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Abstract

Neurogenic bladder is caused by disruption of neuronal pathways regulating bladder relaxation 

and contraction. In severe cases, neurogenic bladder can lead to vesicoureteral reflux, hydroureter, 
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and chronic kidney disease. These complications overlap with manifestations of congenital 

anomalies of the kidney and urinary tract (CAKUT).

To identify novel monogenic causes of neurogenic bladder, we applied exome sequencing (ES) to 

our cohort of families with CAKUT.

By ES, we have identified a homozygous missense variant (p.Gln184Arg) in CHRM5 (cholinergic 
receptor, muscarinic, 5) in a patient with neurogenic bladder and secondary complications of 

CAKUT. CHRM5 codes for a seven transmembrane-spanning G-protein-coupled muscarinic 

acetylcholine receptor. CHRM5 is shown to be expressed in murine and human bladder walls 

and is reported to cause bladder overactivity in Chrm5 knockout mice.

We investigated CHRM5 as a potential novel candidate gene for neurogenic bladder with 

secondary complications of CAKUT. CHRM5 is similar to the cholinergic bladder neuron receptor 

CHRNA3, which Mann et al. published as the first monogenic cause of neurogenic bladder. 

However, functional in vitro studies did not reveal evidence to strengthen the status as a candidate 

gene. Discovering additional families with CHRM5 variants could help to further assess the genes’ 

candidate status.
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INTRODUCTION

Congenital anomalies of the kidney and urinary tract (CAKUT) represent the most frequent 

birth defect (~30%) and are the leading cause of chronic kidney disease in the first three 

decades of life [Ingelfinger et al., 2016], [Calderon-Margalit et al., 2018], [Queisser-Luft 

et al., 2002], [Connaughton et al., 2015]. The identification of over 40 monogenic causes 

of CAKUT in humans has led to the understanding that defects in nephrogenesis signaling 

pathways often result in urogenital malformations [van der Ven et al., 2018b], [van der 

Ven et al., 2018a], [Verbitsky et al., 2019]. Even though the genetic causes and molecular 

pathophysiology of these processes are not fully known, animal studies have shown that 

intrauterine obstruction to urine flow can secondarily result in CAKUT [van der Ven et 

al., 2018a]. Recently, we made the surprising discovery that CAKUT may be caused by 

recessive CHRNA3 variants. Unlike other CAKUT genes, CHRNA3 is not highly expressed 

in kidney, ureter, or bladder tissue, but rather in bladder neurons [Mann et al., 2019]. 

As a nicotinergic acetylcholine receptor CHRNA3, together with other receptors of the 

acetylcholine receptor group, acts in bladder innervation.

Muscarinic acetylcholine receptors (mAChR) as the M5 mAChR, are G-protein-coupled 

receptors with seven transmembrane-spanning domains. They are widely expressed in 

dopaminergic regions of the brain and the vascular system [Ishii and Kurachi, 2006]. 

However, Bschleipfer et al. showed expression of CHRM5 in all three cell layers of 

the human urothelium [Bschleipfer et al., 2007]. Likewise in mice, Zarghooni et al. 

showed Chrm5 expression in all layers of the murine urothelium [Zarghooni et al., 2007]. 

Interestingly, Deckmann et al. also showed that mice lacking Chrm5 demonstrate symptoms 
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of bladder overactivity, making CHRM5 a strong candidate gene for human bladder voiding 

defects, if mutated [Deckmann et al., 2018].

Recently, we discovered a gene involved in the neuronal regulation of bladder contraction, 

CHRNA3, as the first neuronally expressed gene to cause CAKUT in humans [Weber et 

al., 2011]. Here, we describe the discovery of a CAKUT patient with a homozygous variant 

in a gene encoding yet another acetylcholine receptor, CHRM5, which is highly expressed 

in bladder neurons, and whose loss of function induces micturition defects in a knockout 

mouse model.

MATERIALS AND METHODS

Whole exome sequencing

Approval for human subjects’ research was obtained from the Institutional Review Boards 

at the Boston Children’s Hospital and the respective institutions where patient samples were 

acquired. Following written informed consent, samples from the patients and their family 

members were collected [Seltzsam et al., 2022] [Connaughton et al., 2019].

We applied exome sequencing (ES) and homozygosity mapping to 963 families with 

CAKUT. [Mann et al., 2019] [Seltzsam et al., 2022] [Connaughton et al., 2019]. DNA 

sequencing and variant analysis for genes known to cause isolated and syndromic CAKUT 

as well as for novel genes under a recessive hypothesis were performed as previously 

described and according to the ACMG guidelines. Homozygosity mapping was applied to 

the whole cohort of mixed consanguineous and non-consanguineous families to determine 

unknown and quantify known consanguinity and enable a focused analysis of runs of 

homozygosity, if significant. [van der Ven et al., 2018a] [Warejko et al., 2018] [Vivante 

et al., 2017] [MacArthur et al., 2014] [Connaughton et al., 2019] [Richards et al., 2008] 

(Supplementary Figure 1 and 2).

Filtering of variants was performed as previously described to retain only rare variants with 

deleterious in silico prediction and high evolutionary conservation, using available data from 

multiple online databases [Bamshad et al., 2011] [Lee et al., 2014] [Connaughton et al., 

2020].

Lastly, to confirm phenotype-genotype segregation of the remaining variants we used Sanger 

sequencing in all affected and unaffected family members.

The same protocol was applied to an in-house control population of 1382 families with 

steroid-resistant nephrotic syndrome where no recessive variants meeting all filtering criteria 

were found.

Functional studies on CHRM5

Generation and Maintenance of Cell Lines—The materials for the generation of cell 

lines were purchased as previously described [Burger et al., 2021] [van der Westhuizen et 

al., 2015] [Haider et al., 2022]. Following previously described protocols, M5 mAChR DNA 

constructs were cloned into a pEF5/FTR/V5 vector and stably expressed in FlpIn CHO cells. 

Schneider et al. Page 3

Am J Med Genet A. Author manuscript; available in PMC 2024 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Maintenance of cell lines in DMEM and Mycoplasma testing was performed as previously 

described. [Vuckovic et al., 2019] [Burger et al., 2021] [Keov et al., 2014] [Khajehali et al., 

2018].

Equilibrium Radioligand Binding Experiments and IP Accumulation Assay—
First, we tested equilibrium radioligand binding for the WT M5 mAChR or Q184R mutant 

cell line, following previously described protocols. Like in previous studies, saturation 

binding experiments were used to determine the affinity of [3H]-N-Methylscopolamine 

([3H]-NMS) for M5 mAChR receptor constructs, as well as the competition between 

acetylcholine (ACh) and [3H]-NMS [Burger et al., 2021].

Second, we analyzed IP1 accumulation to test the variants’ downstream effects, as 

previously described [Burger et al., 2021].

Data Analysis—For data analysis with statistical analysis and nonlinear regression curve 

fitting we used GraphPad Prism (San Diego, CA) and equations as previously described for 

radioligand saturation binding experiments with [3H]-NMS and functional IP1 accumulation 

experiments using Ach [Burger et al., 2021] [Motulsky and Brown, 2006] [Draper-Joyce et 

al., 2018].

RESULTS

Clinical phenotype of individual B2797_21 with CAKUT

By ES, we identified a homozygous missense variant in CHRM5 in patient B2797–21. He 

was born to non-consanguineous parents of Saudi-Arabian descent and presented at the age 

of nine months with acute kidney injury (Figure 1A). Renal ultrasound demonstrated severe 

bilateral hydronephrosis and hydroureter, which was not detected prenatally (Figure 1E–

G). Voiding cystourethrogram (VCUG) revealed right-sided grade V vesicoureteral reflux 

(VUR), a small capacity of the urinary bladder with wall trabeculation, and associated 

diverticulum, and a dilated proximal urethra with normal appearance distally consistent 

with posterior urethral valve (PUV) (Figure 1 B–D). However, PUV could never be 

visualized during urologic interventions. The alleged PUV had been fulgurated twice within 

two years (at 9 months and 30 months of age). However, ultrasound imaging showed 

persisting severe bilateral hydronephrosis and hydroureter retrospectively, rendering the 

diagnosis of PUV insecure, retrospectively. VCUG re-demonstrated right-sided grade V 

VUR despite the operative resolution of the “PUV” features. The capacity of the urinary 

bladder improved. Kidney examination at the age of 2 years and 10 months showed bilateral 

obstruction of the kidneys in Tc99-Mg-3 renal scan with the left kidney contributing by 

84% and the right kidney contributing by 16%. NM-GUS-Renogram (Diuretic) Scintigraphy 

(DTPA) demonstrated a dilated obstructed left kidney and a nonfunctioning right kidney 

(Figure 2). A FLU-micturition cystourethrogram (MCUG) revealed a grade V VUR with 

trabeculated bladder, likely related to neurogenic bladder. Renal ultrasound one year later 

showed increased severity of bilateral hydroureteronephrosis but stable appearance of the 

“neurogenic bladder”. For voiding management, clean intermittent catheterization (CIC) was 

recommended at the age of 2 years but was not applied until the age of 4. Medical control 

of CKD included the antihypertensive drugs captopril and amlodipine, supplementation of 
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alfacalcidol, folic acid, iron, and sodium bicarbonate, oxybutynin as anticholinergic drug, 

and prophylactic cotrimoxazole. The patient did not have any clinical findings of familial 

dysautonomia, either in the initial clinical reports or after a specific request.

Discovery of a biallelic variant in CHRM5

By ES in a worldwide cohort of 963 families with CAKUT, we identified a homozygous 

missense variant (NM_012125.3; c.551A>G, p.Gln184Arg) in exon 3 of the gene CHRM5 
(Cholinergic Receptor Muscarinic 5) (Fig. 3 A). The variant is not reported in any of the 

consulted population databases and is predicted to be deleterious by two of three in-silico 
prediction tools (Table 1). CHRM5 encodes for the G-protein-coupled M5 mAChR which 

contains seven transmembrane domains. The variant p.Gln184Arg is located in the second 

extracellular loop between the fourth and fifth transmembrane-spanning domain (Fig. 3 B) 

[Vuckovic et al., 2019]. The variant was confirmed by Sanger sequencing to be homozygous 

in the index patient and heterozygous in both unaffected parents (Fig. 3 C). The evolutionary 

conservation of the amino acid residue includes species from Homo sapiens to Ciona 
intestinalis, as shown by the clustal alignment of the CHRM5 amino acid sequences (Fig. 3 

D). Gene constraint metrics for CHRM5 show observed/expected (o/e) scores of 0.8 (0.72 – 

0.89) for missense variants and o/e of 0.4 (0.22 – 0,74) for predicted loss of function variants 

indicating that CHRM5 is less tolerant for loss of function variants than for missense 

variants.

Subsequent focused evaluation of ES data for biallelic CHRM5 variants and a GeneMatcher 

submission did not yield further families with variants in CHRM5. However, the 

investigation for further families to establish causality is ongoing. Furthermore, in a control 

in-house cohort of 1382 families with nephrotic syndrome, we did not identify any biallelic 

variants in CHRM5.

Structural model of the variant and functional studies

The crystal structure of the M5 mAChR was recently determined [Vuckovic et al., 2019]. 

In the structure model, the residue Gln184 is located in the second extracellular loop of 

the receptor (Figure 4 A–C) and forms part of the conserved extracellular allosteric site 

[Burger et al., 2018]. The p.Gln184Arg variant replaces the polar amino acid glutamine 

with a positively charged amino acid arginine (Figure 4 B). Therefore, we examined if this 

variant could affect the binding or function of the endogenous orthosteric agonist, ACh, in 

a mutant CHO cell line. In radioligand binding experiments using the antagonist [3H]-NMS, 

we show that the Gln184Arg variant does not affect receptor expression or binding affinity 

of the radioligand [3H]-NMS in comparison to the wild-type (WT) M5 mAChR [Burger et 

al., 2018] (Figure 4 E, Table 2). We next determined the binding affinity of ACh for the 

Gln184Arg variant or WT M5 mAChR using a competition binding assay.

The results from this experiment show a modest 2-fold difference in the binding affinity of 

ACh at the Gln184Arg variant compared to WT M5 mAChR (Figure 4 F, Table 2). Finally, 

we tested the Gln184Arg variant in a functional assay that measures the accumulation of 

the second messenger IP1 due to activation of the Gq signaling pathway resulting from 

activation of the M5 mAChR by ACh. In this assay, the IP1 accumulation of the Gln184Arg 
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variant is indistinguishable from the WT M5 mAChR (Figure 4 G, Table 2). Collectively, 

these data indicate that the Gln184Arg variant does not impair M5 mAChR expression, nor 

the binding or signaling of ACh at the M5 mAChR in a recombinant cell line.

DISCUSSION

By ES, we identified CHRM5 as a novel potential candidate gene for neurogenic bladder 

in an individual with neurogenic bladder and secondary symptoms similar to CAKUT 

by identifying a homozygous missense variant (NM_012125.3; c.551A>G, p.Gln184Arg) 

in CHRM5. The genetic variant found in individual B2797–21 is absent in population 

frequency databases such as EVS, gnomAD, and the Saudi Population Database, is 

well conserved through species and is predicted to be deleterious by Polyphen2 and 

Mutation Taster. CHRM5 codes for the M5 mAChR, a seven transmembrane-spanning G-

protein-coupled muscarinic acetylcholine receptor. The here-identified variant p.Gln184Arg 

is located in the second extracellular loop between the transmembrane-spanning alpha-

helices 4 and 5. Overall, we propose CHRM5 as a potential new recessive monogenic 

cause for neurogenic bladder in humans. More families carrying variants in CHRM5 
and expressing a phenotype of neurogenic bladder could confirm the observed genotype-

phenotype relationship.

Protein expression and mouse model of CHRM5

The potential role of CHRM5 in bladder tone regulation can be supported by three findings: 

i) Chrm5 knockout mice show a bladder phenotype [Deckmann et al., 2018]. However, 

most of the reported knock-out mouse models focused on neurological symptoms and 

for example detected abnormal synaptic dopamine release [Bendor et al., 2010], [Yamada 

et al., 2001]. ii) CHRM5 is expressed in human and mouse bladder urothelium, even 

though other muscarinic receptors show stronger evidence for expression and functional 

relevance in bladder tone regulation [Bschleipfer et al., 2007], [Zarghooni et al., 2007]. iii) 

CHRM5 might act like the nicotinic acetylcholine receptor CHRNA3 (Cholinergic Receptor 

Nicotinic Alpha 3 Subunit) which is expressed in human bladder. We published biallelic 

variants in CHRNA3 as the first monogenic cause of neurogenic bladder with symptoms 

of familial dysautonomia in humans [Mann et al., 2019]. Nonetheless, our patient and the 

Chrm5 knockout mice did not show any signs of dysautonomia such as constant mydriasis. 

Further studies, like a point mutation animal knockout model, could clarify the role of the 

here-reported variant in the pathogenesis of neurogenic bladder.

A structural model of the variant and functional studies

At the M1 – M4 mAChR subtypes the residue that corresponds to Gln184 is a Tyr/Phe 

residue that is critically important for the binding of allosteric modulators that bind to the 

common extracellular allosteric site [Burger et al., 2018], [Prilla et al., 2006], [Dror et al., 

2013]. Recent studies have suggested that orthosteric ligands may occupy this allosteric site 

during their transition to binding in the orthosteric site [Dror et al., 2011], [Jakubík et al., 

2017]. As such, we tested if the Gln184Arg variant could affect the binding or signaling of 

the endogenous orthosteric agonist ACh. However, our characterization of the Gln184Arg 

variant in a mutant CHO cell line revealed negligible differences in receptor expression, 
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ACh binding, or ACh signaling via an IP1 accumulation assay in comparison to the WT 

M5 mAChR. It is important to note that these in vitro experiments do not replicate the 

complexities of M5 mAChR physiology. Intriguingly, it has been speculated that there are 

endogenous mAChR allosteric modulators [van der Westhuizen et al., 2015], [Moo et al., 

2018]. Given the importance of the position of Gln184 at the other mAChR subtypes for 

the activity of allosteric modulators, there could be an unappreciated endogenous ligand that 

binds near Gln184 at the M5 mAChR.

In summary, we identified a recessive variant in CHRM5 as a potential novel cause of 

neurogenic bladder in humans. The variant is rare and has been predicted to be deleterious 

by different in-silico prediction tools. In vivo Chrm5 knockout mouse models show 

bladder overactivity [Deckmann et al., 2018]. However, our functional in vitro studies 

did not provide any additional evidence to support the candidate status of CHRM5. Still, 

it is important to note that the role of other endogenous mAChR allosteric modulators 

has been discussed in different papers [van der Westhuizen et al., 2015], [Moo et al., 

2018]. Considering the importance of the variants’ position for the activity of allosteric 

modulators, an unappreciated endogenous ligand effect could be discussed. Additional 

families with variants in CHRM5 and further functional research are required to determine 

the involvement of CHRM5 in the pathogenesis of neurogenic bladder. For future 

clinical application, established genes for neurogenic bladder could help to early diagnose 

neurogenic bladder in patients with voiding dysfunction and lead to a targeted therapy 

avoiding redundant diagnostic and therapeutic procedures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Pedigree and clinical information of individual B2797–21.
A) Pedigree of individual B2797–21: affected boy with neurogenic bladder, small 

trabeculated urinary bladder, bilateral severe hydronephrosis, grade V VUR right, chronic 

kidney disease (stage 4) and unaffected parents (−11 and 12); red dot, individual included in 

ES.

B-D) FLU-micturating cystourethrogram: lateral projection, right side (B), lateral projection, 

left side (C), and anterior-posterior projection (D) showing right-sided grade V 

vesicoureteric reflux (black arrow) with trabeculated urinary bladder (black arrowhead), 

likely caused by neurogenic bladder.

E-G) Ultrasound of right kidney (E), left kidney (F), and urinary bladder (white triangle) 

(G), showing severe hydronephrosis (white asterisk) and hydroureter (black arrows).

Schneider et al. Page 12

Am J Med Genet A. Author manuscript; available in PMC 2024 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Tc99m-Mag3 Renal Scan at the age of 2 years and 10 months
A) Tc99m-Mag3 Renal Scan and B) Flow study of the Tc99m-Mag3 Renal Scan both show 

the left kidney is contributing to renal function by 84%. The right kidney is contributing to 

renal function by 16%. Red line, left kidney; blue line, right kidney; black line, aorta.
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Figure 3. Exon and protein structure of human CHRM5 cDNA.
A) Exon structure of human CHRM5. Exon numbers are denoted in black and white.

B) Protein domain structure of the human CHRM5 protein with seven transmembrane 

regions (TM1-TM7).

C) Position of the homozygous missense variant p.Gln184Arg identified in individual 

B2797–21. Sanger sequencing showing the homozygous variant in the affected individual 

(B2797–21) compared to heterozygous variants in both parents (father B2797–11 and 

mother B2797–12).

D) Clustal alignment of amino acid sequences of CHRM5 to demonstrate evolutionary 

conservation from mammalia to insectae for each amino acid residue.
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Glossary: UTR, untranslated region; ATG, start codon; TGA, stop codon; TM, 

transmembrane region; HOM, homozygous; HET heterozygous; H.s., Homo sapiens; M.m., 

Mus musculus; G.g., Gallus gallus; X.t., Xenopus tropicalis; D.r., Danio rerio; C.i., Ciona 

intestinalis; C.e., Caenorhabditis elegans; D.m., Drosophila melanogaster.

Schneider et al. Page 15

Am J Med Genet A. Author manuscript; available in PMC 2024 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Structural model of the CHRM5 variant and functional studies.
A-B) Crystal structure of CHRM5. B) The p.Gln184Arg variant is located in the second 

extracellular loop (ECL2) of the receptor and replaces the polar amino acid glutamine with a 

positively charged amino acid arginine.

C) Schema of seven transmembrane-spanning muscarinic acetylcholine (ACh) receptor. The 

red section marks the second extracellular loop (ECL2) where the variant p.Gln184Arg is 

located.

D) Schema of M5 mAChR activation. ACh activates the M5 mAChR causing activation of 

the Gq signaling pathway leading to production of the second messenger IP1. Asterisks 

mark allosteric binding sites.
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E-G) Radioligand binding experiments using the antagonist [3H]-NMS at FlpIn CHO cells. 

E) The Gln184Arg variant does not affect receptor expression or binding affinity of the 

radioligand [3H]-NMS in comparison to the wild-type (WT) M5 mAChR as determined 

through saturation binding experiments. F) A modest 2-fold difference in binding affinity of 

ACh at the Gln184Arg variant is observed in comparison to WT M5 mAChR as determined 

through competition binding between a range of ACh concentrations and a KD concentration 

of [3H]-NMS. G) IP1 accumulation following activation of the Gln184Arg mutant in 

response to ACh is indistinguishable from the response observed at the WT M5 mAChR. 

For all experiments, data represent the mean ± S.E.M. of the three individual experiments 

performed in duplicate.
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Table 1:

Homozygous variant in CHRM5 in individual (B2797_21) with neurogenic bladder.

Family-Individual B2797–21

Ethnic Origin Saudi-Arab

Sex Male

Gene CHRM5

Nucleotide Change c.551A>G

Amino Acid Change p.Gln184Arg

Conservation Conserved to C. intestinalis

Segregation

Affected Son Homozygous

Unaffected Mother Heterozygous

Unaffected Father Heterozygous

Population Frequency

GnomAD Not reported

EVS Not reported

Biobase Not reported

Saudi Arab Database Not reported

Prediction Scores

Polyphen 2 Deleterious (0.97)

Mutation Taster Tolerated

SIFT Score Disease Causing

Polyphen 2: Polymorphism phenotyping v2 (http://genetics.bwh.harvard.edu/pph2/); SIFT: Sorting Intolerant from Tolerant algorithm (https://
sift.bii.a-star.edu.sg/); EVS: Exome Variant Server (https://evs.gs.washington.edu/EVS/)
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Table 2:

Binding parameters and IP1 accumulation for WT M5 mAChR, Q184R mutant.

[3H]-NMS Saturation Binding [3H]-NMS Competition Binding IP1 accumulation ACh

Constructs apKD
bBmax (fmol/mg) cpKi (ACh) dACh pEC50

WT M5mAChR N.D. N.D. 5.16 ± 0.10 (3) 7.63 ± 0.12 (3)

Q184R M5mAChR 8.58 ± 0.26 (3) 1116 ± 150 (3) 5.47 ± 0.08* (3) 7.63 ± 0.20 (3)

Data represent the mean ± S.E.M. of (n) independent experiments performed in duplicate. N.D. Not determined. N.R. No response.

*
significantly different from WT M5 mAChR, p < 0.05, un-paired T-test, Welch’s correction.

a
Negative logarithm of the radioligand equilibrium dissociation constant.

b
maximum density of binding sites.

c
Negative logarithm of the orthosteric agonist equilibrium dissociation constant as determined by a one-site competition binding model.

d
negative logarithm of the concentration of ACh required to give half-maximal response as determined by a three-parameter logistic equation.
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