represent the continuous 

prediction scores from the E1SE models for each of the predicted phenotypes, with the 
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outer ring denoting a prediction score of 1 and the inner ring a prediction score of 0. For 

each patient, the final model prediction is the highest-scoring predicted phenotype which 

is correct in the majority of cases. The number of predictions for each tumor type are 

noted next to the label of each vertex (matching panel A). Correctly predicted patients are 

represented by colored lines, whereas incorrectly predicted patients are represented by light 

gray lines.

Helzer et al. Page 22

Ann Oncol. Author manuscript; available in PMC 2024 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: Predicting tumor type in the GRAIL panel and cohort
The GRAIL data was split into 70% training and 30% independent validation, the latter of 

which is shown. The validation data contained the lowest ctDNA fraction samples, all <0.05. 

Performance was assessed by (A) confusion matrix of classifier accuracy in validation data 

and (B) ROC curves of classifier AUCs in validation data. (C) Accuracy as a function of 

ctDNA fraction in validation data. ctDNA fractions ranged from 0.0003–0.925 for cancer 

samples. Light grey bars represent normal samples with a ctDNA fraction of 0. The number 

of samples in each ctDNA fraction bin are: 0 (Normal): n = 33; <0.25: n = 28; 0.25–1.0: n 

= 32. (D) Radar plots depicting the prediction score, where each plot represents one specific 

pathologic diagnosis (noted in bold above the plot), and each line in the plot represents the 

model prediction for a single patient. The vertices of each graph represent the continuous 

prediction scores from the E1SE models for each of the predicted phenotypes, with the 

outer ring denoting a prediction score of 1 and the inner ring a prediction score of 0. For 
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each patient, the final model prediction is the highest-scoring predicted phenotype which 

is correct in the majority of cases. The number of predictions for each tumor type are 

noted next to the label of each vertex (matching panel A). Correctly predicted patients are 

represented by colored lines, whereas incorrectly predicted patients are represented by light 

gray lines.
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Figure 5: Effect of downsampling on model performance in the GRAIL cohort
Downsampling of the GRAIL cohort was performed to levels ranging from 100M to 

1M reads 10 times for each downsampling level. For each replicate and downsampling 

level, Shannon entropies were calculated for the fragment distributions at the first exon 

of each gene in the panel as described previously. Training and validation using the new 

downsampled feature tables was performed and results for (A) ROC AUC and (B) accuracy 

are shown for each phenotype in the cohort. Small points represent individual values, large 

solid points represent mean values, and error bars represent +/- 1 standard deviation.
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