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Abstract

It is generally believed that immune activation can elicit pain through production of inflammatory 

mediators that can activate nociceptive sensory neurons. Emerging evidence suggests that immune 

activation may also contribute to the resolution of pain by producing distinct pro-resolution/anti-

inflammatory mediators. Recent research into the connection between the immune and nervous 

systems has opened new avenues for immunotherapy in pain management. This review provides 

an overview of the most utilized forms of immunotherapies (e.g., biologics) and highlight their 

potential for immune and neuronal modulation in chronic pain. Specifically, we discuss pain-

related immunotherapy mechanisms that target inflammatory cytokine pathways, the PD-L1/PD-1 

pathway, and the cGAS/STING pathway. This review also highlights cell-based immunotherapies 

targeting macrophages, T cells, and mesenchymal stromal cells for chronic pain management.
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1. Introduction

According to the revised definition of the International Association for the Study of 

Pain (IASP), pain is an unpleasant sensory and emotional experience associated with, or 

resembling that associated with, actual or potential tissue damage (Raja, et al., 2020). 

Chronic pain is defined as pain that persists or recurs for more than 3 months and usually 

accompanied by central sensitization. Chronic pain includes but is not limited to chronic 

neuropathic pain following nerve injury, spinal cord injury, and stroke (Costigan, Scholz, 

& Woolf, 2009), chronic cancer-related pain, chronic musculoskeletal pain, and chronic 

headache or orofacial pain. While physiological pain or acute pain serves a protective 

purpose, chronic pain is detrimental to the quality of life of an individual. Chronic pain also 

places a substantial economic burden on health care resources with an annual cost of over 

$600 billion in the United States (Gereau, et al., 2014). Chronic pain can be characterized as 

spontaneous pain, as well as evoked pain such as hyperalgesia (increased painful response 

evoked by a noxious stimulus) and allodynia (painful reaction to a normally innocuous 

stimulus), with mechanical or tactile allodynia presenting as a cardinal symptom of chronic 

pain.

Pain is initiated by the activation of pain sensing neurons (nociceptors). Nociceptor neuron 

cell bodies are located in sensory ganglia in the peripheral nervous system (PNS), including 

the dorsal root ganglia (DRG) and trigeminal ganglia (TG). Primary sensory neurons project 

to the spinal cord and brain stem, and secondary order neurons project from these regions 

to the thalamus and other brain regions, which mediate the sensory and emotional aspects 

of pain (Kuner & Flor, 2017). Nociceptors express different types of transducer molecules, 

including transient receptor potential (TRP) ion channels (e.g., TRPV1, TRPM8) and piezo 

ion channels to detect heat pain, cold pain, mechanical pain, and chemical pain (Ji & Lee, 

2021; Julius & Basbaum, 2001; Kim, Coste, Chadha, Cook, & Patapoutian, 2012), as well 

as pathogen-induced pain (Chiu, et al., 2013; Donnelly, Chen, & Ji, 2020). Furthermore, 

nociceptors can be sensitized by inflammatory mediators, in the process of peripheral 

sensitization, through the activation of protein kinases such as protein kinase A and C 

(PKA and PKC) and MAP kinases (MAPK) (Gold, Levine, & Correa, 1998; Ji, Gereau, 

Malcangio, & Strichartz, 2009; Reichling & Levine, 2009). Recent progress has revealed 

that the DRG and TG consist of different classes of primary sensory neurons and nociceptors 

in mice and humans (Tavares-Ferreira, et al., 2022; Usoskin, et al., 2015; Yang, et al., 

2022). Preclinical studies have also identified specific neurocircuits for the regulation of 

mechanical and thermal pain (Duan, et al., 2014; Peirs & Seal, 2016; H. Wang, et al., 2022).

Central sensitization is characterized by synaptic plasticity (i.e. increased excitatory 

synaptic transmission and decreased inhibitory synaptic transmission) in CNS pain circuits 

and carries significant clinical implications. It has a critical role in the induction and 

maintenance of chronic pain and the spread of pain beyond the initial site of injury (Treede, 

Hoheisel, Wang, & Magerl, 2022; Woolf, 1983, 2011). Thus, blockade of nerve conduction 

and neurotransmission in the PNS and CNS by local anesthetics, ion channel blockers, 

opioids, and anticonvulsants are major pharmacological treatments for pain (Finnerup, 

Sindrup, & Jensen, 2010). However, these treatments usually provide only transient pain 

relief and have been unable to promote complete resolution from injury.

Zhao et al. Page 2

Pharmacol Ther. Author manuscript; available in PMC 2024 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The immune system has gained increasing attention in its critical role in the induction 

and resolution of pain via interactions with the nervous system (Marchand, Perretti, & 

McMahon, 2005; Ren & Dubner, 2010; Talbot, Foster, & Woolf, 2016). In particular, 

non-neuronal cells, including but not limited to, immune cells, glial cells, keratinocytes, 

cancer cells, stem cells, as well as bacterial cells, can interact with nociceptors to modulate 

pain (Ji, Chamessian, & Zhang, 2016). These non-neuronal cells also regulate inflammation 

and neuroinflammation, a localized inflammation of the PNS and CNS, for the induction 

and resolution of pain (Ellis & Bennett, 2013; Ji, Xu, & Gao, 2014; Ji, Xu, Strichartz, 

& Serhan, 2011). Immunotherapy represents a wide variety of therapies using cytokines, 

vaccines, antibodies, and adoptive transfer of cells. In this review, we discuss different 

forms of immunotherapies that target pro-inflammatory cytokines, the PD-L1/PD-1 axis, the 

STING/IFN pathway, and immune cells/mesenchymal stem cells, with a specific focus on 

emerging therapies.

2. Immunotherapy targeting pro-inflammatory cytokines in chronic pain

Cytokines are small, secreted proteins that have specific effects on cellular interactions 

and communication. They can act on the cells that secrete them (autocrine action), on 

nearby cells (paracrine action), or on distant cells (endocrine action) (J. M. Zhang & An, 

2007). Cytokines are categorized into two main groups, namely pro-inflammatory and 

anti-inflammatory. Pro-inflammatory cytokines include tumor necrosis factor alpha (TNF-

α), interleukin-1 beta (IL-1β), interleukin-6 (IL-6), interleukin-17 (IL-17), and granulocyte-

macrophage colony-stimulating factor (GM-CSF). The expression of these cytokines 

is elevated in animal pain models (DeLeo, Colburn, & Rickman, 1997; Kalpachidou, 

Riehl, Schopf, Ucar, & Kress, 2022; Sommer & Kress, 2004). On the other hand, 

anti-inflammatory cytokines include interleukin 4 (IL-4), interleukin 10 (IL-10), and 

transforming growth factor beta (TGF-β), which have been shown to reduce pain when 

used as treatments in animal pain models (Dai, et al., 2019; Echeverry, et al., 2009; 

Ledeboer, et al., 2007). Current clinical immunotherapies are primarily focused on targeting 

pro-inflammatory cytokines (Table 1).

2.1 TNF-α and its receptors

TNF-α is a transmembrane protein that can be transformed into a soluble form (sTNF-

α) through cleavage by a metalloprotease called TNF-α-converting enzyme (TACE or 

ADAM17). Soluble TNF-α can then bind to its specific membrane-bound receptors TNFR1 

(p55/p60) and TNFR2 (p75/p80) (Idriss & Naismith, 2000). Numerous studies have 

demonstrated a link between TNF-α and different types of pain (Schafers, et al., 2008; 

J. M. Zhang & An, 2007). TNF-α drives nociceptor sensitization by regulation of TRPV1 

expression and sensitization of DRG neurons (Constantin, et al., 2008; X. H. He, et al., 

2010; X. Jin & Gereau, 2006; B. Liu, Li, Brull, & Zhang, 2002; Park, et al., 2011; S. Wei, 

Qiu, Jin, Liu, & Hu, 2021). TNF-α further promotes neuropathic pain by inducing glial 

activation and central sensitization (Berta, et al., 2014; Bezzi, et al., 2001; Kawasaki, Zhang, 

Cheng, & Ji, 2008; Zhong, et al., 2010).
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Anti-TNF-α-based immunotherapies, including IgG antibodies (Infliximab, Adalimumab 

and Golimumab), a PEGylated Fab fragment (Certolizumab-pegol), a fusion protein 

(Etanercept), and a nanobody (Ozoralizumab), have been approved by the FDA for 

the treatment of painful inflammatory disorders such as inflammatory bowel disease, 

rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis (Table 1). Several clinical 

studies have investigated the use of TNF-α inhibitors in the treatment of chronic pain 

conditions. A pilot study using subcutaneous etanercept (TNF inhibitor as a soluble 

receptor) to treat patients with acute severe sciatica showed improved pain scores compared 

to the control group (Genevay, Stingelin, & Gabay, 2004). An open-label study using 

infliximab also revealed promising results, with a significant reduction in pain intensity 

reported by patients with chronic low back pain (Grainger & Harrison, 2007). Overall, 

the prominent role of TNF-α in pain modulation and promising results from preclinical 

and clinical studies using TNF-α inhibitors suggest that this signaling pathway is a viable 

target for pain management. However, further research is needed to fully understand the 

mechanisms and timing underlying the effects of TNF-α inhibitors on pain and to determine 

their efficacy and safety in different pain conditions. It is noteworthy that the complications 

of anti-TNF-α-based immunotherapies is the small but significant risk of life threatening 

opportunistic infection (Ali, et al., 2013).

2.2 IL-1β and its receptors

IL-1β is a protein that belongs to the interleukin-1 family of cytokines. IL-1β exerts its 

effects through binding to its receptor, IL-1 receptor 1 (IL-1R1) (O'Neill & Dinarello, 2000). 

IL-1β has been implicated in the pathogenesis of chronic pain conditions such as rheumatoid 

arthritis, osteoarthritis, and neuropathic pain (Kirkham, 1991; Mailhot, et al., 2020). Studies 

on animals have demonstrated that exogenous IL-1β can induce both mechanical and 

thermal hyperalgesia, while treatment with anti-IL-1β inhibitors or antibodies can reduce 

pain symptoms (Milligan, et al., 2001; Sweitzer, Martin, & DeLeo, 2001; Thom, et al., 2019; 

T. Wei, Guo, Li, Kingery, & Clark, 2016; X. H. Wei, et al., 2012; Zelenka, Schafers, & 

Sommer, 2005). Similar to TNF-α, IL-1β was found to induce peripheral sensitization in 

DRG neurons and central sensitization in spinal cord and brain stem neurons (Binshtok, et 

al., 2008; W. Guo, et al., 2007; Kawasaki, Zhang, et al., 2008; Mailhot, et al., 2020; Sung, et 

al., 2017; M. H. Yi, et al., 2021).

IL-1β or IL-1 receptor (IL-1R)-based immunotherapies has been investigated as a potential 

treatment for chronic pain conditions associated with inflammation (Kalpachidou, et al., 

2022) (Table 1). Current available immunotherapies targeting IL-1β or IL-1R include 

IL-1β antagonists (Canakinumab and Gevokizumab) and IL-1R antagonists (Anakinra 

and Rilonacept) (Goldbach-Mansky, et al., 2008). These antagonists are approved for the 

treatment of chronic pain-associated conditions, including rheumatoid arthritis and other 

autoinflammatory disorders (Aitken, et al., 2018; Goldbach-Mansky, et al., 2006; Ridker, 

et al., 2017). In clinical studies, canakinumab has been shown to reduce pain in patients 

with osteoarthritis, and anakinra was found to reduce pain and improve function in patients 

with complex regional pain syndrome (CRPS) (Helyes, et al., 2019; Ridker, et al., 2017). 

However, side effect of anti-IL-1β treatment (e.g., canakinumab) was also reported (Table 

1) and more research is needed to fully understand the effectiveness and safety of IL-1β or 
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IL-1R immunotherapy, as well as the timing and duration, for the treatment of chronic pain 

conditions.

2.3 IL-6 and its receptors

IL-6 is a member of the IL-6 family, which consists of polypeptide cytokines comprised of 

four–α-helix structures. The biological activity of IL-6 is mediated through its interaction 

with the IL-6 receptor (IL-6R). IL-6 can activate signaling pathways through two different 

modes of receptor activation: classical signaling and trans-signaling (Heinrich, et al., 2003). 

In classical signaling, IL-6 binds to the membrane-bound IL-6Rα subunit, leading to the 

recruitment and activation of gp130. This process results in the activation of downstream 

signaling pathways, including the Janus kinase (JAK)/signal transducer and activator of 

transcription (STAT) pathway and the MAPK pathway. In trans-signaling, IL-6 can also bind 

to a soluble form of the IL-6 receptor (sIL-6R), which is generated by alternative splicing 

or proteolytic cleavage of the membrane-bound IL-6Rα subunit. The sIL-6R can form a 

complex with IL-6, which can then bind to gp130 on cell membranes that do not express 

the membrane-bound IL-6Rα subunit. This allows IL-6 to activate downstream signaling 

pathways in a broader range of cells.

IL-6 and its receptor play a crucial role in the modulation of pain, especially in chronic 

pain conditions. IL-6 is produced by immune cells and other cell types in response to tissue 

damage, inflammation, or nerve injury and can activate signaling pathways that contribute 

to the development and maintenance of chronic pain. IL-6 drives peripheral sensitization 

via activation of JAK/STAT3, extracellular-signal regulated kinases (ERK, a MAPK family 

member), and protein translation signaling pathways, leading to subsequent upregulation 

of TRPV1 and voltage-gated sodium channels Nav1.7 and Nav1.8 or downregulation 

of potassium channel KCNA4 (Alvarez, Bogen, & Levine, 2019; Atmaramani, Black, 

de la Pena, Campbell, & Pancrazio, 2020; Dominguez, Rivat, Pommier, Mauborgne, & 

Pohl, 2008; Fang, et al., 2015; Kalpachidou, et al., 2022). IL-6 further regulates central 

sensitization in spinal cord pain circuits (Kawasaki, Zhang, et al., 2008).

Multiple immunotherapies have been developed to target IL-6 or IL-6R, including anti-

IL-6 monoclonal antibodies (Siltuximab and Clazakizumab) and anti-IL-6R monoclonal 

antibodies (Tocilizumab and Sarilumab) (Table 1). These immunotherapies have been shown 

to be effective in the treatment of rheumatoid arthritis, juvenile idiopathic arthritis, giant cell 

arteritis, multicentric Castleman disease, as well as COVID-19 (Kishimoto, 2005; Mease, 

et al., 2016; Potere, et al., 2021; Smolen, et al., 2008). Several preclinical studies have 

shown that blocking IL-6 or its receptor can alleviate pain in animal models of chronic pain. 

However, the results of clinical trials have been mixed. Some clinical trials have shown that 

blocking IL-6 or its receptor can reduce pain in patients with rheumatoid arthritis or chronic 

low back pain, while others failed to show significant benefits (Choy, et al., 2020; Genovese, 

et al., 2015; Yip & Yim, 2021). One challenge in developing IL-6 or IL-6R immunotherapy 

for pain is that IL-6 also plays an important role in normal immune function and its blockade 

can increase the risk of infections and other adverse effects (Gale, et al., 2019; Monemi, et 

al., 2016). Therefore, it is essential to carefully consider the potential risks and benefits of 

this approach before using it to treat chronic pain.
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2.4 IL-17 and its receptors

IL-17 is a cytokine that is produced by various immune cells, including T-helper 17 (Th17) 

cells, gamma-delta T cells, and natural killer T cells. It plays an important role in the 

immune response to infections and in the development of autoimmune diseases. IL-17 

signals through a receptor complex known as IL-17 receptor (IL-17R), which is expressed 

on a wide variety of cells, including epithelial cells, fibroblasts, and immune cells such 

as macrophages and neutrophils (Gu, Wu, & Li, 2013). IL-17RA is the primary signaling 

subunit and is required for most of the biological effects of IL-17. Upon IL-17 binding 

to its receptor, a signaling cascade is initiated, which ultimately leads to the activation of 

several downstream pathways, including the NF-κB and MAPK pathways. These pathways 

regulate the expression of various proinflammatory genes, such as cytokines, chemokines, 

and matrix metalloproteinases, which contribute to the immune response and tissue damage 

(Gaffen, 2009). Animal studies have shown that IL-17 is involved in the development 

and maintenance of neuropathic pain, inflammatory pain, and cancer pain (X. Jiang, et 

al., 2022). Exogenous IL-17 injection is sufficient to induce pain hypersensitivity in naïve 

animals, while blocking IL-17/IL-17R signaling decreased arthritic and neuropathic pain in 

animals with arthritis, nerve injury, and chemotherapy-induced neuropathy (H. Luo, et al., 

2019; Luo, et al., 2021; Meng, et al., 2013; Richter, et al., 2012; Segond von Banchet, et al., 

2013). Notably, the IL-23/IL-17A axis regulates mechanical pain via macrophage-nociceptor 

interaction in a sex-dependent manner (Luo, et al., 2021; Z. Tan, Lin, Wu, & Zhou, 2022). 

Nociceptive sensory neurons express IL-17R in rodents and humans and neuronal IL-17R 

was shown to regulate peripheral sensitization (Luo, et al., 2021; McNamee, et al., 2011; 

Richter, et al., 2012; Yang, et al., 2022).

Currently, two IL-17A antibodies, secukinumab and ixekizumab, are approved for the 

treatment of plaque psoriasis, ankylosing spondylitis and psoriatic arthritis (Table 1). Several 

preclinical studies have investigated the use of IL-17 and IL-17RA antagonists as potential 

treatments for chronic pain. Blocking IL-17RA with a monoclonal antibody reduced 

mechanical allodynia and thermal hyperalgesia in a rat model of neuropathic pain (Ultenius, 

Linderoth, Meyerson, & Wallin, 2006). It was also found that IL-17 neutralizing antibody 

reduced pain-like behaviors in a mouse model of osteoarthritis (Faust, et al., 2020). Clinical 

trials are currently in progress to investigate the efficacy of IL-17 and IL-17RA antagonists 

for the treatment of various chronic pain conditions, such as rheumatoid arthritis, psoriatic 

arthritis, and ankylosing spondylitis (Mease, et al., 2017; van den Berg & Miossec, 2009). 

Results from these trials have shown promising effects on reducing pain and improving 

physical function (Jaller Char, Jaller, Waibel, Bhanusali, & Bhanusali, 2018).

2.5 GM-CSF and its receptor

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a cytokine that regulates 

the proliferation, differentiation, and activation of hematopoietic cells. The biological effects 

of GM-CSF are mediated through binding to its specific receptor, GM-CSFR. The binding 

of GM-CSF to GM-CSFR leads to the activation of downstream signaling pathways, 

including JAK2/STAT5, PI3K/Akt, Ras/MAPK, and NF-κB pathways, which can promote 

cell growth, differentiation, and inflammatory responses (Lehtonen, Matikainen, Miettinen, 

& Julkunen, 2002). The expression of GM-CSFR in DRG neurons was found to regulate 
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nociceptor sensitization in mice, likely by phosphorylating the heat transducer ion channel 

TRPV1 through p38 MAPK and TrkA signaling (Donatien, et al., 2018; L. Zhao, et al., 

2022). Treatment with GM-CSF led to the upregulation of TRPV1, sodium channels, and 

potassium channels, leading to peripheral sensitization (Tewari, et al., 2020; F. Zhang, et al., 

2019).

Several monoclonal antibodies that target GM-CSF (Namilumab, Otilimab (MOR103)) 

or GM-CSFR (Mavrilimumab) are approved for treating chronic pain related conditions, 

including rheumatoid arthritis and multiple sclerosis (Behrens, et al., 2015; Nair, Edwards, 

& Moots, 2012; Taylor, et al., 2019) (Table 1). In mouse models of bone cancer, 

administration of a GM-CSF neutralizing antibody significantly reduced cancer pain 

behaviors and inhibited the upregulation of TRPV1 and Nav1.7 channels in DRG neurons 

(F. Zhang, et al., 2019). In a neuropathic pain model, treatment with a GM-CSFR antibody 

reduced mechanical allodynia and thermal hyperalgesia in mice (Nicol, et al., 2018). 

Treatment with a GM-CSF neutralizing antibody in a preclinical model of arthritis led to 

reductions in synovial inflammation and joint destruction and pain-related behaviors (Saleh, 

et al., 2018). Clinical trials are ongoing to evaluate the safety and efficacy of GM-CSF and 

GM-CSFR antagonists in the treatment of chronic pain. Preliminary results from a phase 

2 clinical trial in patients with osteoarthritis have shown that treatment with a GM-CSF 

neutralizing antibody significantly reduced pain compared to placebo (Taylor, et al., 2019). 

However, Mavrilimumab was also shown to cause non-specific headache in some patients 

(Table 1).

In addtion to pro-inflammatory cytokines, matrix metalloproteases (MMPs) are extracellular 

matrix proteins with major roles in neuroinflammation and neurological diseases 

(Vandooren, Van Damme, & Opdenakker, 2014). MMP-9 is one of the best known members 

of the MMP family and is tighely regulated by pro-inflammatory cytokines such as TNF-

α in peripheral neuropathy (Shubayev & Myers, 2000). MMP-9 was shown to drive 

neuropathic pain via activation of IL-1β and glial cells in the PNS and CNS (Kawasaki, Xu, 

et al., 2008). Through functional screening, a selective monoclonal antibody was developed 

against mouse/human MMP-9 and displays efficacy in attenuating neuropathic pain (Lopez, 

et al., 2019). Thus, MMP-9 monoclonal antiboids may offer new therpetutics for treating 

chronic pain, but the specfic pain conditions and timing of the treatment remain to be 

defined.

3. Immunotherapies targeting PD-L1/PD-1 pathway in chronic pain

The Programmed cell death 1 (PD-1) receptor, also named CD279, is a 288-amino acid 

protein first identified as an apoptosis molecule by Tasuku Honjo and colleagues at Kyoto 

University in 1992 (Ishida, Agata, Shibahara, & Honjo, 1992). In 1999, the team further 

discovered that PD-1 functions as a critical negative regulator of the immune response, 

contributing to self-tolerance of the immune cells, especially T cells. The Programmed 

cell death ligand 1 (PD-L1 or Pdcd1lg1, CD274, B7-H1) is a 290-amino acid protein first 

identified as a molecule with homology to B7-1 and B7-2 by Lieping Chen and colleagues at 

Mayo Clinic in 1999 (Dong, Zhu, Tamada, & Chen, 1999). In the year 2000 another research 

group led by Gordon Freeman at the Dana-Farber Cancer Institute collaborated with the 
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Genetics Institute at Cambridge and found that this B7-1 like molecule was a ligand for 

PD-1, and named it PD-L1 (Freeman, et al., 2000).

3.1. PD-L1/PD-1 signaling in different cell types

PD-1 is a type I transmembrane protein consisting of an extracellular region, a 

transmembrane region, and a cytoplasmic region. The extracellular region contains an 

IgV-like domain and an IgC-like domain, which are connected by a hinge region. The 

IgV-like domain is composed of seven β-strands that fold into two antiparallel β-sheets and 

responsible for binding to its ligands, PD-L1 and PD-L2 (Zak, et al., 2015). Compared to 

PD-L1, PD-L2 has very limited expression (Latchman, et al., 2001; Lazar-Molnar, et al., 

2008). The transmembrane domain is composed of a single α-helix that anchors the protein 

in the cell membrane. The cytoplasmic tail contains two tyrosine residues in its immune 

receptor tyrosine-based inhibitory motif (ITIM) and an immune receptor tyrosine-based 

switch motif (ITSM) that play a crucial role in PD-1 downstream signaling (X. Zhang, et al., 

2004). PD-L1 is a type I transmembrane glycoprotein that is composed of an extracellular 

domain, a transmembrane domain, and a cytoplasmic domain (Perry, et al., 2019). The 

extracellular domain consists of two Ig-like domains, a V-like domain and a C-like domain, 

which are connected by a flexible hinge region (Lin, et al., 2008). The V-like domain, 

which is structurally similar to other B7 family members and mediates the interaction 

between PD-L1 and its receptor PD-1. The transmembrane domain anchors PD-L1 to the 

cell membrane while the cytoplasmic domain interacts with intracellular signaling pathways.

The PD-1 protein is primarily found on the surface of certain immune cells, such as 

activated T cells, B cells, natural killer cells, monocytes, and dendritic cells (Bally, Austin, 

& Boss, 2016). However, recent studies have identified the expression of PD-1 on neurons in 

several regions of the brain, including the hippocampus, cortex, thalamus, and hypothalamus 

(C. Jiang, et al., 2020; Zeisel, et al., 2015). The PD-L1 protein is expressed on a range of 

cells, including activated immune cells like T cells, B cells, dendritic cells, macrophages, 

and tumor cells, as well as neurons (G. Chen, et al., 2017; Dorand, et al., 2016).

In T cells, PD-1 activation initiates several downstream signaling cascades that reduce 

the secretion of inflammatory cytokines (IFN-γ, IL-2, TNF-α) and promote the secretion 

of immune inhibitory cytokines (IL-10 and IL-4) in order to inhibit T cell activation, 

proliferation, and survival (Riley, 2009). PD-1 activation inhibits T cell receptor (TCR)-

mediated signaling by recruiting the tyrosine phosphatases SHP-1/2 (Src homology region 

2 domain-containing phosphatase-1/2) to the immune synapse where TCRs are engaged 

with antigen-presenting cells (APCs) (Hui, et al., 2017; Patsoukis, et al., 2020; Plas, et 

al., 1996; Yokosuka, et al., 2012). PD-1 activation also inhibits the PI3K/Akt/mTOR and 

Ras/MAPK/Erk pathways, leading to decreased cytokine production and T cell proliferation 

(Patsoukis, et al., 2012; R. Zhao, et al., 2019). PD-1 signaling upregulates other immune 

inhibitory molecules, such as cytotoxic t-lymphocyte antigen-4 (CTLA-4) and lymphocyte-

activation gene 3 (LAG-3) (Chocarro, et al., 2021; Ribas & Wolchok, 2018), which regulate 

the balance between immune activation and suppression. Finally, PD-1 signaling inhibits 

the activity of transcription factors, such as NFAT and AP-1, resulting in reduced cytokine 

production and T cell activation (Oestreich, Yoon, Ahmed, & Boss, 2008; G. Xiao, Deng, 
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Liu, Ge, & Liu, 2012). Therefore, PD-1 plays a critical role in adaptive immune resistance 

that allows tumor cells to counteract endogenous anti-tumor activity. In this pathway, 

PD-L1 is often upregulated in tumor cells or non-transformed cells within the tumor 

microenvironment. When PD-L1 binds to PD-1 on activated T cells, it suppresses the 

function of cytotoxic T cells within the tumor microenvironment, thereby facilitating tumor 

growth and progression.

In macrophages and microglia, PD-1 activation inhibits macrophage/microglia function 

by recruiting phosphatases SHP-1/SHP-2 to ITIM and/or ITSM domains in the PD-1 

tail. This recruitment leads to the inhibition of the PI3K/NF-κB signaling pathway (H. 

He, et al., 2018). Specifically, PD-1 signaling suppresses the activity of IFN-γ-activated 

M1 macrophages by reducing the phosphorylation of STAT1 and the secretion of 

interleukin-12 (IL-12). Furthermore, PD-1 signaling promotes the activity of IL-4-activated 

M2 macrophages by increasing STAT6 phosphorylation (Liang, et al., 2021; Yao, et al., 

2014; J. Zhao, Roberts, Wang, Savage, & Ji, 2021).

Accumulating evidence indicates an active role of PD-1 in neurons in the PNS and CNS. 

Activation of PD-1 directly regulates neuronal excitability, synaptic transmission, and 

plasticity via the SHP-1/ERK signaling pathway and modification of ion channels, including 

sodium, calcium, and potassium channels (e.g., Kv4.2 channels), as well as NMDA/AMPA 

receptors and GABA receptors. Thus, the PD-L1/PD-1 axis may also serve as a neuronal 

checkpoint to regulate various functions of the nervous system, such as learning, memory, 

anesthesia, analgesia, and pain (C. Jiang, et al., 2020; J. Zhao, et al., 2021).

3.2. PD-L1/PD-1 axis in pain and opioid analgesia

Preclinical and clinical studies suggest an important role of PD-L1 and PD-1 in 

regulating physiological and pathological pain (Table 2). Mice with a deficiency of PD-

L1 (B7-H1) showed enhanced inflammation and neuropathic pain after nerve injury via 

immune modulation (Uceyler, et al., 2010a). The PD-L1/PD-1 axis also controls pain via 

neuromodulation. Pdcd1 global knockout (KO) mice exhibited increases in baseline pain 

sensitivity to thermal and mechanical stimuli compared to wild-type mice; and furthermore, 

mouse DRG neurons from KO mice showed increased excitability and increased action 

potential frequency (G. Chen, et al., 2017). Administration of PD-L1 via intraplantar or 

intrathecal (spinal) injection is sufficient to increase the pain threshold in non-injured naïve 

mice (G. Chen, et al., 2017). Additionally, in situ hybridization and immunohistochemistry 

revealed Pdcd1 transcript and PD-1 protein expression in the neuroaxis of pain, including 

primary sensory neurons and spinal cord dorsal horn neurons (C. Jiang, et al., 2020; B. 

L. Liu, Cao, Zhao, Liu, & Zhang, 2020; Livni, et al., 2022; Meerschaert, et al., 2022; 

Wanderley, et al., 2022; L. Zhao, et al., 2022). Moreover, primary sensory neurons, 

especially peptidergic neurons, express PD-L1 (G. Chen, et al., 2017; Deng, et al., 2023; 

Meerschaert, et al., 2022). Mechanistically, PD-L1 produces antinociception in mice through 

phosphorylation of SHP-1 in DRG sensory neurons (G. Chen, et al., 2017; B. L. Liu, et 

al., 2020; L. Zhao, et al., 2022). Activation of SHP-1 in DRG neurons results in increased 

ERK activation, decreased function of sodium channels (e.g. Nav1.7) and TRPV1, and 

increased potassium channel activity (TREK2) in DRG neurons (Figure 1), as well as 
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decreased excitatory synaptic transmission in spinal cord neurons and increased GABAergic 

neurotransmission in CNS neurons (G. Chen, et al., 2017; C. Jiang, et al., 2020; B. L. 

Liu, et al., 2020; X. Xiao, et al., 2015). PD-L1 may also modulate nociception through 

direct interaction with TRPV1 (Meerschaert, et al., 2022). Interestingly, a PD-1 binding 

peptide, H20, identified by in silico modeling, elicited more potent pain inhibition than 

PD-L1 in several mouse models through induction of SHP-1 phosphorylation and inhibition 

of nociceptive neuron activity (L. Zhao, et al., 2022).

PD-1 also regulates opioid analgesia and opioid-induced adverse effects such as 

antinociceptive tolerance and hyperalgesia (Z. Wang, et al., 2020). Opioids are a 

mainstay treatment for postoperative pain and cancer pain, but also have harmful side 

effects including addiction and respiratory inhibition. Opioids inhibit pain in part by 

suppressing Ca2+ channels in primary sensory neurons and inhibiting neurotransmitter 

release (Ballantyne & Mao, 2003; Corder, Castro, Bruchas, & Scherrer, 2018; P. W. 

Mantyh, Clohisy, Koltzenburg, & Hunt, 2002). It was found that PD-1 may interact with 

mu opioid receptors (MORs) in sensory neurons, suggesting a crosstalk between these 

pain inhibitory systems. Morphine’s inhibitory effects, including analgesia, suppression 

of Ca2+ currents in DRG neurons, and suppression of spinal cord synaptic transmission 

required PD-1 expression and reduced in Pdcd1 KO mice. Strikingly, PD-1 interaction with 

opioid receptors can be validated in nonhuman primates, as intrathecal morphine-induced 

antinociception is largely blocked by anti-PD-1 treatment (Z. Wang, et al., 2020).

PD-L1 and PD-1 levels are also regulated by the process causing the pain or hyperalgesia 

(Table 2). In female mice, PD-L1 levels were increased in late-pregnancy but decreased 

following delivery, and furthermore, PD-L1 is required for pregnancy-induced analgesia (H. 

Tan, et al., 2021). Electroacupuncture alleviated inflammatory pain via upregulation of the 

PD-L1/PD-1/SHP-1 pathway in DRG neurons of rats (Deng, et al., 2023). In patients with 

osteoarthritis, different exercise modalities (e.g., Tai Chi, Baduanjin, stationary cycling) 

relieved arthritic pain and increased serum PD-1 levels (J. Liu, et al., 2019). Further 

investigation is needed to test whether this upregulation serves as a biomarker or has 

causative role in pain. Taken together, these findings indicate that the PD-L1/PD-1 axis may 

act as a checkpoint to pain (Hirth, Gandla, & Kuner, 2017).

3.3. PD-1 and PD-L1 based immunotherapies and cancer pain

PD-1 immunotherapy involves the use of monoclonal antibodies that target the PD-1 

receptor or its ligand, PD-L1, to restore the anti-tumor activity of T cells (Tumeh, et al., 

2014). These antibodies bind to PD-1 (Nivolumab, Pembrolizumab, Cemiplimab, Sintilimab 

and Camrelizumab) or PD-L1 (Atezolizumab, Durvalumab, Avelumab and Cemiplimab) 

and block their interaction, which allows T cells to be re-activated and attack cancer 

cells (Bagchi, Yuan, & Engleman, 2021; Carlino, Larkin, & Long, 2021). PD-1/PD-L1 

immunotherapies have shown remarkable clinical success in the treatment of various cancer 

types, including melanoma, non-small cell lung cancer, and bladder cancer, among others. 

However, only a portion of patients responds to PD-1 immunotherapy, and resistance 

mechanisms have been identified, including the upregulation of alternative immune 

checkpoint molecules and alterations in the tumor microenvironment. Ongoing research is 
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focused on identifying biomarkers that can predict response to PD-1/PD-L1 immunotherapy 

as well as developing combination therapies that can enhance the effectiveness of PD-1 

blockade (Chow, et al., 2019; Doroshow, et al., 2021; Dudley, Lin, Le, & Eshleman, 2016; 

M. Yi, et al., 2018).

PD-L1 was found to mask cancer pain in a mouse model of melanoma. Notably, hindpaw 

inoculation of melanoma resulted in robust tumor growth but did not elicit signs of 

cancer pain in 4 weeks (G. Chen, et al., 2017). Cancer pain in this model was masked 

by melanoma-induced PD-L1. Thus, blockade of PD-1/PD-L1 signaling evoked robust 

spontaneous pain with mice licking and flinching the melanoma-bearing hindpaw. In vivo 
recordings of mouse sciatic nerve showed that nivolumab treatment significantly increased 

the spontaneous firing of nerve fibers, suggesting that anti-PD-1 treatment can enhance 

pain sensitivity by increasing the excitability of primary afferent fibers. Interestingly, the 

increased pain sensitivity was observed only in the acute phase (first 3 hours) after PD-1/PD-

L1 blockade, and not in the late phase (24 hours), suggesting that the pain inducing 

effect by nivolumab may be short-lived. This acute treatment did not change the levels 

of T cell markers (CD2, CD3), a macrophage marker (CD68), and inflammatory cytokine 

markers (TNF, IL-1β, IL-6, IFN-γ, CCL2), suggesting that PD-1 signaling masks pain via 

unconventional neuronal modulation (G. Chen, et al., 2017). It will be of great interest to 

investigate whether PD-L1 released from sensory neurons contributes to the development 

of melanoma. A recent study demonstrated that nociceptive neurons promote melanoma 

development via suppressing T cell immunity in mice (Balood, et al., 2022).

PD-L1/PD-1 signaling was also found to be involved in a mouse model of bone cancer pain, 

induced by femoral inoculation of Lewis Lung carcinoma cells. Bone cancer pain typically 

results from metastatic cancer cells reaching the bone, leading to the formation of osteolytic 

bone lesions and fractures (Andriessen, Donnelly, & Ji, 2021; P. Mantyh, 2013). PD-L1 can 

promote osteoclastogenesis in cancer-bearing bone marrow through activation of JNK (c-Jun 

N-terminal kinase, a MAPK family member) and subsequent secretion of the chemokine 

(C-C motif) ligand 2 (CCL2). Anti-PD-1 treatment was found to transiently increase bone 

cancer pain in the early phase of treatment due to neuronal modulation. However, in the 

late phase of treatment, Anti-PD1 treatment persistently reduced bone cancer pain through 

the suppression of osteoclastogenesis and protection from bone destruction (K. Wang, et al., 

2020). Thus, the effects of anti-PD-1 treatment on bone cancer pain may depend on both 

neuromodulation and immunomodulation (Figure 1). Overall, immunotherapy targeting the 

PD-L1/PD-1 pathway has the potential to produce long-term benefits by preserving bone 

structure and alleviating bone cancer pain. However, further research is needed to fully 

understand the mechanisms underlying these effects and to optimize the ideal time window 

of the treatment (e.g. right before and during bone metastasis).

4. Immunotherapies targeting the cGAS-STING pathway in chronic pain

4.1. STING signaling in different cell types

Stimulator of interferon genes (STING) is also known as transmembrane protein 173 

(TMEM173). It was first identified in 2008 as a critical mediator of innate immune 

responses to viral and bacterial infections (Ishikawa & Barber, 2008). STING is a 

Zhao et al. Page 11

Pharmacol Ther. Author manuscript; available in PMC 2024 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



transmembrane protein expressed in various cell types, including immune cells such as 

dendritic cells, macrophages, and T cells, as well as microglia, fibroblasts, epithelial 

cells, and neurons (Q. Chen, Sun, & Chen, 2016; Donnelly, et al., 2021a; M. Jin, et al., 

2021; Mosallanejad & Kagan, 2022). The STING protein has four domains: an N-terminal 

transmembrane domain, a cytoplasmic domain, a linker domain, and a C-terminal domain. 

The N-terminal domain contains four tandem repeats of a conserved sequence motif 

called the STING domain. The cytoplasmic domain of STING contains a binding site 

for cyclic GMP-AMP (cGAMP), produced by activation of cGAMP synthase (cGAS), and 

the cytoplasmic C-terminal tail of STING interacts with downstream signaling molecules 

(H. Liu, et al., 2019; X. Zhang, Bai, & Chen, 2020). In addition to infections, STING 

is induced by DNA damage and cellular stress. In its inactive state, STING is primarily 

localized to the endoplasmic reticulum. Upon activation, STING translocates to the Golgi 

complex and further translocation to perinuclear vesicles is key for its function in the 

cGAS-STING pathway (W. Sun, et al., 2009). Upon binding to double-stranded DNA, the 

enzyme cGAS catalyzes the production of cGAMP, which functions as a second messenger 

and activates the STING pathway (Figure 2). Upon binding to cGAMP, STING undergoes a 

conformational change that activates the TANK-binding kinase 1 (TBK1) and the inhibitor 

of nuclear factor kappa-B kinase subunit epsilon (IKKε) (Gui, et al., 2019; C. Zhang, et 

al., 2019). TBK1 and IKKε then phosphorylate the transcription factor interferon regulatory 

factor 3 (IRF3), which triggers the expression of Type I interferons (IFN-I: IFN-α and 

IFN-β) that initiate an immune response to combat viral infections. Activation of the 

STING pathway also leads to the production of pro-inflammatory cytokines (IL-1β, IL-6, 

and TNF-α) via the activation of nuclear factor-kappa B (NF-κB) (Q. Guo, et al., 2021; 

Messaoud-Nacer, et al., 2022; Yum, Li, Fang, & Chen, 2021). These cytokines play an 

essential role in the recruitment and activation of immune cells to the site of infection, aiding 

in the clearance of the invading pathogen. In addition to viral infections, STING has been 

implicated in autoimmune and neurodegenerative diseases (Fritsch, Kelly, & Pickrell, 2023).

4.2 STING signaling in acute and chronic pain

Increasing evidence points to a role of STING in regulating physiological and pathological 

pain. STING has been identified as a critical regulator of nociception through IFN-I 

signaling in DRG sensory neurons. Studies have shown that administration of synthetic 

(DMXAA and ADU-S100) or biological (cGAMP) STING agonists can increase 

mechanical pain thresholds in uninjured and neuropathic pain mice and produce analgesia 

in nonhuman primates. Conversely, mice lacking STING displayed enhanced pain 

hypersensitivity and heightened nociceptor excitability. Activation of STING drives the 

production of IFN-I family members IFN-α and IFN-β. Mice lacking IFN-I receptor 

(IFNAR1), including global (Ifnar1gt/gt) and sensory neuron-selective (Ifnar1fl/fl;Nav1.8-

Cre) knockout mice, exhibited robust nociceptor hyperactivity. Mechanistically, IFN-I was 

found to suppress sodium channel activity in DRG neurons and EPSCs in spinal cord 

neurons (Donnelly, et al., 2021b; P. H. Tan, Ji, Yeh, & Ji, 2021). Therefore, STING signaling 

through IFN-I serves as a critical regulator of nociception and a promising target for 

immunotherapy to treat chronic pain.
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As a pro-inflammatory signaling molecule, STING activation may also activate NF-

κB signaling and produce pro-inflammatory cytokines and chemokines to trigger pro-

nociceptive signaling. It was found that spared nerve injury (SNI) leads to a significant 

increase in double-stranded DNAs, which can activate the STING/TBK1/NF-κB pathway 

(J. Sun, et al., 2022). Intrathecal administration of STING antagonist C-176 in the early 

phase (1st week of nerve injury), but not at later time points can attenuate SNI-induced pain 

hypersensitivity, microglial activation, release of proinflammatory factors, and JAK2/STAT3 

phosphorylation in the spinal cord dorsal horn (J. Sun, et al., 2022). However, the analgesic 

effect of C-176 is greatly reduced in the presence of recombinant IL-6 following SNI 

surgery, suggesting the involvement of this cytokine in the mechanism of action of C-176 

(Wu, et al., 2022). Thus, the STING pathway may differentially regulate neuropathic pain 

via distinct signaling mechanisms (IFN-I vs. IL-6). Notably, at high doses, IFN-I may also 

trigger pronociceptive signaling (Barragan-Iglesias, et al., 2020; P. H. Tan, et al., 2021).

4.3 STING based immunotherapies

Tumor cells often have genomic instability that causes the release of endogenous DNA into 

the cytoplasm. The resulting cGAMP or DNA can activate the cGAS-STING pathway, 

leading to the production of IFN-Is, pro-inflammatory cytokines, and chemokines that 

attract immune cells such as T cells, natural killer cells, and dendritic cells to the 

tumor microenvironment (Corrales, et al., 2015; Li & Chen, 2018; Xia, Konno, Ahn, 

& Barber, 2016). This immune response can also stimulate the activation, maturation, 

and differentiation of T cells, leading to adaptive immune responses. Activation of the 

cGAS-STING pathway in cancer cells also triggers programmed cell death, or apoptosis, 

contributing to the elimination of cancer cells (Woo, Corrales, & Gajewski, 2015). Thus, 

the targeting of the cGAS-STING pathway has shown great potential for anti-tumor 

immunotherapy. Several clinical trials are currently underway to evaluate the effectiveness 

of cGAS-STING pathway-targeted immunotherapies for cancer treatment, such as STING 

agonists ADU-S100 (MIW815) (NCT02675439), MK-1454 (NCT03010176), GSK3745417 

(NCT03843359), and E7766 (NCT04144140) (Chang, et al., 2022; K. C. Huang, et al., 

2022; Le Naour, Zitvogel, Galluzzi, Vacchelli, & Kroemer, 2020; Messaoud-Nacer, et al., 

2022). These trials aim to test the efficacy of these agents in patients with advanced 

solid tumors or lymphomas. These clinical trials will provide crucial insights into their 

effectiveness against cancer.

Activation of the STING pathway by synthetic agonists such as DMXAA and ADU-S100 

has been shown to enhance anti-tumor immunity and promote bone formation in murine 

bone autoimmune disease models (Baum, et al., 2017; Corrales, et al., 2015). Additionally, 

STING activation can be used as a treatment for bone cancer pain with metastasis. STING-

mediated IFN-I signaling directly controls bone cancer pain via neuromodulation, resulting 

in rapid pain inhibition by decreasing the neuronal excitability of mouse DRG neurons 

(K. Wang, et al., 2021). Moreover, STING-mediated IFN-I signaling also suppressed cancer-

induced osteoclastogenesis, inhibiting osteoclast-mediated bone destruction that elicits 

severe pain (K. Wang, et al., 2020). Finally, in mouse bone cancer, systemic administration 

of STING activator DMXAA increased the proportion of CD8+ T cells in the bone 

marrow tumor microenvironment, inhibiting tumor growth. Thus, STING agonists can 
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have immunomodulatory and neuromodulatory effects, which additively or synergistically 

suppress cancer pain (Figure 2). Studies have also shown that STING activation plays a 

critical role in driving bone cancer pain in mice through TBK1/NF-κB-mediated induction 

of IL-1β, IL-6, and TNF-α in the DRG, and STING inhibitor C-176 significantly alleviated 

hyperalgesia in the bone cancer pain model (Y. Zhang, et al., 2023). Overall, these findings 

suggest that STING may play different roles in regulating bone cancer pain through distinct 

regulations of gene expression (IFN-I vs. IL-1β, IL-6, and TNF-α) by STING activators and 

inhibitors under different conditions.

5. Cell-based immunotherapies in pain management

The immune system consists of innate and adaptive immune system. Increasing number of 

studies are pointing towards a potential role of immune cells in pain management. Notably, 

immune cells, such as T cells, macrophages, and neutrophils have been shown to be both 

pronociceptive and anti-nociceptive, contributing to the induction and resolution of pain in a 

context-dependent manner (Ji, et al., 2016).

5.1 Macrophages in the development and resolution of pain

It is well established that crosstalk between macrophages, including tissue-resident 

macrophages in DRGs, and sensory neurons contributes to the induction and maintenance 

of inflammatory and neuropathic pain (O. Chen, Donnelly, & Ji, 2019). Nerve injury and 

chemotherapy cause significant increases in macrophage numbers in DRGs. The causative 

role of macrophages in promoting pain was examined by pharmacological and genetic 

ablations of macrophages in neuropathic pain models. Ablation of DRG macrophages with 

clodronate reduced mechanical allodynia in a nerve injury model of neuropathic pain in 

mice (Yu, et al., 2020). In a mouse model of rheumatoid arthritis, CX3CR1 expressing 

monocytes/macrophages in the DRG contribute to arthritis pain (Oggero, et al., 2022). 

DRG macrophages were also shown to maintain osteoarthritis pain in mice (Raoof, et al., 

2021). Macrophages drive chronic pain by producing various pro-inflammatory cytokines/

chemokines, such as TNF-α, IL-6, IL-17, and CXCL1, which can interact with nociceptor 

neurons to modulate their activity (Luo, et al., 2021; X. Luo, et al., 2019; Oggero, et al., 

2022). In addition to pathological pain, macrophages also play a role in physiological pain. 

Dermal macrophages were shown to regulate baseline pain sensitivity by modulating the 

production of nerve growth factor, which is required for setting normal pain sensitivity 

(Tanaka, et al., 2023).

Recent studies indicate that macrophages also regulate the resolution of inflammatory and 

neuropathic pain following inflammation and nerve injury. One study demonstrated that 

macrophages from the spinal cord of sham surgery animals had increased expression of 

the anti-inflammatory mediator CD163 and alleviated nociceptive hypersensitivity via the 

cytokine IL-10, compared to macrophages from animals with nerve injury. Furthermore, 

neuropathic pain symptoms (mechanical hypersensitivity) could be reversed by increasing 

macrophage CD163 expression (Niehaus, Taylor-Blake, Loo, Simon, & Zylka, 2021).

GPR37 was recently implicated as a potential receptor for neuroprotectin D1 (NPD1), 

a SPM derived from fish oil. GPR37 in macrophages contributes to the resolution of 
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inflammatory pain and infection-induced pain (Q. Zhang, Bang, Chandra, & Ji, 2022). 

In GPR37 knockout mice, macrophages have deficits in phagocytic activity, a major 

function of macrophages for the resolution of inflammation. GPR37-deficient macrophages 

also displayed dysregulations of pro- or anti-inflammatory cytokines, switching to the pro-

inflammatory M1 phenotype and delaying the resolution of zymosan-induced inflammatory 

pain (Bang, et al., 2018). A partial depletion of dermal macrophages delayed the resolution 

of zymosan-induced inflammatory pain, and conversely, adoptive transfer of wild-type 

macrophages facilitated inflammatory pain resolution (Bang, et al., 2018). Intriguingly, 

the anti-malarial drug artesunate can act as a ligand of GPR37. Activation of GPR37 by 

artesunate enhanced the resolution of bacterial infection-induced pain. Adoptive transfer 

of macrophages primed with GPR37 activators could protect against infections induced 

by listeria and parasites, providing a new mechanism of action of artesunate as an 

immunotherapy (Bang, et al., 2021; Q. Zhang, et al., 2022). Thus, specific targeting of 

macrophage-bound GPR37 with its agonists may serve as an immunotherapy to control pain 

and other inflammatory disorders (Figure 3).

Recent research efforts also point to mitochondrial transfer from macrophages and neurons 

as a novel mechanism for pain resolution. Inflammation impairs mitochondrial function 

in neurons. Notably, M2-like macrophages infiltrate the DRG during the resolution phase 

of inflammatory pain resolution. This infiltration in the resolution phase is correlated 

with sensory neuron’s recovery of mitochondrial function (e.g., oxidative phosphorylation). 

Mechanistically, the resolution of inflammatory pain by mitochondrial transfer requires 

the expression of CD200 receptor by macrophages and CD200R-ligand iSec1 by sensory 

neurons (van der Vlist, et al., 2022).

5.2 T cells in the development and resolution of pain

Early studies evaluated the pronociceptive roles of T cells by comparing pain behaviors 

between wild-type mice and mice with different types of T cell deficiencies, including 

Rag1−/−, Rag2−/−, nude and SCID mice. Notably, there is no significant difference in 

baseline pain sensitivity between wild type and T cell-deficient mice (Cao & DeLeo, 2008; 

Luo, et al., 2021). In neuropathic pain models, T cells infiltrated the nervous system after 

nerve injury, mainly in damaged nerves and DRGs, and some in spinal cord, contributing to 

neuropathic pain (Costigan, Moss, et al., 2009; Singh, et al., 2022; Sorge, et al., 2015). It 

was also found that T cell ablation in nerve injury models resulted in reduced neuropathic 

pain symptoms (e.g., mechanical allodynia) (Costigan, Moss, et al., 2009; Kleinschnitz, 

et al., 2006). Mice lacking T cells (Rag1−/− or Rag2−/− KO mice) exhibited deficits in 

the development of neuropathic pain (Cao & DeLeo, 2008). In contrast, depletion of 

Foxp3+ Treg cells promotes neuropathic pain hypersensitivity, partially by increasing the 

concentration of RANTES, IL-2 and IL-5, and significant decreasing IL-12 and IFN-γ 
(Lees, Duffy, Perera, & Moalem-Taylor, 2015).

T cells have also been shown to regulate the resolution of chronic pain (Kavelaars & 

Heijnen, 2021). In paclitaxel or cisplatin-induced CIPN models, Rag1−/− or Rag2−/− mice 

developed neuropathic pain like wild-type mice, however, the resolution of neuropathic 

pain was prolonged in these T cell deficient mice. Importantly, reconstitution of CD8+ T 
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cells was sufficient to resolve pain in these T cell-deficient CIPN mice by secretion of 

IL-10 (Krukowski, et al., 2016; Singh, et al., 2022) (Figure 3). A similar mechanism also 

applies to inflammatory pain, and the severity of complete Freund’s adjuvant (CFA)-induced 

mechanical allodynia was identical in wild-type and T cell-deficient mice, but the recovery 

of inflammatory pain was impaired in mutant mice (Laumet, Edralin, Dantzer, Heijnen, 

& Kavelaars, 2019; Petrovic, et al., 2019). Adoptive transfer of CD8+ T cells was shown 

to resolve neuropathic pain after chemotherapy (Kavelaars & Heijnen, 2021). Adoptive 

transfer of regulatory T cells (Tregs) via intrathecal administration alleviated neuropathic 

pain in mice (X. J. Liu, et al., 2014). One clinical study revealed that transfusion of immune 

cells in patients with advanced cancer is associated with reduced opioid consumption and 

pain intensity due to the activation of CD4+ T lymphocytes and increased production of 

endogenous opioids (X. Zhou, et al., 2020). Finally, in the recent human genome-wide 

association study, partitioned heritability identified enrichment for B and T cells specific 

genes that are associated with chronic postoperative pain (Parisien, et al., 2023). In both the 

plantar incision and the laparotomy mouse models, the prolonged duration of mechanical 

allodynia in Rag1−/− mice compared to wild-type mice was observed. Adoptive transfer 

of T cells did not significantly affect the time course of mechanical allodynia in Rag1−/− 

mice, however, B cell supplementation, or combined B and T supplementation, significantly 

shortened the duration of post-surgery allodynia (Parisien, et al., 2023).

5.3 Neutrophils in the development and resolution of pain.

Neutrophils make up the majority (~60%) of white blood cells in human and act as the 

body's first line of defense to eliminate infections by bacteria and fungi. During tissue 

injury and inflammation, neutrophils are the first responders, and neutrophil infiltration 

serves as a cardinal sign of acute inflammation. Following zymosan-induced inflammation, 

neutrophils were found to be accumulated in inflamed hind paw within hours (Bang, et 

al., 2018). Neutrophils contribute to the development of inflammatory, postoperative, and 

neuropathic pain (Ghasemlou, Chiu, Julien, & Woolf, 2015). Plantar incision causes CXCL1 

upregulation leading to neutrophil accumulation and postoperative pain via activation of 

CXCR1/2 receptor. Additionally, depletion of neutrophils reduced immediate postsurgical 

pain in mice (Carreira, et al., 2013). Neutrophils release multiple pro-nociceptive enzymes, 

such as elastase, and inhibition of leuckocyte elastase was found to reduce neuropathic pain 

in rodents (Bali & Kuner, 2017). Interestingly, it was found that mice that are protected 

from neuropathic pain express SerpinA3N, a serine protease inhibitor secreted in response to 

nerve damage by DRG neurons that counteracts the induction of neuropathic pain (Vicuna, 

et al., 2015).

Recent research also demonstrated a critical role of neutrophils in the resolution of acute 

pain and prevention of pain chronification. Depletion of neutrophils delayed the resolution 

of CFA-induced inflammatory pain, and this inflammatory pain can further be extended for 

several months in animals treated with steroids (dexamethasone for 6 days) or nonsteroidal 

anti-inflammatory drugs (NSAIDs) at the acute pain stage. Conversely, adoptive transfer 

of neutrophils is sufficient to confer protection against the development of steroid-induced 

chronic pain in the CFA model (Parisien, et al., 2022). Mechanistically, neutrophils resolve 

pain by secretion of S100A8/A9 proteins. These are Ca2+ binding proteins of the S100 
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family and participate in inflammatory process (Figure 3). Finally, in patients with low 

back pain, transient upregulations of neutrophil-driven inflammatory responses is protective 

against the transition to chronic pain (Parisien, et al., 2022). Conversely, the adoptive 

transfer of neutrophils but not other blood cells from fibromyalgia patients created a state of 

prolonged hyperalgesia in naïve mice (Caxaria, et al., 2023), suggesting that neutrophils can 

be both beneficial and detrimental.

5.4. Mesenchymal stem cells (MSCs) in the resolution of pain

Regenerative pain medicine uses the body's own recovery mechanisms to heal pain 

(Buchheit, Huh, Maixner, Cheng, & Ji, 2020). Mesenchymal stem cells, also known as 

mesenchymal stromal cells (MSCs) or bone marrow stem cells (BMSCs) are present in 

nearly all organs in the perivascular space and are most prominent in the bone marrow with 

their ability to differentiate into other mesodermal cells, including cartilage, fat, muscle, 

and bone cells. Studies from many laboratory studies have shown analgesic efficacy of 

MSCs in different animal models of pain (Huh, Ji, & Chen, 2017). However, there is not 

clear evidence of tissue regeneration after MSC treatment. Instead, several lines of evidence 

indicate that MSCs resolve pain via neuroimmune modulation (Buchheit, et al., 2020).

Systemic or local injection of rat MSCs were shown to reverse long-lasting inflammatory 

pain in rats following a tendon injury (W. Guo, et al., 2011). This effect appears to depend 

on endogenous opioid production, as the opioid receptor antagonist naloxone can block the 

analgesia by MSCs in injured rats. Moreover, the same group found that the activation of 

monocytes is required for the analgesic actions of MSCs (W. Guo, et al., 2017). It was also 

found that a single intrathecal injection via lumbar puncture of 250,000 BMSCs resulted in 

long-term relief of neuropathic pain (mechanical allodynia and heat hyperalgesia) for more 

than six weeks in mouse models of neuropathic pain after nerve injury (G. Chen, Park, 

Xie, & Ji, 2015). Further analysis revealed migration of the intrathecally injected BMSCs 

to DRG and the spinal cord meninges, which are the membranes that cover the spinal 

cord and part of DRG and containing cerebrospinal fluid (CSF), via chemotaxic signaling 

mediated by the CXCL12/CXCR4 axis (G. Chen, et al., 2015). Importantly, BMSCs secrete 

the anti-inflammatory cytokine TGF-β1 to exert the antinociceptive actions in animal 

models of neuropathic pain. Intrathecal BMSCs potently reduced nerve injury-induced 

neuroinflammation in the spinal cord, by inhibiting the activation of microglia and astrocytes 

and the production of inflammatory cytokines and chemokines (G. Chen, et al., 2015) 

(Figure 3). MSC treatment also reversed anti-nociceptive tolerance and hyperalgesia induced 

by chronic opioid exposure (Hua, et al., 2016). Intra-articular injections of autologous MSCs 

alleviated pain in patients with osteoarthritis (Harrell, Markovic, Fellabaum, Arsenijevic, & 

Volarevic, 2019). Therefore, MSC transplantation has great potential to resolve chronic pain 

in patients as an immunotherapy.

6. Time-dependent contribution of immune pathways to pain states

The contribution of inflammatory response to chronic pain progression or resolution 

appears to be a complex process involving multiple cell types and pathways. In normal 

pain resolution process, these components act concordantly in a time-dependent manner 
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(Figure 4, “Resolved pain” trajectory). Strong acute inflammatory response appears to be 

necessary to launch subsequent reparative steps leading to pain resolution in these patients 

(Parisien, et al., 2022). This inflammatory response coincides with neutrophil and monocyte 

activation. In such patients, acute inflammatory response is followed by significant decrease 

of inflammation and pain resolution over time. In other patients (Figure 4, “Persistent pain” 

trajectory), the absence of strong acute inflammatory response leads to persistent low-grade 

inflammation which continues to maintain chronic pain. This persistent pain group is always 

present with a low-grade inflammatory state characteristic of chronic painful conditions.

This conceptual model implies the important role of acute inflammation phase and 

subsequent anti-inflammatory processes in chronic pain resolution. Immune therapy 

strategies should be tailored to facilitate the recovery process depending on the phase of 

inflammation. Reducing inflammation too early may delay pain resolution.

7. Conclusions and future directions

Immunotherapy is recognized as a recent medical breakthrough in cancer therapy and 

has been awarded a Nobel Prize in Physiology or Medicine (James Allison and Tasuku 

Honjo, 2018). Mounting evidence also highlights emerging immunotherapies in treating 

autoimmune and neurodegenerative diseases, including chronic pain. The mechanisms 

underlying the induction and resolution of acute and chronic pain are complex and 

context-dependent. Thus, the potential of immunotherapy for pain management should 

address the multi-faceted mechanisms of chronic pain (Junli Zhao, Roberts, Huh, & Ji, 

2023). Both agonists and antagonists (e.g. PD-L1/PD-1 and STING) could be beneficial 

if we can identify specific pain conditions and time window of the treatment. Control 

of abnormal inflammation in patients with autoimmune conditions could be achieved by 

monoclonal antibodies targeting pro-inflammatory cytokines (Table 1). However, immune 

suppression by steroid and anti-inflammatory treatments can delay the resolution process for 

inflammation and pain (Parisien, et al., 2022). Some chronic pain may be associated with 

immune suppression, and immune activation may promote the resolution of pain. Immune 

activation could also be achieved by cell therapies, such as mesenchymal stromal cells, 

macrophages, and T cells, as well as cell-free blood products (Buchheit, et al., 2020; 2023; 

W. B. S Zhou, et al., 2023). Given the current crises of chronic pain and opioid use disorders 

(Volkow & Collins, 2017), ongoing and future research in connecting immunotherapy and 

pain and targeting neuroimmune interactions will hold great promise in the management and 

final resolution of chronic pain.
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CFA complete Freund’s adjuvant

cGAMP cyclic GMP-AMP

cGAS cyclic GMP-AMP synthase

CIPN chemotherapy-induced peripheral neuropathy

CRPS complex regional pain syndrome

CNS central nervous system

CTLA-4 cytotoxic t-lymphocyte antigen-4

CSF cerebrospinal fluid

DRG dorsal root ganglia

ER endoplasmic reticulum

ERK extracellular-signal regulated kinases

GM-CSF granulocyte-macrophage colony-stimulating factor

IFN-I type-I interferon

IFN-α interleukin-1 alpha

IFN-β interleukin-1 beta

IFNAR1 interferon alpha and beta receptor subunit 1

IL-1β interleukin-1 beta

IL-4 interleukin 4

IL-6 interleukin-6

IL-10 interleukin 10

IL-12 interleukin 12

IL-17 interleukin-17

ITIM immune receptor tyrosine-based inhibitory motif

ITSM immunoreceptor tyrosine-based switch motif

LAG-3 lymphocyte-activation gene 3

JAK Janus kinase (JAK)

JNK c-Jun N-terminal kinase

KO knockout

MAPK mitogen-activated protein kinase
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MOR mu opioid receptor

MSC mesenchymal stem cells

NPD1 neuroprotectin D1

PD-1 programed death protein 1

PD-L1 programed death protein ligand 1

PKA protein kinase A

PKC protein kinase C

PNS peripheral nervous system

sEPSC spontaneous excitatory postsynaptic currents

SHP-1/2 Src homology region 2 domain-containing phosphatase-1/2

sIL-6R soluble form of the IL-6 receptor

SNI spared nerve injury

SPM specialized pro-resolving mediator

STAT signal transducer and activator of transcription

STING stimulator of interferon gene

TBK1 TANK-binding kinase 1

TCR T cell receptors

TG trigeminal ganglia

TGF-β transforming growth factor beta

TMEM173 transmembrane protein 173

TNF-α tumor necrosis factor alpha

TRPA1 transient receptor potential ion channel subtype A1

TRPV1 transient receptor potential ion channel subtype V1
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Figure 1. Immunotherapy targeting the PD-L1/PD-1 pathway in chronic pain through neuronal 
and immune modulation.
(A) Neuronal modulation: Activation of PD-1 in DRG sensory neurons by PD-L1 causes 

phosphorylation of SHP-1, leading to the activation of mu opioid receptor (MOR) and 

potassium channel TREK2 and inactivation of sodium channels (e.g. Nav1.7) and TRPV1. 

SHP-1 activation also inhibits ERK phosphorylation. Through the PD-1/SHP1-mediated 

signaling, PD-L1 potently inhibits physiological and pathological pain. (B) Immune 

modulation: In bone cancer pain, activation of PD-1 by PD-L1 on osteoclasts can promote 

osteoclastogenesis in cancer-bearing bone marrow, leading to CCL2 secretion and CCR2 

activation on osteoclasts and nociceptors. Anti-PD-1 treatment with nivolumab inhibits bone 

cancer pain through suppression of osteoclastogenesis and bone destruction and reduced 

CCR2 signaling in nociceptors.
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Figure 2. Immunotherapy targeting the STING pathway in chronic pain through neuronal and 
immune modulation.
(A) Neuronal modulation: Activation of the STING pathway by STING agonists DMXAA 

and ADU-S100 in DRG neurons and non-neuronal cells result in the production of Type 

I interferons (IFN-I, IFN-α/β). IFN-I activates its receptor IFNAR1/2 on sensory neurons 

to suppress the activity of calcium channels and sodium channels, leading to decreased 

neuronal excitability and pain. (B) Immune modulation: In bone cancer pain, IFN-α/β 
can also act on osteoclasts to suppress osteoclastogenesis. Treatment with STING agonists 

inhibits bone cancer pain through suppression of osteoclastogenesis and bone destruction, as 

well as activation of CD8+ T cells to reduce cancer burden.
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Figure 3. Cell-based immunotherapies for the resolution of chronic pain.
Adoptive transfer of GPR37+ macrophages, CD8+ T cells, neutrophils, and mesenchymal 

stem/stromal cells can promote pain resolution via interactions with nociceptor through 

secretion of anti-inflammatory and anti-nociceptive mediators such as IL-10, TGF-β1, and 

S100A8/A9 or mitochondria transfer. Activation of macrophage GPR37 by neuroprotectin 

D1 (NPD1) or artisunate, an anti-malaria, can enhance macrophage phagocytosis of cell 

debris and pathogens to promote the resolution of inflammation and pain.
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Figure 4. Conceptual model of chronic pain resolution following acute inflammation.
The overall dynamics of the inflammatory response is critical for pain resolution, but this 

inflammatory response is not a simple increase or decrease over the disease progression. 

After transitory pain period, pain in some patients resolves, the “Resolved pain” group (red-

to-green line), whereas for others the pain persists, the “persistent pain” group (purple line). 

During the first phase, the inflammatory response in the resolved pain group is stronger 

than that in the persistent pain group. Over time, the inflammatory response substantially 

lessened in patients with resolved pain.
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Table 1.

Overview of immunotherapies targeting pro-inflammatory cytokines in chronic pain related conditions.

Cytokine Principle Immunotherapy Chronic pain
conditions

Pain related positive
and negative outcomes References

TNF-α Anti-TNF-
α

Infliximab 
Adalimumab 
Golimumab 
Certolizumab-
pegol Etanercept 
Ozoralizumab

Rheumatoid 
arthritis; Psoriatic 
arthritis; 
Ankylosing 
spondylitis;

Certolizumab-pegol treatment (12 
weeks) reduced pain VAS score 
in psoriatic arthritis patients. 
Ozoralizumab treatment (24 weeks) 
reduced pain in VAS score in 
rheumatoid arthritis patients.

(Esposito, et al., 2020; 
Gholami, Azizpoor, Aflaki, 
Rezaee, & Keshavarz, 
2021; Oldfield & Plosker, 
2009; Takeuchi, Kawanishi, 
Nakanishi, Yamasaki, & 
Tanaka, 2022)

IL-1β

Anti-IL-1β Canakinumab
Rheumatoid 
arthritis; Systemic 
juvenile idiopathic 
arthritis; 
Recurrent 
Pericarditis; 
Traumatic brain 
injury/stroke; 
Covid-19;

In the withdrawal phase of 
canakinumab treatment (32 weeks), 
serious adverse arm pain occurred 
in 1 patient with systemic juvenile 
idiopathic arthritis out of 50 patients. 
Anakinra treatment (24 weeks) 
improved rheumatoid arthritis pain 
symptom. Rilonacept treatment (6 
weeks) in recurrent pericarditis 
patients reduced average pericarditis 
pain.

(Fava, et al., 2022; Helmy, 
et al., 2014; Kyriazopoulou, 
et al., 2021; Maniscalco, et 
al., 2020; Orrock & Ilowite, 
2016)

Anti-IL-1R Anakinra 
Rilonacept

IL-6

Anti-IL-6

Siltuximab 
Clazakizumab 
Olokizumab 
Sirukumab

Psoriatic arthritis; 
Rheumatoid 
arthritis; Juvenile 
idiopathic 
arthritis; Giant 
cell arteritis; 
Covid-19;

Tocilizumab treatment (24-52 
weeks) improved pain VAS score 
in rheumatoid arthritis patients. 
Sarilumab treatment (2-52 weeks) 
showed improvements in pain VAS 
score in rheumatoid arthritis patients.

(Mease, et al., 2016; Tanaka, 
Narazaki, & Kishimoto, 
2018; Vaidya, et al., 2020)

Anti-IL-6R Tocilizumab 
Sarilumab

IL-17 Anti-
IL-17A

Secukinumab 
Ixekizumab

Psoriatic arthritis; 
Ankylosing 
Spondylitis;

Secukinumab treatment (12-52 
weeks) in patients with 
psoriatic arthritis showed greater 
improvements in the axial specific 
assessment of spinal pain.

(Baeten, et al., 2015; J. 
X. Huang, Lee, & Wei, 
2020; Langley, et al., 2014; 
Lespessailles & Toumi, 
2021)

GM-CSF

Anti-GM-
CSF

Namilumab 
Otilimab Rheumatoid 

arthritis; Psoriasis; 
Giant cell arteritis; 
Covid-19;

Namilumab treatment (12-16 weeks) 
in rheumatoid arthritis patients had 
improvements inpatient’s assessment 
of pain. Mavrilimumab treatment 
caused non-specific headache and 
neck pain in patients with giant cell 
arteritis.

(Crotti, Agape, Becciolini, 
Biggioggero, & Favalli, 
2019) (Pourhoseingholi, 
Shojaee, & Ashtari, 2020)

Anti-GM-
CSFR Mavrilimumab
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Table 2.

Overview of immunotherapy targeting the PD-L1/PD-1 pathway in pain.

Pain conditions and
treatments Species Effects Mechanisms References

Neuropathic pain PD-L1 Mouse Reduces pain Reduce DRG neurons excitability and EPSC in 
spinal cord neurons (G. Chen, et al., 2017)

Neuropathic pain Anti-PD-L1 Mouse Increases pain Incudes higher expression of TNF-α, IL-6, and 
CX3CR1 in peripheral nervous tissue (Wanderley, et al., 2022)

Neuropathic pain PD-1 peptide 
agonist Mouse Reduces pain Suppresses neuronal excitability in DRGs (L. Zhao, et al., 2022)

Neuropathic pain Loss of PD-
L1 in KO Mouse Increases pain Increases TNFα and MCP-1 levels in sciatic 

nerve (Uceyler, et al., 2010b)

Inflammatory pain PD-L1 Mouse Reduces pain Reduces DRG neurons excitability and EPSC in 
spinal cord neurons (G. Chen, et al., 2017)

Inflammatory pain PD-L1 Rat Reduces pain EA upregulates PD-L1 expression in peptidergic 
DRG neurons (Deng, et al., 2023)

Inflammatory pain Anti-
PD-1/PD-L1 Rat Increases pain Increases IL-6 and iNOS levels in DRG (Deng, et al., 2023)

Inflammatory pain PD-1 
peptide agonist Mouse Reduces pain Suppresses neuronal excitability in DRG (L. Zhao, et al., 2022)

Migraine PD-1 inhibitor Mouse Increases pain Upregulates CGRP, IL-1β, TNF-α, IL-6 and 
IL-18 in TG (Shi, et al., 2020)

Maternal pain PD-L1 Mouse Prevents pain Increased PD-L1 level in late pregnancy and 
decreased PD-L1 level after delivery (H. Tan, et al., 2021)

Bone cancer pain PD-L1 Rat Reduces pain Reduces DRG neurons excitability and EPSC in 
spinal cord neurons (G. Chen, et al., 2017)

Bone cancer pain PD-L1 Mouse Reduces pain Downregulate TRPV1 in DRG neurons and 
decreases neuronal excitability (B. L. Liu, et al., 2020)

Melanoma cancer pain Anti-
PD-1/PD-L1 Mouse Unmasks pain Increases spontaneous discharges in nerve fibers 

and induce spontaneous pain (G. Chen, et al., 2017)

Bone cancer pain Anti-PD-1 Mouse Reduces pain Suppresses osteoclastogenesis and protects 
against bone destruction and bone fracture (K. Wang, et al., 2020)

Knee osteoarthritis PD-1 Human Unknown Exercise relieves knee pain and increases serum 
PD-1 (J. Liu, et al., 2019)

Enterocolitis Anti-PD-1 Human Induces pain Increases abdominal pain (Kurokawa, et al., 2021)

Epididymo-orchitis Anti-PD-1 Human Induces 
headache Amplifies the inflammatory manifestations (Quach, et al., 2019)
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