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Abstract

Aging is characterized by functional decline occurring alongside changes to several hallmarks 

of aging. One of the hallmarks includes attrition of repeated DNA sequences found at the ends 

of chromosomes called telomeres. While telomere attrition is linked to morbidity and mortality, 

whether and how it causally contributes to lifelong rates of functional decline is unclear. In this 

review, we propose the shelterin-telomere hypothesis of life history, in which telomere-binding 

shelterin proteins translate telomere attrition into a range of physiological outcomes, the extent 

of which may be modulated by currently understudied variation in shelterin protein levels. 

Shelterin proteins may expand the breadth and timing of consequences of telomere attrition, e.g., 

by translating early life adversity into acceleration of the aging process. We consider how the 

pleiotropic roles of shelterin proteins provide novel insights into natural variation in physiology, 

life history, and lifespan. We highlight key open questions that encourage the integrative, 

organismal study of shelterin proteins that enhances our understanding of the contribution of 

the telomere system to aging.
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1. Introduction

Aging is characterized by the lifelong buildup of molecular damage and functional decline 

that increases vulnerability to morbidity and mortality (Gladyshev et al., 2021). Molecular 

damage induced by internal and external factors alters the cellular ‘hallmarks of aging,’ a 

set of age-associated markers that upon accentuation or reversal in the body can accelerate 

or decelerate the pace of aging, respectively (Kennedy et al., 2014; López-Otín et al., 2013, 

2023). Several hallmarks of aging are central biomolecules that when damaged, result in 
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genomic instability, epigenetic changes to gene packaging, and errors in gene transcription 

and translation into proteins. With advancing age, such damage cannot be effectively 

repaired or removed, thereby triggering secondary responses (i.e., cellular senescence, cell 

arrest) that fuel further damage and functional decline. The rate at which molecular and 

cellular damage accumulates over a lifetime varies by individual and can be a strong 

predictor of chronic disease and mortality (Niccoli & Partridge, 2012).

Rapid advancements in omics and computational techniques have leveraged these markers 

of cellular damage to predict aging in a variety of scientific disciplines. Longitudinal studies 

of human and non-human primates explore cellular damage factors that influence lifelong 

patterns of disease and longevity. On the other hand, shorter-lived animal models allow 

for more nuanced attention to the molecular mechanisms underlying aging and provide 

an opportunity to pinpoint the accumulation of lifelong damage starting at a younger age 

(Kinzina et al., 2019). Various biological aging ‘clocks’ use global assessments of these 

biomolecules to predict an individual’s ‘biological age’, with iterations trained to predict 

chronological age, physiological age, expected lifespan, and the rate of functional decline 

(Belsky et al., 2022; Horvath & Raj, 2018; Johnson et al., 2020; Meyer & Schumacher, 

2021). The extent to which the cellular hallmarks of aging – and their respective biological 

clocks – causally drive the aging process is unclear and requires further exploration of the 

physiological and functional outcomes of such measures.

Telomere attrition is one such hallmark of aging that predicts disease risk and early mortality 

(Armanios & Blackburn, 2012; Wang et al., 2018). Telomeres are repeated sequences of 

DNA (i.e., TTAGGG) and associated proteins (i.e., shelterin complex) that cap the ends 

of eukaryotic chromosomes. Telomeres shorten as a consequence of imperfect copying of 

DNA during cellular replication, termed the end replication problem (Olovnikov, 1973). 

Because telomeres track the age (i.e., # divisions) of cells, telomere attrition is largely 

presented as a passive tracker of damage. Only upon reaching a critically short length does 

it act as a failsafe that removes old, dysfunctional cells. As described, telomeres should 

play no causal role in aging until sufficient damage has already occurred, but the reality 

is likely much more complex. In this review, we present telomere regulatory shelterin 

proteins as a potential nexus of telomere biology that contributes to aging and life history 

via telomere-dependent and independent functions, termed the shelterin-telomere hypothesis 
of life history. These proteins may expand the breadth and timing of consequences of 

variation in telomere length, and may act as a bridge translating environmental challenges 

into prolonged effects on the aging process prior to traditional senescence. Our goal is not 

to provide an exhaustive literature review on shelterin proteins, but rather to highlight and 

integrate key empirical and review papers in novel ways. We hope to encourage investigation 

of shelterin proteins across scientific disciplines so that we can expand our understanding of 

telomere attrition as a causal hallmark of aging.

2. Telomere Attrition as a Hallmark of Aging

Telomere length and attrition is a proposed cellular hallmark of aging that tracks 

chronological age to varying degrees in human and non-human vertebrates (Codd et 

al., 2022; Remot et al., 2021). While telomere length can be elongated by the enzyme 
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telomerase, which synthesizes repetitive telomeric sequences (Blackburn et al., 1989), 

the action of telomerase is not typically enough to counteract telomere attrition during 

cell division. Telomere lengthening has been observed in some longitudinal datasets 

(Hatakeyama et al., 2016; Hoelzl et al., 2016; L. Liu et al., 2007; Spurgin et al., 2018; van 

Lieshout et al., 2019) but is typically attributed to measurement error or redistribution and 

replenishment of long-telomere cells by stem cells (Bateson & Nettle, 2017; Epel, 2012). In 

addition to natural shortening due to cell division, telomere attrition can be accelerated via 

stressors like infection, high aerobic activity, and competition in wild animals (Chatelain et 

al., 2020), as well as psychosocial stress, adverse childhood events, and low socioeconomic 

status in humans (Needham et al., 2012; Oliveira et al., 2016; Pepper et al., 2018; Shalev 

et al., 2013). While lifelong telomere length is strongly predicted by telomere length at 

birth (Benetos et al., 2013; Martens et al., 2021), exposure to adversity early in life, when 

telomere attrition is more pronounced, can produce variation among same-age individuals 

later in life (Boonekamp et al., 2014; Nettle et al., 2015; Spurgin et al., 2018), although 

strong longitudinal evidence in humans is scarce (Shalev et al., 2013).

Variation in telomere dynamics in response to internal and external stimuli is regulated by a 

complex set of factors. Metabolic regulators like glucocorticoids (GCs), thyroid, and growth 

hormones are thought to accelerate telomere attrition (Athanasoulia-Kaspar et al., 2018; Lee 

et al., 2021; Matsumoto et al., 2015; Pauliny et al., 2015; Stier et al., 2020). Such hormones 

can alter mitochondrial activity (Du et al., 2009; Short et al., 2008; Wrutniak-Cabello et 

al., 2001) and increase the production of reactive oxygen species (Costantini et al., 2011; 

Holzenberger et al., 2003; Venditti & Meo, 2006), which damage macromolecules like 

DNA. Oxidative damage to telomeric DNA seems particularly robust (Oikawa & Kawanishi, 

1999; von Zglinicki, 2002) and might accelerate telomere attrition, although antioxidants 

can neutralize these reactive oxygen species to prevent telomere loss (Pineda-Pampliega 

et al., 2020; Serra et al., 2003; Tan et al., 2018). However, evidence for the role of 

reactive oxygen species is mixed (Boonekamp et al., 2017; Armstrong & Boonekamp, 2023; 

Reichert & Stier, 2017). Instead, telomere attrition may be a consequence of metabolic shifts 

that deprioritize telomere maintenance during energy-demanding processes like immune 

function and reproduction (Casagrande & Hau, 2019; Casagrande et al., 2020).

In addition, telomere attrition is considered an aging hallmark because it can mirror the pace 

of aging. Telomere attrition often predicts mortality in human and non-human vertebrates 

(Wang et al., 2018; Arbeev et al., 2020; Wilbourn et al., 2018), with early life changes 

to telomere length having a particularly robust and prolonged effect on aging outcomes. 

For example, same-aged juvenile zebra finches with the longest telomeres survive longer 

than their shorter-telomere counterparts (Haussmann et al., 2005; Heidinger et al., 2012). 

In humans, the buildup of shortened telomeres is also linked to higher risk of diseases 

like cardiovascular disease, Alzheimer’s disease, and Type 2 diabetes (Forero et al., 2016; 

Georgin-Lavialle et al., 2010; Yu & Koh, 2022; Zglinicki & Martin-Ruiz, 2005; Zhang et al., 

2016). In addition, the genetic determinants of telomere length (based on single nucleotide 

polymorphisms, SNPs) also predict aging-related outcomes and cancer risk (Haycock et 

al., 2017; Kuo et al., 2019; Zhang et al., 2015), thereby suggesting that telomeres may 

play a causal role in disease state. Furthermore, experimental reversal of telomere attrition 

improves healthspan in rodents (de Jesus et al., 2011; de Jesus et al., 2012). While telomeres 
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are at least correlates of aging, further assessment of the causal effects of telomere attrition 

need to be considered.

3. Shelterin proteins are key to the consequences of telomere attrition

The telomere’s structure largely consists of double-stranded DNA with a single-stranded 

tail, all of which is bound by six distinct shelterin proteins (de Lange, 2018; Figure 1A): 

telomeric repeat-binding factor 1 and 2 (TRF1 and TRF2), repressor activator protein 

1 (RAP1; alias TRF2IP), TRF1-interacting nuclear factor 2 (TIN2; alias TINF2), TIN2-

interacting protein 1 (TPP1), and protection of telomeres 1 (POT1). TRF1 and TRF2 bind 

double-stranded telomeric repeats with aid from TIN2, which also recruits TPP1 and POT1, 

while RAP1 associates with TRF2. Protein binding of telomeric DNA is highly conserved 

across major phyla, with some differences in shelterin protein composition across metazoans 

(Hockemeyer et al., 2006; Myler et al., 2021).

Shelterin proteins act alongside telomeric DNA to stabilize the genome. Blunt telomere 

ends can be misidentified as DNA breaks, thereby triggering DNA repair mechanisms 

(Ciccia & Elledge, 2010) that may fuse chromosome ends and initiate cell-cycle arrest, 

genome instability, and cell death (Cleal & Baird, 2020). Shelterin proteins conceal these 

blunt ends within a protective cap (reviewed in de Lange, 2018; Doksani, 2019; Figure 

1B). In particular, shelterin proteins facilitate telomere looping formations that hide the 

single-stranded telomere end within the double-stranded telomere to prevent DNA damage 

responses (Karlseder et al., 1999; Van Steensel et al., 1998). Similarly, POT1 binding 

of the single-stranded telomere can block master signaling pathways that initiate DNA 

damage responses (Denchi & de Lange, 2007; Hockemeyer et al., 2005). Overall, shelterin 

proteins stabilize telomeres, but critically short telomeres limit shelterin binding and trigger 

cellular consequences. As described below, shelterin proteins likely underlie many known 

and unknown consequences of telomere attrition.

First, shelterin proteins at critically short telomeres cannot effectively cap chromosome 

ends (Griffith et al., 1999), prompting shifts in many hallmarks of aging later in a cell’s 

life (Chakravarti et al., 2021; Figure 2). Cells with short, uncapped telomeres reach 

their ‘Hayflick Limit’ (i.e., maximum # cell divisions; Hayflick & Moorhead, 1961) and 

exhibit cellular senescence (Harley et al., 1990), which is characterized by changes in 

morphology, gene expression, and epigenetics that promote clearance of older damaged cells 

(Van Deursen, 2014). Critically short telomeres also repress regulatory sirtuins and induce 

epigenetic alterations (Amano et al., 2019; Amano & Sahin, 2019; Houtkooper et al., 2012) 

that compromise other hallmarks like mitochondrial function and protein homeostasis (Sahin 

et al., 2011; Westerheide et al., 2009). In addition, cellular senescence in short-telomere 

cells initiates distinct secretory phenotypes that alter intercellular communication (Coppé 

et al., 2008; Van Deursen, 2014). This increases pro-inflammatory cytokines and thus, 

‘inflammaging,’ which influences healthy nearby cells, promotes tissue dysfunction, and 

further exacerbates telomere attrition (Franceschi et al., 2017).

In addition, the age at which senescence is triggered may be modulated by shelterin proteins 

via the enzyme telomerase, which can somewhat repair telomere damage. Many shelterin 
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proteins negatively regulate telomerase activity by blocking it from binding the single-

stranded telomere end (Ancelin et al., 2002; Loayza & de Lange, 2003; Smogorzewska 

et al., 2000; Van Steensel & De Lange, 1997) or more directly influencing telomerase 

expression (e.g., TRF2; Sharma et al., 2021). The TPP1-POT1 protein dimer is thought 

to play the most direct role (Wang et al., 2007; Xu et al., 2019). While POT1 inhibits 

telomerase activity via competitive binding at the telomere end (Laprade et al., 2020), POT1 

and TPP1 together may act to enhance telomerase activity, especially at shorter telomeres 

(Wang et al., 2007; Hockemeyer & Collins, 2015). Age-related or environmentally-induced 

variation in shelterin abundance and availability, which to date is largely unexplored, may 

result in subtle but life-long variation in telomerase activity that builds into robust variation 

in telomere dynamics. Such shelterin mediation of telomerase may therefore influence at 

what age telomeres reach a critically short length to trigger cellular senescence and initiate a 

cascade of changes in other hallmarks of aging.

Moreover, while telomere attrition is largely tied to cellular senescence (Chakravarti et 

al., 2021), shelterin proteins may also translate telomere loss into cellular consequences 

prior to that trigger point. Beyond the telomere end, shelterin proteins also bind at other 

chromosomal sites, including interstitial telomeric sequences at intrachromosomal regions, 

subtelomeres immediately adjacent to the telomere, and to some extent, other coding regions 

of the genome (Martinez et al., 2010; Simonet et al., 2011; Yang et al., 2011). In addition, 

some shelterin proteins interact with proteins outside of the nucleus (e.g., Chen et al., 2012; 

Lian et al., 2013). When bound to DNA, shelterin proteins can modulate transcription, 

as shown with TRF2 (Biroccio et al., 2013; Mukherjee et al., 2018; Zhang et al., 2008), 

or via epigenetic modifications at those sites (Mukherjee et al., 2019; Mukherjee et al., 

2018). Binding affinity of shelterin proteins is higher at telomeric vs extratelomeric sites 

(Biroccio et al., 2013; Diala et al., 2013; Yang et al., 2011), and so early shifts in shelterin 

binding should largely alter transcription without compromising telomere function, although 

additional studies are needed. Critically, shelterin transcriptional regulation (and likely other 

extratelomeric roles) can also be telomere-length dependent (Mukherjee et al., 2018), as 

telomere loss limits shelterin binding at telomeres and shunts them away from the telomere 

end (Gotta et al., 1996; Maillet et al., 1996; Marcand et al., 1996; Figure 1C). Complex 

interactions between shelterin proteins and telomere length may therefore influence aging 

rates prior to cellular senescence.

4. The shelterin-telomere hypothesis of life history

Although telomere length has largely been considered a passive tracker of damage, more 

recent evidence suggests that telomeres can actively regulate physiology and pace of 

life (e.g., telomere position effect; Baur et al., 2001; Robin et al., 2014). Based on 

previous biomolecular work, we propose the shelterin-telomere hypothesis of life history, 

in which shelterin proteins translate changes in telomere length into a range of physiological 

outcomes, the extent of which may be modulated by stress-induced or other sources of 

variation in shelterin protein binding, abundance, and availability. Telomere-independent 

and dependent variation in shelterin protein actions may play a causal role in generating 

variation in physiology, life histories, rates of aging, and lifespan, similar to previous 

hypotheses suggesting that telomeres are an active signal that regulates life history strategies 
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(Bateson & Nettle, 2018; Casagrande & Hau, 2019; Giraudeau et al., 2019; Young, 2018). 

Support for this hypothesis requires an integrative and in-depth look at the environmental 

and molecular drivers of shelterin protein biology, which remains sparse outside of 

molecular research. In the following sections, we expand applications of shelterin protein 

biology to natural variation in physiology and life history and then highlight key open areas 

of research.

5. Applications of shelterin proteins to aging research

5.1 Shelterin proteins may generate variation in physiology and life history traits

Aging and lifespan are an integral part of life history theory. While the use and definition 

of life history theory greatly varies across disciplines (Daniel Nettle & Frankenhuis, 2019), 

it is generally defined as variation occurring as a consequence of natural selection and 

trade-offs among competing processes like self-maintenance (e.g., lifespan), growth, and 

reproduction (Roff, 2002; Stearns, 1992). Life history traits are often placed along a “slow-

fast” continuum – also referred to in some fields as the pace-of-life syndrome (POLS), in 

which “slow” phenotypes include late maturation, slow reproduction, and longer lifespan, 

even applied at the individual level (Réale et al., 2010; see critiques of POLS: Montiglio 

et al., 2018; Royauté et al., 2018; Zietsch & Sidari, 2020). Initial descriptions of the POLS 

suggest that suites of physiological traits coevolve to influence life history (Ricklefs & 

Wikelski, 2002). Here, shelterin proteins may alter the expression of life history traits within 

and among species.

Metabolism is one trait proposed to coevolve with life history, in which some traits or 

strategies (e.g., reproduction, rapid growth) promote higher metabolic rates (Auer et al., 

2018; Chung et al., 2018) that can trade-off with longevity (Glazier, 2015; Wikelski et al., 

2003). That shelterin proteins are linked to metabolic dysfunction hints at their potential 

mechanistic role in individual and taxonomic-level variation in metabolism and other life-

history traits. For example, RAP1 is associated with fatty liver, glucose intolerance, and 

obesity in mice (Martínez et al., 2013; Martinez et al., 2010; Yeung et al., 2013) and 

humans (Åberg et al., 2009; Meyre et al., 2004). Enhanced binding of mouse RAP1 at 

extratelomeric sites, which may be expected with advancing age or at a faster pace of life, 

reduces metabolic transcripts in the liver and promotes metabolic dysfunction (Stock et 

al., 2022). In addition, TIN2 alters major metabolic pathways and mitochondrial efficiency 

(Chen et al., 2012; Kim et al., 2017), which may affect the production of ATP vs metabolic 

heat. Shelterin proteins may not only promote age and telomere-dependent metabolic 

dysfunction, but may also play a role in intra- and interspecific metabolic rates via their 

telomere-independent availability. Shelterin protein binding may therefore alter metabolic 

function and influence energy allocation towards life history traits, but whether this varies 

across the life history spectrum is unclear.

Immune function is another trait linked to life history: fast vs slow strategies may 

differentially invest in costly immune traits (Demas et al., 1997; e.g., Jacques-Hamilton 

et al., 2017; Previtali et al., 2012; Saino et al., 1998; Tieleman, 2018) that in some 

cases trade off with competing processes (Nystrand & Dowling, 2020). Here, shelterin 

proteins may help generate immunological variation across life histories. For example, 
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RAP1 may be a potent modulator of immune function, in which cytosolic RAP1 activates 

the NF-κB pathway (Lian et al., 2013; Teo et al., 2010), a master regulator of immune and 

inflammatory responses (Salminen et al., 2008). In the nucleus, higher RAP1 binding at 

extratelomeric sites also promotes transcription of pro-inflammatory cytokines and immune 

response pathways in mice (Stock et al., 2022). Thus, subtly higher RAP1 actions following 

either telomere attrition or high RAP1 availability (baseline or stress-induced) may alter 

immune function and contribute to intra- and interspecific variation in life histories and rates 

of aging. Clearly, future studies should further expand upon the physiological causes and 

consequences of shelterin protein biology.

5.2 Can shelterin proteins translate early life adversity into aging outcomes?

Early life adversity is a potent exposure linked to aging. In humans, early-life challenges 

like neglect, abuse, and low socioeconomic status predict later-life morbidity and early 

mortality (Barker et al., 2002; O’Rand & Hamil-Luker, 2005; Pesonen & Räikkönen, 2012), 

which is mirrored in studies of resource availability and environmental conditions in wild 

vertebrates (Lindström, 1999; Tung et al., 2016). Interestingly, adverse conditions in early 

life can accelerate telomere attrition (Ridout et al., 2018; Shalev, 2012), and such early 

telomere dynamics often predict adult survival (Benetos et al., 2013; Heidinger et al., 2012). 

However, whether telomere dynamics directly translate early life adversity into later health 

outcomes is unclear. Telomere length is often thought to simply track somatic damage 

(Kawanishi & Oikawa, 2004; von Zglinicki, 2002), at least until short telomeres induce 

senescent phenotypes (Van Deursen, 2014). However, telomere attrition at any age may also 

directly signal immediate shifts in physiology (Entringer et al., 2018). Shelterin proteins 

may be one such mediator linking early adversity to later life outcomes. According to the 

shelterin-telomere hypothesis of life history, early life adversity may accelerate telomere 

attrition and increase shelterin actions away from the telomere, and/or independently alter 

shelterin protein availability (e.g., via gene expression, protein synthesis or degradation, 

Figure 3). Such variation in shelterin protein abundance may then impact physiology and life 

history, as described above.

How early life adversity alters shelterin proteins and their downstream consequences 

depends on whether and how these proteins respond to stress. That stress may alter 

shelterin availability is gaining traction in kinesiology and evolutionary ecology. Exercise 

is considered a physiological stressor that increases gene expression of TRF1 and TRF2 

in mice (Ludlow et al., 2017; Ludlow et al., 2012). Similar results are found in humans 

(but see Chilton et al., 2014; reviewed in Ludlow et al., 2013), in which chronic exercise 

increases several shelterin proteins in lymphocytes and monocytes, despite no changes to 

telomere length (Laye et al., 2012; Werner et al., 2009). Chronic stress may also prime 

higher basal levels of shelterin proteins, as seen in master athletes (Aguiar et al., 2021). In 

this context, high shelterin levels are considered a telo-protective benefit of exercise, but in 

the wild, there is evidence of decreasing shelterin levels following environmental stress. For 

example, in young birds, food limitation leads to lower POT1 gene expression (Wolf et al., 

2022). In addition, higher nest temperatures marginally decrease TRF2 in blood (Stier et al., 

2021), and limited food availability decreases POT1 gene expression in coral (Rouan et al., 
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2021). The timing, magnitude, and type of stressors may influence these shelterin profiles 

but requires further testing.

These theoretical shifts in shelterin availability with early life adversity may lead to 

long-term effects on life history and aging via their extratelomeric effects. However, 

whether up and downregulation of shelterin proteins have opposing effects is unclear 

and likely varies by shelterin protein, although we may generally expect a continuum of 

dose-dependent effects. Subtle increases in shelterin protein levels may safeguard DNA 

from damage (e.g., during exercise; Ludlow et al., 2017; Ludlow et al., 2012), but 

extreme upregulation could accelerate potential pro-aging effects of shelterin proteins. 

On the other hand, subtle decreases in shelterin proteins may physically promote repair 

by telomerase or grant a reprieve from shelterin’s pro-aging effects. Alternatively, lower 

shelterin abundance may reflect a temporary sacrifice of telomere maintenance in favor 

of survival or reproduction during stress (Casagrande & Hau, 2019). However, extreme 

downregulation may increase cancer risk and telomere fragility (Akincilar et al., 2021). 

The study of shelterin dynamics may thus reveal two sides of a coin that promote adaptive 

responses to and negative consequences of stress. Such outcomes may vary by stressor 

and depend on shelterin plasticity, heritability, and age-related changes over the lifetime, 

but these complex interactions are currently unclear. Overall, stress-related regulation of 

shelterin proteins is unstudied and presents a novel opportunity to understand mechanistic 

links between early life adversity and long-term aging outcomes.

5.3 Shelterin proteins and natural variation in longevity

Telomere attrition is a ‘protective’ mechanism that limits cellular proliferation and thus the 

development of cancers. However, abnormal upregulation of telomerase activity nullifies 

such protection and is observed in 90% of cancers (Akincilar et al., 2016). Telomerase 

activity not only repairs telomere length but also promotes cancer progression via changes 

to cell adhesion and migration, cellular replication, and apoptosis (Liu et al., 2016; Rahman 

et al., 2005; Zhou et al., 2009). Cancer biologists have found shelterin dysfunction to be 

a common trait among cancers (reviewed in Akincilar et al., 2021). Loss of any shelterin 

protein can disrupt the formation of shelterin complexes and lead to fragile telomeres that 

are susceptible to cancer. In addition, changes to shelterin proteins often enhance telomerase 

activity or can promote cancer directly, for example, via TRF2’s suppression of innate 

immune responses that protects cancer cells (Biroccio et al., 2013). Further elaboration on 

shelterin’s roles in cancer progression falls outside the bounds of this review (see Akincilar 

et al., 2021; Martínez & Blasco, 2010); however, this body of literature makes a case for 

shelterin proteins as mediators of cellular longevity that may also play a prominent role in 

natural variation in longevity in normal, healthy individuals.

Several studies have identified positive selection or increased abundance of shelterin proteins 

in long-lived species, including TRF1 in naked mole rats (NMRs) and TIN2 in long-lived 

bats and rodents (Kim et al., 2011; Ma et al., 2016; MacRae et al., 2015). Increased 

shelterin abundance may be selected for in long-lived species as a failsafe for cancer 

avoidance. In addition, TRF1 evolution in the NMR may facilitate life in subterranean, 

hypoxic environments: when the NMR TRF1 variant is transfected into mouse cells, those 
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cells enhance energy production and telomere binding under hypoxia (Augereau et al., 

2021). Therefore, selection on shelterin SNPs (and binding affinity) may be particularly 

salient in stressful environments. In addition, young birds with relatively low POT1 mRNA 

abundance are more likely to recruit into the breeding population (i.e., a proxy for survival; 

Wolf et al., 2022). That early shelterin levels predict survival in animals with high extrinsic 

mortality hints that shelterin proteins may push beyond survival to influence reproduction 

and resilience to environmental stress prior to extrinsic death. In fact, low-POT1 is linked 

to fitness in female birds; namely, they bred earlier and were better able to feed offspring 

during sickness (Wolf et al., 2021). The extratelomeric roles of shelterin proteins may 

in part dictate survival outcomes of everyday stressors, but as shown here, may also be 

commandeered to promote the evolution of long-lived species. Clearly, additional studies 

are needed across levels of biological complexity to explore selection on shelterin proteins 

across these levels.

6. Open Questions in Shelterin Protein Biology

Under the shelterin-telomere hypothesis of life history, the effects of shelterin proteins on 

physiology, life history, and aging depend on availability of telomere binding sites and 

fluctuations in shelterin protein availability. While the number of shelterin proteins ready 

for extratelomeric actions may be determined in part by the pace of telomere attrition 

and subsequent shunting of shelterin to other regions of the genome (Mukherjee et al., 

2019), shelterin protein abundance may also independently change in response to a wide 

variety of factors, such as early-life adversity. Detrimental costs of extremely low and high 

shelterin levels (e.g., cancer; Akincilar et al., 2021) suggests there is an optimal shelterin 

abundance, yet the extent to which an individual can viably deviate from that optimum 

without negative consequence is unclear. Manipulations of both telomere-dependent and 

independent fractions of shelterin proteins are critical to understanding their relative 

variability and contributions to downstream effects. This may require the continued use 

of molecular techniques that analyze protein interactions with DNA (i.e., ChIP-seq) as 

well as measurement of telomere length alongside shelterin mRNA and protein abundance. 

Critically, effects of increased extratelomeric shelterin following telomere attrition may be 

exacerbated or nullified by respective increases or decreases in shelterin protein abundance. 

Thus, exploring the determinants and degree of natural variation in shelterin proteins is key 

(see Figure 4).

How does shelterin protein abundance vary across time and tissues?

The strength of shelterin protein responses to stress may change over space and time. For 

example, not much is known about the ontogeny of shelterin proteins with age, but we 

may expect shelterin levels to loosely follow the age-related dynamics of telomere length 

and telomerase activity. As an example, telomere attrition is especially robust and variable 

early in life and then slows into adulthood (Frenck et al., 1998; Ridout et al., 2018; Spurgin 

et al., 2018), although this varies across tissues (Demanelis et al., 2020; Haussmann et 

al., 2004; Haussmann et al., 2007; Ulaner et al., 2001). Similarly, telomerase activity is 

downregulated in tissues with somatic cells early in development, and to a lesser extent 

in proliferating stem cells, a pattern that appears strongest in larger long-lived animals 

Wolf and Shalev Page 9

Neurosci Biobehav Rev. Author manuscript; available in PMC 2024 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Procházková Schrumpfová et al., 2019; Seluanov et al., 2007). We may therefore expect 

similar tissue-specific and age-related decreases in shelterin proteins, and in fact, several 

studies do show decreases in shelterin protein expression with age in mice and zebrafish 

(Ludlow et al., 2012; Wagner et al., 2017), which occur in a tissue and shelterin protein-

specific manner. All in all, the strength of shelterin protein effects on physiology may be 

strongest earlier in life when telomere dynamics are most in flux. Future studies of shelterin 

levels across a species’ lifetime are vital to understanding such developmental variation.

How does shelterin protein abundance respond to stress?

While telomere attrition is typically accelerated by a variety of stressors in human and non-

human vertebrates (Chatelain et al., 2020; Pepper et al., 2018), the extent to which shelterin 

proteins respond to stress is largely unknown. Current evidence shows both increasing and 

decreasing gene expression and/or protein levels in response to stressors like poor resource 

availability and intense exercise (Ludlow et al., 2017; Rouan et al., 2021; Wolf et al., 

2022), but clearly, additional research on shelterin responses to essentially any stressor 

would offer valuable information. Whether the duration of stress exposure or certain types 

of stressors, e.g., metabolic stress vs perceived stress, more strongly influence shelterin 

protein abundance is unclear but may be revealed upon further investigation of the upstream 

regulators of shelterin protein transcription, translation, and degradation. For example, TRF2 

appears regulated by pathways involved in cellular development and homeostasis, such 

as the Wnt/β-catenin signaling pathways (El Maï et al., 2014). Knowing which signaling 

pathways alter shelterin abundance may aid in predicting the environmental factors that most 

influence shelterin proteins dynamics.

What are the downstream physiological and functional consequences of shelterin 
proteins?

Robust manipulations of shelterin proteins have been key to identifying several mechanistic 

pathways that may respond to variation in shelterin expression, but whether this web of 

shelterin-regulated traits is expanded at a broader organismal level is unclear. Outside of 

lab manipulations of shelterin binding at telomeric vs extratelomeric sites, correlations of 

shelterin abundance (gene expression and protein levels) with ecologically-relevant traits 

are severely lacking. Beyond links to metabolism and immune function, shelterin proteins 

are also linked to neural development in humans and fish (e.g., TRF2; Jung et al., 2004; 

Ovando-Roche et al., 2014; Ovando Roche, 2013; Ying et al., 2022), and antioxidant gene 

expression in birds (e.g., POT1; Wolf et al., 2022). Notably, extratelomeric actions of 

shelterin proteins do not seem limited to the nucleus, e.g., TRF2 and RAP1 interactions 

with proteins in the cytoplasm. Altogether, shelterin proteins may contribute to many life 

history and fitness-related traits, and future studies examining natural variation in shelterin 

abundance may reveal additional key physiological connections.

How might selection act on shelterin protein abundance?

That shelterin protein abundance varies and likely alters physiology suggests that selection 

on shelterin proteins could contribute to broadscale variation in life history and aging. 

Variation in shelterin traits that may be the outcome of environmental selection pressures 

have already been reported. Several long-lived species like naked mole rats and certain bats 
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exhibit positive selection on or increased abundance of shelterin proteins (Kim et al., 2011; 

Ma et al., 2016; MacRae et al., 2015). Selection for a longer lifespan may be stronger 

in certain environments, including hypoxic environments like that of the naked mole rat, 

and in species with unique metabolic requirements like flight in bats and birds (Omotoso 

et al., 2021). Sparse evidence shows that shelterin proteins can respond to environmental 

challenges (Ludlow et al., 2017; Rouan et al., 2021; Wolf et al., 2022) and that variation in 

POT1 gene expression is correlated with performance in birds (Wolf et al., 2022). Therefore, 

differential fitness by shelterin proteins in certain environments may select for certain 

shelterin traits. For example, the naked mole rat’s TRF1 protein has evolved in a hypoxic 

environment and facilitates telomere binding and novel glycolytic functions (Augereau et 

al., 2021), suggesting that selection on shelterin protein SNPs, and consequential binding 

affinity, may be evolutionarily relevant. Similar evolution of shelterin proteins may be the 

product of responses to other environments and life histories. Phylogenetic comparisons of 

variation in shelterin SNPs and shelterin abundance would shed light on this question.

7. Conclusion

Telomere attrition has long been established as a ‘hallmark of aging’ that predicts survival, 

health, and longevity; however, the mechanisms underlying such patterns are unclear. In 

this review, we highlighted pleiotropic roles of the telomere-binding shelterin proteins that 

may provide novel insights into natural variation in physiology, life history, and lifespan. 

Under the shelterin-telomere hypothesis of life history, shelterin proteins act as a nexus 

of telomere biology and other hallmarks of aging that translate telomere attrition into 

more immediate shifts in physiology before the onset of senescence. This fundamentally 

shifts our interpretation and use of telomere attrition from a passive tracker of damage 

to an active player that contributes to the lifelong pace of aging. To date, little work on 

shelterin proteins has been done outside of molecular biology, making integrative research 

on shelterin proteins a low hanging fruit that has potential to generate new and exciting 

insights into variation in life history and aging. We call attention to key questions for future 

research and encourage the integrative and organismal study of shelterin proteins to enhance 

our understanding of the telomere system and its contributions to aging.
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Highlights:

• Telomere attrition is a hallmark of aging linked to cellular senescence.

• Regulatory shelterin proteins may translate telomere loss into shifts in 

physiology.

• Shelterin proteins alter gene expression related to life history traits and aging.

• Early adversity may alter lifetime aging via telomere loss and shelterin 

proteins.

• We encourage several lines of integrative research on shelterin protein 

abundance.
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Figure 1. Telomere attrition increases the likelihood of extratelomeric shelterin actions.
(A) The six-subunit shelterin complex binds to telomeric DNA (i.e., typically TTAGGG). 

TRF1 and TRF2 bind to the double-stranded (ds) telomere while POT1 binds the telomere’s 

single-stranded (ss) tail. (B) Shelterin complexes bind repeatedly along the telomere’s 

length and facilitate the formation of a telomere loop that sequesters the telomere end. 

(C) Telomere attrition may decrease the number of shelterin binding sites and increase 

unbound shelterin proteins (e.g., Mukherjee et al., 2018). This unbound fraction of shelterin 

proteins may then perform genomic and non-genomic (e.g., in the cytosol, mitochondria) 

extratelomeric actions, like RAP1 transcriptional regulation of genes (Gene “X” in figure).
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Figure 2. Mechanistic links between shelterin proteins and other hallmarks of aging.
Dysfunctional shelterin protein regulation can induce genomic instability and telomere 

attrition, thereby contributing indirectly to cellular senescence and its byproducts: altered 

intercellular communication (e.g., inflammation) and exhaustion of stem cell populations. 

Shelterin proteins may also directly influence hallmarks of aging such as mitochondrial 

dysfunction, epigenetic alterations, and intercellular communication, likely alongside other 

unknown effects. Publications supporting such links are provided, but do not represent an 

exhaustive list. This figure was adapted from López-Otín et al., 2013, but note that an 

expanded list of hallmarks is included in López-Otín et al., 2023. References: 1de Lange, 

2018; 2Lim et al., 2021; 3Sharma et al., 2021; 4Wang et al., 2007; 5Mukherjee et al., 

2018; 6Mukherjee et al., 2019; 7Stock et al., 2022; 8Chen et al., 2012; 9Zhu et al., 2019; 
10Martínez & Blasco, 2010.
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Figure 3. Proposed model for shelterin proteins linking early life adversity to aging and life 
history.
Following early life adversity, availability of extratelomeric shelterin proteins may be 

altered by stress-induced telomere attrition or changes to shelterin protein expression 

levels. Shelterin protein abundance may then directly influence physiological mechanisms 

related to aging and life history, e.g., metabolism and immune function. Solid lines 

represent supported causal relationships and broken lines represent theoretical or untested 

relationships. This simplified model does not include potential mediators like biological sex, 

age, or tissue type.
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Figure 4. Open questions for the study of shelterin proteins in life history and aging.
Integration of research across scientific fields is needed to understand the functionality and 

evolution of shelterin proteins in the context of life history and aging. (A) top half, impact 

on shelterin proteins: this includes research exploring natural and experimental variation in 

shelterin abundance across space (i.e., tissues, biogeography), time (i.e., with age, telomere 

attrition, and phylogeny), environmental conditions (i.e., stress exposure, abiotic factors), 

and with genetic factors (i.e., heritability, other parental effects). (B) bottom half, impact 

of shelterin proteins: there is a need to establish an expanded proximate understanding of 

each shelterin protein’s functional roles in transcription, telomere dynamics, and physiology 

across the cell and document the relationships between shelterin protein abundance and 

various aging, life history, and fitness outcomes.
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