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Abstract

The nucleus accumbens (NAc) is considered an interface between motivation and action, with 

NAc neurons playing an important role in promoting reward approach. However, the encoding 

by NAc neurons that contributes to this role remains unknown. We recorded 62 NAc neurons in 

male Wistar rats (n = 5) running towards rewarded locations in an 8-arm radial maze. Variables 

related to locomotor approach kinematics were the best predictors of the firing rate for most 

NAc neurons. Nearly 18% of the recorded neurons were inhibited during the entire approach run 

(locomotion-off cells), suggesting that reduction in firing of these neurons promotes initiation of 

locomotor approach. 27% of the neurons presented a peak of activity during acceleration followed 
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by a valley during deceleration (acceleration-on cells). Together, these neurons accounted for most 

of the speed and acceleration encoding identified in our analysis. In contrast, a further 16% of 

neurons presented a valley during acceleration followed by a peak just prior to or after reaching 

reward (deceleration-on cells). These findings suggest that these three classes of NAc neurons 

influence the time course of speed changes during locomotor approach to reward.
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Introduction

A major function of NAc neurons is to promote the vigorous pursuit of rewards (Nicola, 

2007; Salamone and Correa, 2012; Nicola, 2016). Inhibition of dopamine neurotransmission 

in the NAc impairs performance of high-effort tasks while leaving lower-effort tasks 

relatively unaffected (Salamone et al., 1999), biases animals to choose the less effortful 

option (Salamone et al., 1994; Cousins et al., 1996; Hauber and Sommer, 2009), and 

reduces the probability of engaging in locomotor approach responses to reward-predictive 

cues (Nicola, 2010; Ambroggi et al., 2011). Consistent with these observations, many NAc 

neurons are briefly excited by reward-predictive cues (Nicola et al., 2004; Atallah et al., 

2014; Gmaz et al., 2018), and these excitations predict the vigor of the approach response 

– specifically, the neuron activity is higher when the latency to initiate approach will be 

shorter and the speed of approach greater (McGinty et al., 2013; Morrison et al., 2017). This 

form of encoding likely contributes causally to vigorous performance of cued approach tasks 

(du Hoffmann and Nicola, 2014; Caref and Nicola, 2018).

Although NAc cue-evoked firing responses that begin prior to movement onset compellingly 

link reward prediction to effort exertion, it remains unclear whether NAc neuronal activity 

that continues throughout the movement represents parameters related to movement such 

as speed or direction. This question is not readily answered with animals in standard-sized 

operant chambers because the short movement distance limits the maximal speed and the 

time taken to complete the movement, both of which limit the dynamic range across which 

speed varies.

In contrast, in maze or runway tasks in which subjects must move long distances (e.g. 1 

m or greater) to rewarded locations, it takes several seconds to complete the approach and 

the maximal speed is higher, allowing sufficient dynamic range to relate neural activity to 

movement throughout the run. Although NAc neuronal activity has been measured in such 

tasks (Lavoie and Mizumori, 1994; Shibata et al., 2001; Mulder et al., 2004; Mulder et al., 

2005; German and Fields, 2007; Khamassi et al., 2008; van der Meer and Redish, 2009; van 

der Meer et al., 2010; Atallah, et al., 2014; Gmaz, et al., 2018), the relationship between 

neuronal activity and the kinematic parameters of locomotion has not been systematically 

investigated, despite anecdotal reports that NAc neurons’ firing reflects locomotor speed 

(Sjulson et al., 2018).
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To address this deficiency, we recorded from NAc shell neurons as rats performed an 

8-arm radial maze task in which 3 arms were consistently rewarded, and animals had 

to traverse long distances to obtain rewards. We focused on the NAc shell because it 

receives a prominent projection from the hippocampus (Groenewegen et al., 1987; Brog 

et al., 1993; Floresco et al., 2001), which may carry information related to navigation 

and movement direction (Albertin et al., 2000). It is unknown whether NAc shell neurons 

integrate this information with kinematic parameters such as speed and acceleration. We 

found that although some neurons did represent movement direction, speed and proximity 

to the rewarded target were more strongly and consistently encoded by many NAc shell 

neurons during reward approach, and that neuronal activity predicted speed approximately 

100 ms in advance. In addition, we found 3 classes of neurons with distinctive patterns of 

activity, including peaks of firing that occurred throughout the time course of locomotion, 

that together could account for the control of the start of the approach run and the timing of 

acceleration and deceleration.

Experimental Procedures

Subjects.

We used adult male Wistar rats that were three months old at the beginning of the 

experiment. The rats were housed in groups of 4 per cage during behavioral training. 

The 5 rats that fulfilled the performance criteria were housed individually after surgery 

to minimize the risk of damaging the implanted electrophysiological microdrives. The rats 

were maintained in a temperature-controlled room (22 ± 2 °C) with a 12-hr light/dark cycle 

(lights on at 7:00 am). Access to water was allowed for one hour per day, and access to food 

was restricted to maintain the rats’ body weight at 90% of their free-feeding weight (290 - 

340 g). All experimental procedures were in agreement with the Brazilian and International 

legislation for animal care (Law N° 11.794 of October 8, 2008; EC Council Directive of 

November 24, 1986; 86/609/EEC). The project was approved by the Animal Care and Use 

Committee of the Federal University of Parana State. The experiments were conducted in 

accordance with ARRIVE guidelines.

Apparatus.

We used for behavioral training a stainless steel eight-arm radial maze, which had a surface 

covered with black contact paper. Each arm (62 cm x 13 cm) and the central platform (an 

octagon with a 30 cm diameter) were elevated 60 cm above the floor. The walls of all arms 

were 5 cm high. One or four drops (25 μl per drop) of chocolate milk were delivered at the 

ends of reward arms before the start of each trial. A white curtain was installed around the 

maze and several salient visual cues (black felt geometrical shapes) were attached to it and 

remained in the same locations throughout behavioral training and experiments. Four light 

bulbs (15 W) were spaced equally on a metal frame (70 x 70 cm) above the center of the 

maze. This metal frame also served as a support for a motorized commutator (Plexon, USA), 

a camera (Allied Vision Technologies GmbH, Germany) connected to the main computer, 

and an amplifier (Plexon, USA).
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Behavioral procedures.

All rats were handled (5 min/day) by the experimenter for three consecutive days before the 

start of behavioral pre-training. During pre-training, rats were habituated to the maze and 

the chocolate milk reward by placing them at the end of one arm and letting them drink the 

chocolate milk from the reward receptacle.

After the pre-training phase, rats were trained to collect drops of chocolate milk consistently 

located at the ends of the same three arms of an eight-arm radial arm maze (Fig. 1A). The 

positions of these three reward arms were counterbalanced among rats and were chosen in 

a pseudorandom manner so that two adjacent arms were never baited. In the same-reward 

group (n = 2), all reward arms (X, Y and Z) contained 4 drops of chocolate milk (100 μl) 

in 100% of trials. In the different-reward group (n = 3), one of the reward arms contained 

four drops (100 μl) of chocolate milk in 100% of trials (high reward), another reward arm 

contained four drops (100 μl) in 66.7% of trials (medium reward), and the last reward arm 

contained one drop (25 μl) in 100% of trials (low reward). The rewarded locations, and the 

reward amounts and probabilities, remained constant for a given rat throughout training and 

experiments.

A fourth arm was consistently used as a resting platform, where the rats were placed and 

restricted between trials. The other four arms were used as starting positions (S1 - S4, Fig. 

1A). The rats underwent nine trials per day. Two starting positions were alternated in a 

pseudorandom order, one used three times and the other two times. Each trial finished when 

all rewards were collected or after 5 min elapsed. The rats were trained five days per week 

until they reached the following criteria in three consecutive training days: a) no more than 

20% reference memory errors (entering a non-reward arm); b) the high reward arm (4 drops, 

100% probability) is the last choice in no more than 20% of trials; and c) the low reward 

arm (1 drop, 100% probability) is the first choice in no more than 20% of trials. Criteria 

b and c were applied only to the different-reward group. The rats took 40 to 50 training 

days to achieve these criteria. For the purposes of our analyses, we merged data from both 

the same reward and different reward groups as we observed that reward approach behavior 

was highly stereotyped across all rats after the long training period. In particular, speed 
vs time trajectories were similar for the two groups and did not substantially differ across 

different start/end arm combinations. We did not further analyze the impact of expected 

or past reward on firing as we did not have enough samples (visits of individual arms of 

different value) for a robust analysis.

After training, rats underwent surgery to implant recording electrodes arranged in a 

microdrive above the NAc shell. After recovery, they were re-trained to the pre-surgery level 

of performance, which took approximately seven days. During these re-training sessions and 

the following recording sessions, 12 trials per session were carried out. After completion 

of recordings from NAc neurons, rats’ brains were removed for histological staining. 

See details related to surgical, recording, and histological procedures in Supplemental 

Experimental Procedures.
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Neuronal activity analysis.

A recording session consisted of 12 trials. In each trial, the rats should visit the three reward 

arms. The rats usually approached the reward areas of the three reward arms only once. Each 

approach was defined as a run – when the rat ran from the distal end of one arm towards 

the reward area of a reward arm (Fig. 1A). Trained rats performed few visits to non-reward 

arms, and only data from approaches to reward arms were analyzed. For most analyses, the 

time window analyzed for each run extended from 1 s before locomotion onset to 1 s after 

the locomotion end. Taking advantage of the fact that the animals’ behavior across runs 

was generally consistent, locomotion onset was defined as the first time point in which the 

speed of the animal reached 20 cm/s before the peak speed of the run (Fig. 1B). Locomotion 

end was set as the first point at which the speed dropped below 10 cm/s. We restricted our 

analysis to stereotyped trajectories to the reward defined by an efficiency criterion, which 

was calculated as the ratio of the distance traveled in the run to the length of the ideal path 

(from the end of one arm to the reward area of another arm). Incomplete runs, i.e. the rat 

enters the arm but does not reach the end of it, result in ratios <1. To eliminate most such 

runs, and runs in which the animal deviated substantially from a direct trajectory to the end 

of the reward arm, runs with high efficiency (ratio < 0.8) or low efficiency (ratio > 1.2) 

were discarded. Of a total of 2587 runs, 877 were eliminated because they were visits to 

never-rewarded arms, re-visits to arms where reward had already been collected, or the run 

did not meet the efficiency criteria.

Generalized linear model (GLM).

The goal of the multiple regression analysis was to evaluate which performance-related 

parameters can be used to predict neuronal firing rate. A GLM was calculated with the 

firing rate (spikes/100-ms bin) as the dependent variable and 14 parameters as predictors 

(independent variables; Supplemental Tab. S1). Pearson correlations (r) among pairs of 

predictor variables were calculated and, for the pairs that showed r > 0.8, one of them was 

excluded (Supplemental Fig. S1).

Different continuous variables were extracted from the coordinates tracked in the recorded 

videos. The rat’s locations were tracked at 30 frames per second. However, to match the 

neuronal data that were binned at 100 ms, an interval of 3 frames was used (3 frames = 

100 ms interval). Firing rate, speed and acceleration were smoothed by a sliding average 

window of 300 ms (Kropff et al., 2015; Rueda-Orozco and Robbe, 2015). The β values were 

calculated with the MATLAB glmfit function. The multiple regression assumed a normal 

distribution for the data and the identity link function was used to estimate the β value for 

each parameter.

The GLM followed the equation:

Y (t) = β0 + β1x1(t) + β2x2(t) + … + βnxn(t) + ε (1)

where Y (t) is the predicted firing rate at time t, βn is the weight of the predictor n, xn(t) is 

the value of the predictor n at time t, and ε is the error term. For each neuron, the model 

was trained and tested by the fivefold cross validation method (Engelhard et al., 2019) as 

follows. The data from all the runs (speed, acceleration, firing rate, etc.) were divided into 
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5 parts with the same number of runs. The runs used in each part were randomly selected. 

The model was trained and tested five times with 4/5 of the total data, and the ability of the 

model to predict the remaining 1/5 of the data was assessed by correlating the predicted data 

to the actual data. Always, a different combination of the data was used as training and test 

data (Supplemental Fig. S2).

The mean of the r2 values obtained from the five correlations (r2
mean) was considered the 

mean fraction of variance explained by the full model (FM, the model with all predictors 

included). The significance of the model was evaluated by comparing the r2
mean to the 

distribution of r2
mean values generated by models trained with shuffled neuronal data (100 

shuffled models per neuron, n = 62 neurons). Neurons for which the model explained the 

actual data better than the 99th percentile of the shuffled models were classified as having 

their firing rates significantly explained by the encoding model.

Contribution of each predictor to the GLM.

To evaluate which variables had a significant contribution to the full model (FM), only 

neurons significantly explained by the FM were analyzed. To calculate the contribution of 

each of the variables (var) to the FM, the FM was compared to the full model less the 

selected variable (FM – var). The mean fraction of the variance explained by FM - var was 

calculated as the mean r2 of the correlation between the output of the FM - var and the real 

firing data. These values were compared to the mean r2 of the correlation between the FM 

and real firing data using Bonferroni-corrected t-tests. The contribution of a variable to the 

variance in firing rate was considered significant if P < 0.01.

Cross-correlogram analysis.

The aim of this analysis was to test whether changes in firing rate preceded or followed 

changes in the animal’s speed. First, based on each neuron’s Pearson’s correlation between 

speed and firing rate, we divided neurons into two groups, those with positive correlations 

between firing rate and speed, and those with negative correlations. Only neurons with 

correlations higher or lower than the 99.5th percentile of a bootstrapping distribution of 

Pearson’s correlations were included in these groups (1000 correlations of shuffled spike 

times and speed were generated for each neuron). For each of the included neurons, the 

average speed before and after each spike (bins of 33 ms) was calculated to generate 

a normalized (z-scored) cross-correlogram. Finally, the time of the peak of each cross-

correlogram was identified and then compared to zero (one-sample t-test).

The two Gaussians model (2G).

The 2G model used fraction of time to complete a run as the only independent variable. 

Time during the run was normalized by dividing the periods from locomotion onset to the 

peak of speed and from the peak of speed to locomotion end into 10 bins each. On average, 

the bin width was ~150 ms. The time windows starting 1.05 s before locomotion onset 

to locomotion onset, and from locomotion end to the 1.05 s after locomotion end, were 

each divided in 7 bins (150 ms each). The firing rate during each bin was calculated and 

z-transformed.
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The 2G model followed the equation:

Y (t) = G1(t) + G2(t) + BL

where Y (t) is the predicted firing rate at time t, G1 is the Gaussian equation for the peak of 

the curve, G2 is the equation for the valley of the curve, and BL is the baseline activity.

The Gaussian equations (G(t)) used were:

G1(t) = H1e−n(X(t) − F1
W 1 )2, G2(t) = − H2e−n(X(t) − F2

W 2 )2

where H, F , and W  are constants with the following meaning: H represents the amplitude 

of the Gaussian curve, which reflects the height (H1) and depth (H2) of the activity peak 

and the valley, respectively. F  is the bin where the Gaussian is centered. Therefore, F1 is 

the bin in which the neuron is most active, and F2 is the bin in which the neuron is least 

active. W  is the standard deviation of each Gaussian, which reflects the durations of the 

activation peak (W 1) and valley (W 2). For each neuron, data from all runs were randomly 

split in two pools. One data pool was used to adjust these constants and the other pool was 

used to test the prediction power of the model. 2G constants were adjusted by using the 

Generalized Reduced Gradient (GRG) engine solver of Microsoft Excel to minimize the sum 

of the square roots of the difference between the firing rate recorded in each fraction of 

time and the firing rate predicted by the 2G model (Supplemental Fig. S6). Next, the r and 

P for the correlation between the firing rate predicted by the 2G model and the firing rate 

activity calculated with the other data pool was calculated. The 2G model was considered to 

significantly predict activity of a neuron when P < 0.01.

We analyzed the data and prepared figures using MATLAB R2021b (The Math Works, 

Inc.), GraphPad Prism 9 (GraphPad Software, Inc.), and CorelDRAW 2017 (CorelDRAW 

Graphics Suite).

Results

Behavioral task performance

Five rats were trained to collect chocolate milk rewards located in three arms of the 

8-arm radial maze task (Fig. 1A). The same three arms were rewarded across sessions 

and experiments, and after extensive training (40 - 50 days), the rats rarely visited the non-

reward arms. Furthermore, after consuming the reward in one arm, rats only occasionally 

revisited the arm in the same trial (Supplemental Table S3). Therefore, for each trial only 

the three approach runs towards the end of the reward arms were considered, while the 

runs to non-reward arms were not analyzed. Because traveled distances from the starting 

location to the reward location were long and constant, speed varied from locomotion start to 

locomotion end in a stereotyped way (Fig. 1B). Each run consisted of a single acceleration 

to peak speed followed by a deceleration to locomotion end at the reward location (i.e., 

along the way, rats did not stop). This consistent pattern of speed variation during each run 

allowed us to evaluate the relationship between kinematic variables and neuronal activity. 
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Unlike most tasks used to study approach behavior, no start cue was provided and each run 

was therefore self-initiated.

Speed and fraction of the run are the best predictors of NAc firing rate during approach 
behavior

Sixty-two NAc neurons were recorded while trained rats performed the radial arm maze 

task (Supplemental Tab. S1). To examine how NAc neurons encode kinematic parameters of 

locomotion, we considered the set of variables shown in Supplemental Table S2. We tested 

whether the firing rate of each neuron could be predicted with a generalized linear model 

(GLM) that used all these parameters as predictive variables. Prior to running the GLMs, we 

examined the correlation between pairs of variables and found that fraction of the run, time 
since locomotion onset, and distance traveled were strongly correlated with each other (r > 

0.8, Supplemental Fig. S1). We therefore excluded time and distance traveled from the GLM 

analysis. In addition, fraction of the run and acceleration were correlated, but less strongly (r 

= 0.6). To assess whether one of these variables explained more of the variance in firing rate 

than the other, we conducted three separate GLM analyses for each neuron, one including 

both variables and the other two including either fraction of the ran or acceleration. We refer 

to these three GLMs as full models (FMs).

We first assessed the validity of the GLM that included both fraction of the run and 

acceleration using a five-fold validation method (Engelhard, et al., 2019). For each neuron, 

we computed the r2
mean: the mean of the five r2 values from the correlations between the 

modeled firing rates (obtained from running the GLM on ∕5
4  of the data) and the remaining 

∕5
1  of the actual firing rate data (Supplemental Fig. S2). Representative examples comparing 

actual firing rate with the firing rate predicted by the FM are shown in Figure 2B. FMs 

predicted the changes in the firing rate of 39 units (63% of the neurons) with a r2
mean greater 

than the correlation predicted by 99% of models that used shuffled data (Fig. 2A). The 

average r2 across the 39 neurons (r2
mean ± SEM) was 0.156 ± 0.018. In the model in which 

the variable acceleration was excluded, 39 cells (63%) passed this criterion (Supplemental 

Fig. S3) and in the model in which the variable fraction of the run was excluded 36 cells 

(58%) passed this criterion (Supplemental Fig. S4). The similarity of the results across the 

three models indicates that neither acceleration nor fraction of the run explained a greater 

degree of the firing rate variance than the other. Roughly the same neurons were well fit 

by the three different models (34 neurons by all three models, 1 neuron only by the model 

without acceleration, 2 neurons only by the model without fraction of the run, and 2 neurons 

only by the model with both variables). In summary, in the majority of neurons, our GLMs 

predicted firing rate much better than chance and accounted for variance within the range 

reported by others (Gmaz, et al., 2018; Engelhard, et al., 2019).

To determine which independent variables accounted for a significant fraction of the 

variance in firing rate, for each neuron we ran the GLM with one variable excluded, 

and repeated this with each variable. Individually removing only two of the variables, 

speed and fraction of the run, significantly decreased the r2
mean across neurons (P < 0.01, 

t-test, Fig. 2C,D). Removing acceleration had an effect that did not reach significance 

after correction for multiple comparisons (Fig. 2D); however, when the variable fraction 
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of the run (which was correlated with acceleration, r = 0.6) was excluded from the 

model, removing acceleration caused a significant decrease in r2
mean (Supplemental Fig. 

S4). Furthermore, when acceleration was excluded from the model, removing the variable 

fraction of the run caused an even larger decrease in r2
mean (Supplemental Fig. S3). This 

suggests that part of the predictive information carried by the variable fraction of the run that 

is encoded by the NAc neurons is the change in acceleration during the run.

To confirm that speed and fraction of the run strongly influence firing, we ran GLMs that 

included only these two independent variables. These models predicted the firing rate of 

38 (61%) of the neurons with a r2
mean greater than the coefficient generated in 99% of 

models using shuffled data. Thus, our GLM analysis reveals that the kinematic variables 

speed acceleration and fraction of the run are most strongly predictive of NAc firing activity. 

Finally, to further confirm our conclusion, we utilized an alternative analysis approach to 

determine which variables most robustly predict firing rate. We performed Least Absolute 

Shrinkage and Selection Operator (LASSO) regression using the entire set of variables 

shown in Supplemental Table S2 and Supplemental Figure S1 including multicollinear 

variables . LASSO eliminates those variables with the least predictive value from the model, 

revealing those variables that are most predictive of firing rate and selecting, in an unbiased 

way, from among multicollinear variables. The analysis confirmed that speed and fraction 

of the run are significant predictors for many (50% and 34%, respectively) of the recorded 

cells (Supplemental Figure S5). To gain insight into the degree to which parameters related 

to kinematics (speed, acceleration, and the time course of these variables) and movement 

direction are represented in the neurons activity, we categorized neurons as Kinematics 

neurons if one or more kinematics variables (speed, fraction of the run, acceleration, max 

speed, run duration, center distance, distance traveled, time) remained in the neuron’s 

LASSO model, and Direction neurons if one or more direction variables (arm Z, arm Y, 

right, left, angle - center, head direction, head movement) remained. We found that 15 of 62 

neurons were classified as Kinematics, 1 was classified as Direction, 33 were classified as 

both, and 13 were classified as neither. These results suggest that kinematics is represented 

in a large majority of neurons (48 of 62, 77%), and that many of these also represented 

some aspect of movement direction. Interestingly, speed remained in the most LASSO 

models, and its correlated variable distance from center also remained in many neurons. 

These results suggest that speed is commonly represented by NAc neurons, consistent with 

the GLM results. In addition, fraction of the run remained in far more LASSO models 

than the correlated variable acceleration, suggesting that fraction of the run better predicted 

firing rate than acceleration. Together, speed, fraction of the run and center distance were 

responsible for the bulk of the Kinematics representation, whereas Direction representation 

was more dispersed among the various Direction variables. Finally, trial remained in many 

models, suggesting that some neurons showed changes in activity across the session.

Three distinct activity patterns

A neuron whose firing is related to the variable fraction of the run could encode a number 

of biologically-relevant parameters that themselves vary according to the fraction of the run 

completed, such as reward proximity and acceleration. It is possible that the fraction of the 
run neurons reach a peak at a specific relative location along the approach trajectory. We 
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constructed z-normalized heatmaps of each neuron’s activity aligned to locomotion onset, 

peak of acceleration, peak of speed, peak of deceleration and locomotion end (Fig. 3A). 

Some neurons seemed to be inhibited during the runs, an observation we confirmed by 

comparing the firing rate during the runs with that during the inter-run intervals. Eleven 

neurons were significantly inhibited during the locomotion phase (paired t-test, P < 0.01) 

and were named locomotion-off (LOff) cells. An example neuron’s histograms are shown in 

Figure 4A1,2, and heatmaps of all LOff cells are shown in Figure 5A. These heatmaps show 

that LOff cells tend to be inhibited beginning just prior to locomotion onset, continue to be 

inhibited throughout the run, and abruptly recover from the inhibition just after locomotion 

offset (see also the average activity of all LOff cells in Fig. 4A4).

Figure 3A shows that many of the remaining neurons exhibited activity peaks at various 

times from before locomotion start to after locomotion end. Consequently, the distribution 

of the heatmap peaks sorted by time from the alignment event formed a diagonal line, 

particularly when activity was aligned by the peak of speed (roughly the midpoint of the 

run). To assess whether this diagonal was the result of each neuron’s firing consistently 

reaching a peak at about the same time across runs relative to the peak of speed, we split 

the data from each neuron into two pools counterbalanced by trial order and target arm. We 

constructed peak speed-aligned heatmaps of the activity of all neurons calculated with the 

first data pool, sorted by the time of peak of activity (Fig. 3B1) and heatmaps calculated 

with the second data pool, sorted in the same order as the first pool (Fig. 3B2). We found 

that the times of the peak bins determined from the two data pools were correlated (r = 

0.43, p < 0.0001). We also found that for 37 neurons (60%), the firing rates in each time 

bin within individual runs were also correlated between data pools (P < 0.01). These results 

demonstrate that each individual neuron exhibits peaks at consistent times, and that the times 

during the run at which these peaks occur vary widely across neurons. Moreover, we sorted 

the second data pool in the same order but aligned the activity by locomotion start (Fig. 3B3) 

and locomotion end (Fig. 3B4). Those graphs also show a stable pattern in our data.

Intriguingly, neurons that showed an activity peak in the first part of the approach run 

(before reaching peak speed; i.e., during acceleration) tended to show a valley in the 

second part of the run (after peak speed; i.e., during deceleration), and vice-versa (Fig. 

3A). We hypothesized that a large subset of neurons exhibited the peak-valley pattern 

of activity because they reach activity peaks and valleys mostly during acceleration and 

deceleration, respectively. We named these neurons acceleration-on (AOn) cells. Similarly, 

we hypothesized that neurons exhibiting the complementary valley-peak pattern reached 

activity peaks and valleys mostly during deceleration and acceleration, respectively. We 

named these neurons deceleration-on (DOn) cells. To test these hypotheses, we first had 

to account for the fact that the durations of the acceleration and deceleration phases were 

not identical across runs, which means that if firing peaks occurred at a specific fraction 

of the acceleration or deceleration phase, the peaks would occur at different absolute time 

points in different runs. Therefore, we time-normalized the firing rate data. In each run, the 

acceleration period was divided into 10 bins of the same size, and the firing rate in each 

bin was calculated. The deceleration period was also divided into 10 bins. The approximate 

average width of the adjusted bins was 150 ms. In addition, 7 bins of 150 ms each were 

included prior to locomotor start and after locomotor end. Next, the firing rates from all 
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runs were averaged per bin and z-transformed. Finally, we modeled the peak-valley and 

valley-peak patterns as the sum of two Gaussian curves (2G model, see Experimental 

Procedures and Supplemental Fig. S6 for details).

To validate the 2G model, we split the firing rate data from all runs of each neuron into two 

pools. The first data pool was used to calculate the average activity per bin and the second 

data pool was used to train the 2G model. Next, we examined whether the activity per bin 

calculated with the first data pool was significantly correlated with the activity predicted 

by the 2G model (Pearson correlation, P < 0.01). Seventeen AOn cells (27%) and 10 DOn 

cells (16%) passed this criterion (Fig. 4B,C). The peak firing rate of AOn cells occurred 

exclusively during the acceleration phase (Fig. 4B4, 5B), whereas the firing rate peak of 

DOn cells occurred mostly during the deceleration phase, although some neurons peaked 

after locomotion end (Fig. 4C4, 5C). LOff cells were not modeled with the 2G model, but 

we plotted the time-normalized firing rates of these neurons in the same way (Fig. 4A4).

These firing modes further refine the GLM results (Fig. 2C,D) showing that speed (or 

acceleration) and fraction of the run explain a portion of the variance in firing rate. To 

examine how LOff, AOn and DOn cells encode speed and acceleration, we plotted the 

simple correlation coefficients relating firing rate and speed against the normalized times at 

which the peak firing of each neuron occurred (Fig. 6A), and similarly for the firing rate 

vs acceleration correlation coefficients (Fig. 6B). AOn cells tended to have the strongest 

positive correlation coefficients for both speed and acceleration, whereas LOff neurons 

had the strongest negative coefficients for speed. DOn cells tended to have the strongest 

negative correlation coefficients for acceleration whereas their coefficients for speed were 

more widely distributed across negative and positive values.

To further confirm these findings based on individual neuronal data, we determined, for each 

class of neurons (LO, AOn, DOn, and non-categorized), whether the mean GLM β values 

for speed, acceleration and fraction of the run, as well as the mean r coefficient values for 

simple correlations between the same variables and firing rate were significantly different 

from 0 (P < 0.01, one-sample t test, Fig. 6C-H). The results showed that AOn cells encoded 

speed with positive coefficients, whereas LOff cells and DOn cells encoded speed with 

negative coefficients (Fig. 6D). The coefficients for acceleration were significantly different 

from zero and positive for the AOn cells and negative for the DOn cells, but not for the LOff 

cells (Fig. 6F). The coefficients for fraction of the run were significantly different from zero 

and negative for the AOn cells and positive for the DOn cells, but not for the LOff cells (Fig. 

6H). These results were recapitulated in the GLM β values for the AOn and LOff cells, but 

the DOn cells showed β values significantly different from zero only for the fraction of the 
run.

Together, these results indicate that the encoding of acceleration and/or fraction of the run 
revealed by the GLM is largely the result of AOn and DOn cells’ firing peaks and valleys, 

whereas encoding of speed is largely due to AOn cells’ positive correlations of firing with 

speed and LOff cells’ negative correlations.
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Activity of speed-correlated neurons precedes increases in speed

Our finding that the activity of NAc neurons is correlated with approach speed is in 

agreement with the hypothesis that NAc neurons promote reward seeking (Nicola, 2007; 

Salamone and Correa, 2012; Nicola, 2016). If the firing of these neurons is causal to 

increased speed of reward approach, then increases in speed should reliably follow the 

activation of these neurons. We tested this prediction with a cross-correlation analysis in 

which we plotted speed versus time aligned to each spike (Fig. 7A1). On average, the speed 

peaked 146 ms after the action potential in positively-correlated neurons (P = 0.0017, t 

test for difference from 0, Fig. 7B). In contrast, the peaks of the cross-correlograms of the 

negatively-correlated neurons were not significantly different from 0 (P = 0.35, Fig. 7B). 

As suggested by Figure 6, AOn cells were the class with the strongest correlation between 

firing and speed. To verify that the firing of these neurons preceded an increase in speed, we 

constructed heat maps of LOff, AOn and DOn cells’ firing-speed cross-correlations. These 

plots show that only AOn cells consistently exhibited cross-correlogram speed peaks after 

the spike (Fig. 7A2). Notably, the cross-correlogram speed minimum tended to follow the 

spike in DOn cells. These results are consistent with the possibility that the firing of some 

AOn cells causes an increase in speed during the acceleration phase, whereas the firing of 

some DOn cells causes a decrease in speed during the deceleration phase.

Place-related activity

To test whether location or reward prediction encoding could account for speed or run 

fraction encoding, we included variables related to location in the GLM described in 

Supplemental Table S2. None of these variables were found to contribute significantly to 

the model’s predictive power (Fig. 2C). Moreover, we asked whether any of the recorded 

neurons could be classified as place cells according to established criteria (Yeshenko et al., 

2004). Five AOn and two LOff neurons passed the criteria. However, their tentative firing 

fields were mainly located on the central platform, the neurons were quite active on other 

parts of the maze, and their firing fields were quite small compared to those of CA1 place 

cells recorded on a similar radial eight-arm maze (Xu et al., 2019).

Neuronal classification based on electrophysiological properties

We sorted the recorded neurons into tentative populations of medium spiny neurons (MSNs) 

and interneurons based on their waveform characteristics and the proportion of the neuron’s 

ISIs > 2 s, similar to previous studies (Berke et al., 2004; Gatica et al., 2022). We identified 

17/62 (27%) putative MSNs, 18/62 (29%) putative interneurons, and 27/62 (44%) neurons 

that were not classified due to their ambiguous properties. The firing rate of putative MSNs 

was 0.9 ± 0.4 Hz (mean ± SD) and the firing rate of putative interneurons was 16.2 ± 12.6 

Hz (mean ± SD). We conclude that 7/11 (64%) LOff cells were putative MSNs, 0/11 (0%) 

were putative interneurons, and 4/11 (36%) were unclassified; 0/17 (0%) AOn cells were 

putative MSNs, 9/17 (53%) were putative interneurons, and 8/17 (47%) were unclassified; 

and that 2/10 (20%) DOn cells were putative MSNs, 3/10 (30%) were putative interneurons, 

and 5/10 (50%) were unclassified (Supplemental Fig. S7).
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Histology

Most of the recorded neurons were in the NAc shell, but a few of them were in the NAc core 

or in the border between the dorsal and ventral striatum (Supplemental Fig. S8). We found 

no evidence that the different classes of neurons were anatomically clustered.

Discussion

The present study clarifies how NAc shell neurons represent locomotor parameters when 

animals approach rewarded locations. Rats had to run long distances (~1.5 m) to approach 

each reward, which allowed us to determine how firing changes during acceleration and 

deceleration. Firing primarily reflected the animal’s speed as well as its progression towards 

the movement target.

We included variables related to approach kinematics, timing and movement direction in 

each neuron’s GLM. Only three variables - speed, acceleration and fraction of the run - 

were found to contribute significantly to the variance in firing rate of the population of NAc 

neurons (although because acceleration and fraction of the run were correlated, acceleration 
was found to contribute to variance only when fraction of the run was excluded from the 

GLMs). The findings that the explanatory variables were related to kinematics, and that the 

approach speed increased after the firing of AOn cells, suggest that the primary function of 

NAc neurons in this task is to control the time course of increases and decreases in speed.

Although AOn neurons’ activity was strongly related to kinematics, we cannot decipher 

whether the sequential activity of different AOn cells is triggered by the time elapsed after 

response initiation, the traveled distance, the distance/time needed to arrive at the reward 

area, or the fraction of the traveled distance completed, because in our experiment these 

variables were highly correlated with each other. Future experiments specially designed 

to disambiguate these factors will be needed to determine whether NAc shell AOn cells’ 

activity is related to timing or to other kinematic parameters. Such disambiguation has 

been accomplished in other brain regions with varying degrees of success. For example, 

in explicit timing tasks, neurons in the dorsolateral striatum (DLS) show peak activity at 

sequential times that varied across neurons (Matell et al., 2003; Gouvea et al., 2015; Mello 

et al., 2015; Bakhurin et al., 2017; Toso et al., 2021). Similar encoding of the temporal 

structure of different behavioral behaviors has also been found in other brain structures such 

as the hippocampus, medial prefrontal cortex, and cerebellum (Lusk et al., 2016), as well as 

the NAc (Tsutsui et al., 2006; Abela et al., 2015), but see (Liu et al., 1998; Wakabayashi et 

al., 2004; Acheson et al., 2006; Galtress and Kirkpatrick, 2010).

In the present study, NAc neurons did not encode kinematic parameters in a uniform way, 

but rather fell into three classes defined by when their firing rates increase or decrease 

during the run. First, we noted that correlation coefficients relating firing and speed were 

widely distributed across both positive and negative values. Many neurons with negative 

coefficients were found to be continuously inhibited during locomotion (LOff cells, Figs. 

4A, 5A, 6C,D), similar to previously-identified NAc neurons that are inhibited throughout 

appetitive and consummatory behaviors (Taha and Fields, 2006). However, in LOff cells, 

firing resumed just after locomotion offset even though animals presumably engaged in 
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reward consumption at that point. As suggested previously (Taha and Fields, 2006), the 

inhibitions of LOff cells may gate appetitive behaviors or trigger locomotor approach.

In contrast, many neurons with positive speed coefficients were not continuously excited 

during locomotion, but rather exhibited firing peaks during acceleration and valleys during 

deceleration (AOn cells, Figs. 4B, 5B, 6A-F). Intriguingly, their firing peaks were distributed 

throughout the acceleration phase (Figs. 4B4, 6A,B) and did not align precisely to the peak 

of acceleration (Fig. 5B). These results suggest that each AOn cells are activated when the 

animal is at a different point along the acceleration trajectory, activation that could control 

the precise timing of the speed increase during the run. This possibility is supported by our 

cross-correlation results showing that an increase in speed followed a spike in all but one 

AOn cell (Fig. 7A2).

DOn cells were complementary to AOn cells in that DOn cells exhibited a firing valley 

during acceleration. However, DOn cells’ peaks were not limited to the deceleration phase, 

but tended to occur just before or sometimes after locomotion offset (Figs. 4C4, 5B, 6A,B). 

DOn cells did not consistently encode speed (Fig. 6A,D), but did tend to show negative 

correlations with acceleration and positive correlations with fraction of the run (Fig. 6E-H) 

- a pattern opposite to that of AOn cells. Thus, AOn and DOn cells together account for 

much of the fraction of the run and acceleration encoding identified by the GLM analysis, 

suggesting that together these neurons report the animal’s relative position along the run, 

or, similarly, the animal's proximity to reward. Alternatively, they may shape the changes in 

speed at different positions along the run. Finally, the fact that DOn cells tend to fire the 

most near locomotion offset may mean that these neurons are specialized for some aspect 

of reaching the end of the run, such as coming to a complete stop or preparing for reward 

consumption.

Our findings that the firing of many NAc shell neurons was related to both speed and 

fraction of the run, and that these neurons exhibited peaks throughout the locomotor 

trajectory, are remarkably similar to previous observations of DLS and dorsomedial striatal 

(DMS) neurons in rodents executing spontaneous or task-related locomotion (Rueda-Orozco 

and Robbe, 2015; Sales-Carbonell et al., 2018; Fobbs et al., 2020). For example, in a study 

by Sales-Carbonell et al. (2018), head-fixed mice had to run 100 cm in a free-spinning wheel 

to get drops of sucrose solution. During the runs, most DMS neurons showed peak activity 

at different times in relation to movement onset, similar to the AOn and DOn cells reported 

here. Moreover, the activity of these DMS neurons was correlated with running speed on a 

run-by-run basis. Furthermore, like the LOff cells reported here, another subpopulation of 

DMS neurons were active just before and just after the locomotion period and were inhibited 

during the locomotion.

It is possible that during a reward approach run, the AOn- and DOn-like cells recorded 

in the DMS and NAc act as a locomotion accelerator and brake, respectively. The LOff 

cells are the more likely candidates to control the onset and termination of the reward 

approach runs, while the AOn and DOn cells are more likely candidates to control the rat 

speed during different phases of the run. This hypothesis is in close parallel with the roles 

proposed for the direct and indirect pathway neurons of the dorsal striatum (Alexander 
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et al., 1986). In agreement with this hypothesis, previous studies showed that optogenetic 

activation of the direct pathway neurons in the DMS causes an increase in locomotor activity 

in mice, whereas the activation of the indirect pathway neurons decreases locomotor activity 

in freely-moving mice (Kravitz et al., 2010; Freeze et al., 2013). However, calcium imaging 

and electrophysiological single-unit studies in freely moving mice have shown that both 

direct and indirect pathway neurons are activated at movement onset, suggesting that their 

roles are more complex than simply to serve as “go” and “stop” neurons (Barbera et al., 

2016; Sales-Carbonell, et al., 2018; Nishimaru et al., 2023). Further studies are needed to 

pin down the precise behavioral and circuit function of AOn, DOn and LOff cells in both 

DMS and NAc, as well as to determine their identity (direct vs indirect path).

The observation that NAc and DMS contain neurons that exhibit similar forms of kinematic 

encoding may mean that joint encoding of speed and locomotor progress is a common theme 

that spans much of the dorsal and ventral striatum. However, because the afferents to the 

dorsolateral, ventromedial and ventral striatum are heterogeneous (Haber, 2003) and the 

NAc shell projects to many non-basal ganglia structures (Zahm and Brog, 1992; Winn et al., 

1997; Zahm, 2000), the functional role of this encoding may differ across striatal structures. 

Moreover, our animals were extremely well trained, and there is some controversy as to 

the strength of kinematics encoding in the dorsal striatum in less-trained vs well-trained 

animals, as well as in how kinematics encoding and location of the encoding differs during 

spontaneous movements vs task-related (e.g., reward-seeking) movements (Rueda-Orozco 

and Robbe, 2015; Fobbs, et al., 2020; Tunes et al., 2022). Future studies are needed 

to explore the specific roles of striatal regions in learning and expression of stereotyped 

locomotor approach behaviors, including determining the extent to which reward prediction 

influences encoding of kinematics. Such studies should include the NAc core, which has 

a prominent role in invigorating cued approach (Parkinson et al., 1999; Nicola, 2010; 

McGinty, et al., 2013; du Hoffmann and Nicola, 2014). One might expect that the core, 

similar to the shell and DMS, also contains AOn, DOn and LOff cells.

The GLM analysis yielded little evidence that NAc neurons participate in choosing which 

reward location to approach or determining the route to get there. In particular, the arm 
entered variables reflect the movement target and right turn, left turn, angle-center and 

head direction reflect movement direction, but the firing of few neurons was influenced by 

these variables (Fig. 2C,D). Further analysis using LASSO largely confirmed this conclusion 

although two variables (trial and center distance) were found to contribute to firing variance 

in about one third of neurons (Supplemental Fig. S5). Notably, representation of distance 

from center accords with our observation that AOn and DOn neurons reach firing peaks at 

specific points in the animal’s speed trajectory, as the animal’s peak speed typically occurs 

near the center of the maze. Representation of trial may indicate that some NAc neurons are 

sensitive to variables that may change across the session, such as fatigue, arousal or satiety.

LASSO analysis also showed that many kinematics-encoding neurons may have also 

represented diverse aspects of movement direction such as arm entered, head direction, 

and angle of the head with respect to the center of the maze. Importantly, LASSO does not 

reveal the degree of variance in the firing rate explained by each variable, and the absence of 

strong effects of removing direction variables from the GLM models suggests that direction 
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representation may have been weak. Nevertheless, our findings that some NAc shell neurons 

represent navigation and direction parameters accords with previous studies showing that 

NAc neurons, particularly in the shell, integrate reward and spatial information in maze 

tasks (Lavoie and Mizumori, 1994; Floresco et al., 1996; Shibata, et al., 2001; Mulder, 

et al., 2004; Mulder, et al., 2005; German and Fields, 2007; Ito et al., 2008; Khamassi, 

et al., 2008; van der Meer and Redish, 2009; van der Meer, et al., 2010; Lansink et al., 

2012). Consistent with these observations, hippocampal projections to the NAc shell may be 

required for spatial navigation towards large rewards (Albertin, et al., 2000). Our rats were 

overtrained and likely approached reward locations (particularly the second and third run in 

each trial) in a sequence of habit-like stimulus-action chains (Graybiel, 1995) rather than 

using a navigational strategy (O'Keefe and Nadel, 1978; Nicola, 2016). Consequently, spatial 

navigation processing may have been offline or muted.

Our observation of robust anticipatory speed encoding provides a potential mechanism 

to explain previous observations indicating a role for NAc neurons in promoting reward 

seeking. Approach speed is an important component of vigor (Floresco, 2015; Salamone 

et al., 2016; Shadmehr et al., 2016), and increasing dopaminergic (Kalivas and Barnes, 

1993; Wu et al., 1993) or glutamatergic activity (Maldonado-Irizarry and Kelley, 1994) 

in the NAc increases locomotor activity and invigorates reward seeking (Berridge, 2007). 

Moreover, free-run operant tasks with higher effort requirements are especially susceptible 

to disruption by interference with NAc dopamine transmission (Salamone, et al., 1999). 

These effects are due to increased latency to return to the operandum after a pause in which 

the animal moves away from it (Nicola, 2010). One possibility is that dopamine promotes 

the firing of NAc AOn cells, which exhibit the most robust positive correlations between 

firing rate and speed, and whose firing tends to be followed by an increase in speed. The 

activity of these neurons could then trigger initiation or maintenance of locomotor approach 

by reaching a threshold. AOn cells could express the D1 receptor as activation of this 

receptor tends to have excitatory effects (Andre et al., 2010); because DOn cells tend to be 

inhibited during acceleration, they may express D2 receptors, causing them to be inhibited 

by dopamine.

One way to test our proposal that kinematic encoding underlies the increased vigor of 

approach when reward is available would be to systematically vary the reward magnitude 

and determine how predicted reward magnitude influences kinematics encoding. We were 

unable to perform such an analysis because we do not have sufficient data from subjects 

in which different rewards were available in the target arms. We were also unable to 

compare kinematics encoding on error trials (when an animal enters an unrewarded arm) 

to rewarded trials because our overtrained animals made so few errors. Thus, although we 

can confidently conclude that kinematic variables are reflected in the firing of NAc neurons, 

further studies will be needed to establish whether this encoding is modulated by reward 

expectation.

Consistent with the idea that AOn cells drive locomotor initiation, previous studies showed 

that the magnitude of NAc neuronal excitations in response to reward-predictive cues 

predicts both the latency to initiate approach locomotion and the speed of approach 

(McGinty, et al., 2013; Morrison, et al., 2017). These cue-evoked excitations are brief 
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(typically well under 1 s) and precede initiation of movement. Although this time course 

contrasts with our observation of speed encoding during locomotion, the previous studies 

used smaller operant chambers in which locomotor events were brief and higher speeds 

could not be attained. Thus, it is possible that neurons exhibiting cue-evoked excitations are 

the same as the AOn cells identified here. Conversely, because cue-evoked excitations are 

greater when the subject is closer to reward (Morrison and Nicola, 2014; Morrison, et al., 

2017), it is possible that these neurons are DOn cells because DOn cells tend to exhibit 

bursts as the animal reaches the rewarded location.

Our results demonstrate that NAc neurons’ activity during free-run reward approach is most 

consistent with control by these neurons over approach kinematics - when to speed up and 

when to slow down, and by how much.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Nucleus accumbens shell neurons reflect kinematics during reward approach

Nucleus accumbens shell neuronal firing correlates with speed

Nucleus accumbens shell neuronal activity predicts changes in speed

Nucleus accumbens shell neuronal firing correlates with path completion
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Figure 1: 
The eight-arm radial maze task. (A) Rats were trained to find drops of chocolate milk in 

the ends of the 3 baited arms. Each brown drop represents 25 μl of chocolate milk. The red 

line represents an obstacle that was placed in the middle of the resting arm between trials to 

keep the rat restricted in the distal half of the starting arm. S1, S2, S3 and S4 indicate the 

starting arms (left). A single trial consisted of three subsequent runs (blue, magenta, green) 

(right). (B) Superimposed changes in speed during all runs of an individual session aligned 

to locomotion start (left). Changes in speed during three subsequent runs (right).
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Figure 2: 
GLMs were used to predict activity of NAc neurons based on behavioral variables. (A) 

Distribution of the variance explained by a GLM full model (FM) that used all variables 

shown in (C) as predictors. Red line delimits the distribution of the variance explained by 

a GLM calculated with shuffled neuronal data (100 shuffled models per neuron). Neurons 

to the right of the dashed line (99th percentile of the shuffled models distribution) were 

classified as significantly explained by the GLM (63% of recorded neurons). In this and 

subsequent graphs, variance explained is depicted as a percent (100 x r2
mean). (B) Neuronal 

activity during 5 runs towards the ends of reward arms predicted by the GLM (blue line) 

compared to the real data (black line) for three individual neurons. (C) Percentage of mean 

variance explained (mean ± SEM of r2
mean across neurons). Only data from the neurons 

with activity significantly predicted by the FM (full GLM model) were included. The mean 

variance explained by the FM is shown in the leftmost column. The other columns show 

the activity explained by the FM models excluding the indicated variable. * p < 0.01, 

paired t-test (after Bonferroni correction) comparing the indicated model with the FM. (D) 
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Significant comparisons of mean variance explained by the FM (X-axis) and by the FM after 

excluding the indicated variable (Y-axis) for all neurons (black dots) explained significantly 

by the FM. The p-values represent comparison of the mean variance explained by the FM 

and a model without the particular predictor.
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Figure 3: 
Different neurons exhibit peak activity at different bins of time. (A) Averaged firing rate 

z-score heatmaps from all runs of all recorded neurons aligned to locomotion start (A1), 

peak of acceleration (A2), peak of speed (A3), peak of deceleration (A4), and locomotion 

end (A5). Neurons were sorted by the time at which the peak activity occurred. (B) Firing 

rate z-score data from all runs were aligned to the peak of speed and split into two pools 

counterbalanced for the trial order and visited arm. Neurons were sorted by the peak of 

activity calculated with the first data pool (B1). The activities of the same neurons calculated 

with data from the second data pool are shown in the same order as for the first data pool for 

the locomotion start (B2), peak of speed (B3), and locomotion end (B4) alignments.
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Figure 4: 
Classification of LOff, AOn and DOn cells. (A) A1 and A2 show histograms aligned 

to locomotion start and locomotion end for an example LOff cell. A3 shows the time-

normalized histogram for this neuron, and A4 shows time-normalized histograms for all 

LOff cells superimposed (red traces) and the mean ± SEM (blue trace and blue dashed 

traces). (B) and (C) show similar plots for AOn (B) and DOn (C) neurons. The blue traces 

in B3, B4, C3 and C4 show individual neurons’ 2G model results. The red histograms 

superimposed above B4 and C4 indicate the time at which each neuron’s peak firing occurs 

according to its 2G model. LS, PS, and LE correspond to locomotion start, peak of speed, 

and locomotion end, respectively.
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Figure 5: 
LOff (A), AOn (B) and DOn (C) cells exhibit peak activity at different kinematic stages of 

the reward approach run. Heatmaps show firing rates aligned to locomotion start, peak of 

acceleration, peak of speed, peak of deceleration, and locomotion end. Data were z-scored 

and the colors in each row show the average across runs for an individual neuron.
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Figure 6: 
Neurons in each class defined by the 2G analysis share common correlates to predictors in 

the GLM analysis. The r values for the correlation between speed and firing rate (A) and for 

acceleration and firing rate (B) are plotted against the normalized time at which the neuron 

exhibits peak firing activity. The time of peak is negatively correlated with both r values; 

the indicated P values are from Pearson’s correlations. Points are color-coded according to 

classification from the 2G analysis. In (C), (E) and (G), the mean ± SEM weights (β values) 

from the GLM for the variables speed (C), acceleration (E), and fraction of the run (G) are 

shown separately for LOff, AOn, DOn and non-categorized neurons. Similarly, in (D), (F) 

and (H), mean ± SEM r values for simple correlations between these variables and firing rate 

are shown. * P < 0.01, one-sample t-test comparison to 0.
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Figure 7: 
Spike-speed cross-correlations. (A) Each row in A1 contains a heatmap of the average z-

score (colors) of speed aligned to the spikes of an individual neuron. The bright yellow and 

dark blue markers indicate peaks and valleys of the cross-correlogram, respectively. Neurons 

in the heat map were sorted according to the Pearson’s correlation coefficient (r) for speed 

vs firing rate. All 62 neurons are shown. In A2, Cross-correlograms are shown separately 

for LOff, AOn and DOn cells, sorted according to the time at which the cross-correlogram 

peak speed occurred. (B) The time at which the lowest cross-correlogram speed occurred is 

shown for neurons that had negative correlations with speed (top, red points), and the time at 

which the highest cross-correlogram speed occurred is shown for neurons that had positive 

correlations with speed (bottom, blue points). Only data from the neurons with significant 

positive (blue) or negative (red) correlations with speed are shown. * P = 0.04, one-sample t 

test compared to 0.
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