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Abstract

Purpose—Rapid automated CT volumetry of pulmonary contusion may predict progression to 

Acute Respiratory Distress Syndrome (ARDS) and help guide early clinical management in at-risk 

trauma patients. This study aims to train and validate state-of-the-art deep learning models to 

quantify pulmonary contusion as a percentage of total lung volume (Lung Contusion Index, or 

auto-LCI) and assess the relationship between auto-LCI and relevant clinical outcomes.

Methods—302 adult patients (age ≥ 18) with pulmonary contusion were retrospectively 

identified from reports between 2016 and 2021. nnU-Net was trained on manual contusion and 

whole-lung segmentations. Point-of-care candidate variables for multivariate regression included 

oxygen saturation, heart rate, and systolic blood pressure on admission. Logistic regression 

was used to assess ARDS risk, and Cox proportional hazards models were used to determine 

differences in ICU length of stay and mechanical ventilation time.

Results—Mean Volume Similarity Index and mean Dice scores were 0.82 and 0.67. Interclass 

correlation coefficient and Pearson r between ground-truth and predicted volumes were 0.90 and 

0.91. 38 (14%) patients developed ARDS. In bivariate analysis, auto-LCI was associated with 

ARDS (p < 0.001), ICU admission (p < 0.001), and need for mechanical ventilation (p < 0.001). 

In multivariate analyses, auto-LCI was associated with ARDS (p = 0.04), longer length of stay 

in the ICU (p = 0.02) and longer time on mechanical ventilation (p = 0.04). AUC of multivariate 

regression to predict ARDS using auto-LCI and clinical variables was 0.70 while AUC using 

auto-LCI alone was 0.68.

Conclusion—Increasing auto-LCI values corresponded with increased risk of ARDS, longer 

ICU admissions, and longer periods of mechanical ventilation.

Keywords

ARDS; Artificial intelligence; Pulmonary contusion; Quantitative imaging; Segmentation

✉David Dreizin, daviddreizin@gmail.com. 

Conflict of interest The authors have no conflicts of interest to declare that are relevant to the content of this article.

HHS Public Access
Author manuscript
Emerg Radiol. Author manuscript; available in PMC 2023 September 27.

Published in final edited form as:
Emerg Radiol. 2023 August ; 30(4): 435–441. doi:10.1007/s10140-023-02149-2.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Introduction

Pulmonary contusion is a well-described clinical entity seen in acute thoracic trauma in 

which rapid acceleration-deceleration disrupts pulmonary capillaries, leading to localized 

edema and extravasation of blood [1, 2]. This manifests on computed tomography (CT) with 

a characteristic appearance of mixed focal ground-glass and consolidative opacities sparing 

the subpleural regions [3, 4].

Pulmonary contusion is a risk factor for development of Acute Respiratory Distress 

Syndrome (ARDS) [5], which has an in-hospital mortality rate of 40% [6, 7] and typically 

develops at a peak latency of approximately 72 h after injury [2]. Most previous works have 

assessed pulmonary contusion either as a binary (i.e., presence or absence of contusion) 

or coarse categorical predictor [8], or by using semi-automated software requiring end-user 

proficiency with specific platforms and effort which is non-negligible in the time-sensitive 

trauma setting. One such semi-automated method by Miller et al. found that patients with 

contusions involving at least 20% of the total lung volume had an 82% risk of developing 

ARDS [5]. The degree of pulmonary contusion has also been linked to hospital stay, need 

for ICU admission, and need for mechanical ventilation [9–11]. Automated quantitative 

visualization of percent lung involvement (i.e., verifiable voxelwise segmentations and 

measurements of contusion indexed to total lung volumes, which we henceforth refer to 

as the automated Lung Contusion Index, or auto-LCI), may serve as a precise, objective, and 

granular predictor of ARDS risk and related adverse outcomes.

Recent end-to-end automated computer vision pipelines have achieved state-of-the-art 

results for a variety of challenging problems requiring fine-detail segmentation of irregular, 

ill-defined, multifocal pathologic features with wide ranges of target volumes [12–19]. 

During the COVID pandemic, a variety of robust multiscale methods have emerged 

for quantitative visualization of infiltrates on CT, with nnU-Net achieving best-in-class 

performance for this task in deep learning challenges [20]. Clinical validation of an nnU-Net 

based approach was recently described in Radiology by Lessmann et al. [21].

The purpose of this study is to 1) train and validate a deep learning model to quantify 

pulmonary contusion as a percentage of total lung volume and 2) assess the relationship 

between percentage of lung contused and negative clinical outcomes including development 

of ARDS.

Methods

Dataset

This observational study is part of an exempt-status protocol approved by the University 

of Maryland, Baltimore Institutional Review Board. Patients were retrospectively identified 

from an MPower-generated database of 5424 sequential patients treated at the study site (a 

level I trauma center) who underwent admission trauma CT between Jul 1, 2016, and March 

16, 2021. 302 patients with pulmonary contusions were manually identified from radiology 

CT reports by staff under the supervision of a radiologist attending. Studies were performed 

on either a 128-section CT scanner (Somatom Force; Siemens, Erlangen Germany), or a 
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64-section CT scanner (Brilliance; Philips Healthcare, Andover, Mass.) and were archived 

as 3-mm thickness images. All images of the chest were acquired at our institution in the 

arterial phase. Pulmonary contusions in all 302 patients were then manually segmented from 

Neuroimaging Informatics Technology Initiative (NifTI) CT images by trained members of 

the research team using 3D Slicer [22], with each study edited by a senior trauma radiologist 

with 10 years of experience in voxelwise labeling.

Clinical data were obtained from chart review of the medical record. Datapoints obtained 

included: sex, age, Abbreviated Injury Scale (AIS) [23] and Injury Severity Score (ISS) [24], 

admission vital signs, whether the patient was admitted to the ICU, whether mechanical 

ventilation was required, days spent in the ICU, days spent on mechanical ventilation, total 

days spent in the hospital, whether the patient developed ARDS during their hospitalization, 

and whether the patient expired. ARDS status was determined by a documented diagnosis of 

ARDS in a provider note, following Berlin criteria [25].

Exclusion criteria were i) Catastrophic head injury determined by Head/Brain AIS score of 

6, ii) lack of or ambiguous ARDS data that did not meet Berlin criteria, and iii) missing 

clinical values. 22 patients were excluded, resulting in a total of 280 patients for clinical 

analysis. Of these patients, 223 (79%) were male, median age was 37 years (IQR 22–

49), and 38 patients (14%) developed ARDS during their hospitalization. Further patient 

characteristics are shown in Table 1.

Deep learning method

nnU-Net [26] was chosen as the framework to automate segmentation. In COVID-19 

patients, nnU-Net has shown success in quantifying lung infiltrates [21], a radiographic 

finding that has similarities to the CT appearance of pulmonary contusion, with multifocal 

ground-glass and consolidative opacities of highly variable volume. nnU-Net is a state-of-

the-art deep learning framework that replaces user-dependent hyperparameter optimization 

with a data-driven strategy of hyperparameter selection, stipulating that poorly chosen 

hyperparameters often have a greater effect on the performance of the network than the 

network architecture itself [26, 27]. Briefly, the framework trains 4 models: a 2D U-Net, 

a low-resolution 3D U-Net, a full-resolution 3D U-Net, and a full-resolution cascaded 3D U-

Net. It also creates an ensemble model aggregating these methods. All image preprocessing 

and training parameters are automatically chosen by the framework using a rules-based 

algorithm to create a “pipeline fingerprint” which is unique to a given dataset. This 

approach resulted in state-of-the-art performance on 33 of 53 public segmenting challenges, 

highlighting the robustness of the method. All neural networks were validated in fivefold 

cross-validation. Model performance was evaluated with overlap and volume-based metrics 

including a Dice similarity coefficient (DSC), volume similarity index (VS), Pearson’s r, and 

Interclass correlation coefficient (ICC).

For segmenting total lung volume, a public dataset of 402 patients from the NSCLC-

Radiomics Cancer Imaging Archive dataset was used to train an additional nnU-Net model 

[28]. fivefold cross-validation was performed on the ground-truth labels from that archive. 

The model was then applied in inference to our CT dataset to determine total lung volume.
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Statistical analysis

Development of ARDS was used as the primary outcome. Secondary outcomes included 

need for ICU admission, need for mechanical ventilation, time spent in the ICU, time spent 

on mechanical ventilation, and total hospital length of stay.

Mann Whitney U test and Chi square test were performed to test association between 

each of the clinically identified variable (age, sex, ISS, etc.) and relevant outcomes. Mann–

Whitney U was used for all continuous variables as all were non-normal, and Chi square 

was used for all categorical variables. Logistic regression was performed to predict ARDS 

risk using auto-LCI and other clinical variables that were significant (p < 0.05) in bivariate 

analysis and available at point-of-care. This logistic regression model was used to create 

an approximate ARDS risk stratification based on various levels of auto-LCI while other 

predictors were held at their mean values.

For secondary outcome analysis with time-to-event data pertaining to length of stay 

and extubation, patients who expired (N = 5) were excluded. Cox proportional hazards 

regression was performed using the auto-LCI and point-of-care variables as in the primary 

analysis to predict 1) time to discharge from the ICU (among patients admitted to the ICU, 

N = 76) and 2) time until extubation (among patients who were mechanically ventilated, N = 

95). All statistical analyses were performed with STATA 17 statistical software.

Results

Deep learning results

Median auto-LCI was 3.03 (IQR: 0.84 – 8.52) for the total population. Group differences 

are shown in Table 1. Mean Dice and Volume Similarity Index (VSI) scores of the 2D, 3D 

low-resolution, 3D full-resolution, 3D cascaded full-resolution, and ensemble models are 

shown in Table 2. As the ensemble model showed the best performance, it was used for all 

further analysis. Mean Dice and VSI scores of the ensemble model were 0.67 (SD: 0.20) 

and 0.82 (SD: 0.20). Interclass correlation coefficient (ICC) between ground-truth contusion 

volume and automated contusion volume was 0.90 (95% CI: 0.87 to 0.92), Pearson’s r 

was 0.91 (95% CI: 0.89 to 0.93), and Bland–Altman mean bias analysis demonstrated a 

mean undermeasurement of the automated contusion volumes by 13.5 mL with a range 

of automated volumes of 0 mL to 1378 mL. Pearson’s r values ≥ 0.80 are indicative of 

strong correlation and ICC values ≥ 0.75 are considered to indicate excellent agreement 

[29]. Whole-lung segmentation resulted in a mean Dice score of 0.94 in the NSCLC dataset. 

Representative images of segmentation are shown in Fig. 1.

Clinical outcomes

In bivariate analyses (Table 1), auto-LCI was strongly associated with ARDS (7.90% 

(IQR: 3.00–15.10)- ARDS subgroup vs 2.50% (IQR: 0.63–7.10)- subgroup without ARDS, 

p < 0.001) (Fig. 2). Auto-LCI was also associated with ICU admission and need for 

mechanical ventilation as binary outcomes (p < 0.001). Variables significantly correlated 

with the primary outcome of ARDS development included admission systolic blood pressure 

(ARDS 128 mmHg (IQR 112–142) vs Non-ARDS 140 mmHg (IQR 127–156), p = 0.02), 
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O2 saturation (ARDS 95.5% (IQR: 88.8–98.0) vs No ARDS 98% (95.0–100), p = 0.01), 

admission to the ICU (ARDS 37/38 (97%) vs Non-ARDS 39/242 (16%), p < 0.001), and the 

injury severity score (ISS) (ARDS 29 (IQR: 22–34)) vs Non-ARDS 14 (IQR: 10–22), p < 

0.001).

Candidate variables included in multivariate analyses of the primary and secondary 

outcomes were auto-LCI, systolic blood pressure, and O2 saturation. Systolic blood pressure 

and O2 saturation were chosen because among the variables significantly associated with 

ARDS risk in bivariate analysis (Table 1), these two are available at time of presentation. 

This contrasts with ICU admission status (a future event) or ISS (a score derived by trauma 

registry coders post-hoc).

A logistic regression model using the above three variables to predict ARDS status showed 

that auto-LCI (Unit-odds ratio 1.041 [95% CI: 1.001–1.082], p = 0.04) and O2 Saturation 

(Unit-odds Ratio 0.906 [95% CI: 0.835–0.983], p = 0.02) were statistically significant 

predictors of ARDS. A Hosmer–Lemeshow goodness-of-fit test showed that this model was 

well-fitted to the data (p = 0.74). The auto-LCI unit-odds ratio can be interpreted as a 

1-percentage point increase in auto-LCI corresponding with a 4.1% increase in the odds of 

ARDS. 10, 20, 30, 40, 50, and 60-percentage point increases in auto-LCI increase the odds 

of ARDS by 49%, 123%, 233%, 398%, 644%, and 1012% respectively. The AUC of this 

logistic model to predict ARDS was 0.70 (95% CI: 0.61–0.80). AUC of auto-LCI alone 

to predict ARDS was 0.68 (95% CI: 0.58–0.77) whereas the AUCs of O2 saturation and 

systolic blood pressure to predict ARDS were 0.63 (95% CI: 0.52–0.74) and 0.62 (95% CI: 

0.51–0.73), respectively.

Multivariate Cox proportional hazards regression showed that among patients admitted to 

the ICU who did not expire, auto-LCI was significantly associated with increased ICU 

Length of Stay (Unit-hazard Ratio 0.977 [95% CI: 0.957–0.997], p = 0.02). Among patients 

who were mechanically ventilated and did not expire, auto-LCI was also associated with 

longer time on mechanical ventilation (Unit-hazard Ratio 0.977 [95% CI: 0.956–0.999], 

p = 0.04). In contrast to survival analysis in which hazard ratio < 1 indicates prolonged 

survival (positive outcome), in this analysis hazard ratio < 1 indicates prolonged ICU stay or 

mechanical ventilation (negative outcomes).

Discussion

Traumatic injury to the chest is associated with high morbidity and mortality [30–32]. 

A common [33–35] proximate cause of disability from traumatic chest injury is the 

progression to ARDS within a few days. Pulmonary contusions are frequently identified on 

the admission chest CT in traumatic chest injuries and are known to be an independent risk 

factor for development of ARDS [5]. When ARDS is identified and treated earlier, patients 

appear to have improved outcomes [36, 37]. Thus, quantitation of pulmonary contusion 

volume from a patient’s admission chest CT as a function of total lung volume (the auto-

LCI) represents a precise metric that is potentially exploitable early in the treatment course 

of chest trauma to determine risk of development of ARDS and other serious complications, 

which could result in improved clinical outcomes.
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Precision medicine-oriented automated quantitative visualization tools are in development 

for a variety of use cases in emergency and trauma radiology and are considered desirable 

by practitioners in the field [38, 39]. The primary barrier to pulmonary contusion volume 

quantification has been the need to automatically segment contusion. Since pulmonary 

contusion exists on multiple spatial scales (lobar vs focal) and does not have a consistent 

density, hand-crafted feature engineering-based segmentation methods are not well-suited 

to the task of pulmonary contusion segmentation. Deep learning methods have been shown 

to overcome many of these challenges [40]. Prior reports of deep learning methods to 

segment pulmonary contusion volumetrically did not evaluate ARDS [11]. Radiomics-based 

methods have been employed for ARDS prediction but did not consider the overall injury 

burden as expressed by volume or percent of the lungs involved, with interpretable and 

easily verifiable segmentation masks or contours [41]. We were able to match a precise 

volumetric index to clinical data to achieve a holistic analysis encompassing the course of 

hospitalization.

In our dataset of 302 patients, nnU-Net segmented pulmonary contusion volumes with high 

precision and accuracy at a level comparable with that achieved for a similarly complex 

task involving irregular, ill-defined, and multifocal targets with highly variable appearances 

and volumes in a public COVID Lung CT lesion segmentation challenge [42]. ICC and 

Pearson’s r values indicate excellent agreement between manual ground-truth and automated 

segmentations.

The automated output, given as the percentage of the total lung volume contused (auto-LCI), 

was significantly associated with increased risk for ARDS in bivariate analysis and was 

found to be an independent predictor in a multivariate model. This indicates that the 

auto-LCI provides additional information useful for predicting a patient’s ARDS risk when 

accounting for clinical predictors available at the initial point of care, namely systolic 

blood pressure and O2 saturation. Auto-LCI was also found to provide information useful 

for predicting negative outcomes, specifically, prolonged length of stay in the ICU and 

a prolonged time on mechanical ventilation. Proprietary and containerized open-source 

software is available that converts NifTI to DICOM for visualization of segmentations in the 

reading room along with quantitative results as DICOM structured report elements [43].

Ultimately, we envision that these findings will provide part of the foundation for a 

personalized decision support pipeline that incorporates pulmonary contusion detection, 

segmentation, and ARDS risk-stratification for use immediately at the time of initial chest 

CT. CT chest is nearly ubiquitous in serious chest trauma in the US [44], and such a method 

would be expected to have broad applicability.

There are several limitations to our work, namely a single-institution dataset that was 

collected retrospectively. Therefore prior to clinical use, our method needs to be validated 

or further calibrated in a prospective multicenter study with heterogeneous data sources to 

ensure generalizability. Additionally, there may be information captured by ISS and AIS that 

is not accounted for in our multivariate model. Future models may include other elements 

of injury severity such as flail chest, number of rib fractures, and hemothorax. Volumetric 
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measurement of body composition parameters may further improve outcome prediction in 

trauma [45].

In conclusion, our automated lung contusion index, derived using nnU-Net, a state-of-the-art 

segmentation method, was significantly associated with development of ARDS and relevant 

clinical outcomes. Future multicenter and prospective work will focus on generalizability.

Acknowledgements

NIH K08 EB027141-01A1 (PI: David Dreizin, MD)

Data availability

Data supporting the findings of this study are available upon request to the corresponding 

author.

References

1. Ahmad Ganie F, Lone H, Nabi Lone G, Lateef Wani M, Singh S, Majeed Dar A et al. (2023) 
Lung contusion: a clinico-pathological entity with unpredictable clinical course. Bull Emerg Trauma 
1:7–16

2. Cohn SM, DuBose JJ (2010) Pulmonary contusion: an update on recent advances in clinical 
management. World J Surg 34(8):1959–1970. 10.1007/S00268-010-0599-9 [PubMed: 20407767] 

3. Chong WH, Saha BK, Austin A, Chopra A (2021) The significance of subpleural sparing in ct chest: 
a state-of-the-art review. Am J Med Sci 361:427–435. 10.1016/J.AMJMS.2021.01.008 [PubMed: 
33487401] 

4. Donnelly LF, Klosterman LA (1997) Subpleural sparing: a CT finding of lung contusion in children. 
Radiology 204:385–387. 10.1148/RADIOLOGY.204.2.9240524 [PubMed: 9240524] 

5. Miller PR, Croce MA, Bee TK, Qaisi WG, Smith CP, Collins GL et al. (2001) ARDS after 
pulmonary contusion: accurate measurement of contusion volume identifies high-risk patients. J 
Trauma 51:223–230. 10.1097/00005373-200108000-00003 [PubMed: 11493778] 

6. Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A et al. (2016) Epidemiology, patterns of 
care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 
countries. JAMA 315:788–800. 10.1001/JAMA.2016.0291 [PubMed: 26903337] 

7. Villar J, Blanco J, Añón JM, Santos-Bouza A, Blanch L, Ambrós A et al. (2011) The ALIEN 
study: incidence and outcome of acute respiratory distress syndrome in the era of lung protective 
ventilation. Intensive Care Med 37:1932–1941. 10.1007/S00134-011-2380-4 [PubMed: 21997128] 

8. Sayed MS, Elmeslmany KA, Elsawy AS, Mohamed NA (2022) The validity of quantifying 
pulmonary contusion extent by lung ultrasound score for predicting ARDS in blunt thoracic trauma. 
Crit Care Res Pract 2022:1. 10.1155/2022/3124966

9. Zingg SW, Millar DA, Goodman MD, Pritts TA, Janowak CF (2021) The association between 
pulmonary contusion severity and respiratory failure. Respir Care 66:1665–1672. 10.4187/
RESPCARE.09145 [PubMed: 34584011] 

10. Choi J, Tennakoon L, You JG, Kaghazchi A, Forrester JD, Spain DA (2021) Pulmonary contusions 
in patients with rib fractures: The need to better classify a common injury. Am J Surg 221:211–
215. 10.1016/j.amjsurg.2020.07.022 [PubMed: 32854902] 

11. Choi J, Mavrommati K, Li NY, Patil A, Chen K, Hindin DI et al. (2022) Scalable deep learning 
algorithm to compute percent pulmonary contusion among patients with rib fractures. J Trauma 
Acute Care Surg 93:461. 10.1097/TA.0000000000003619 [PubMed: 35319542] 

12. Dreizin D, Zhou Y, Zhang Y, Tirada N, Yuille AL (2020) Performance of a deep learning algorithm 
for automated segmentation and quantification of traumatic pelvic hematomas on CT. J Digit 
Imaging 33:243–251. 10.1007/S10278-019-00207-1 [PubMed: 31172331] 

Sarkar et al. Page 7

Emerg Radiol. Author manuscript; available in PMC 2023 September 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



13. Zhou Y, Dreizin D, Wang Y, Liu F, Shen W, Yuille AL (2022) External attention assisted multi-
phase splenic vascular injury segmentation with limited data. IEEE Trans Med Imaging 41:1346–
1357. 10.1109/TMI.2021.3139637 [PubMed: 34968179] 

14. Dreizin D, Zhou Y, Chen T, Li G, Yuille AL, McLenithan A et al. (2020) Deep learning-based 
quantitative visualization and measurement of extraperitoneal hematoma volumes in patients with 
pelvic fractures: Potential role in personalized forecasting and decision support. J Trauma Acute 
Care Surg 88:425–433. 10.1097/TA.0000000000002566 [PubMed: 32107356] 

15. Dreizin D, Zhou Y, Fu S, Wang Y, Li G, Champ K et al. (2020) a multiscale deep 
learning method for quantitative visualization of traumatic hemoperitoneum at CT: assessment 
of feasibility and comparison with subjective categorical estimation. Radiol Artif Intell 2:1–9. 
10.1148/RYAI.2020190220

16. Dreizin D, Chen T, Liang Y, Zhou Y, Paes F, Wang Y et al. (2021) Added value of deep learning-
based liver parenchymal CT volumetry for predicting major arterial injury after blunt hepatic 
trauma: a decision tree analysis. Abdom Radiol (NY) 46:2556–2566. 10.1007/S00261-020-02892-
X [PubMed: 33469691] 

17. Chen H, Unberath M, Dreizin D (2023) Toward automated interpretable AAST grading for blunt 
splenic injury. Emerg Radiol 30:41–50. 10.1007/S10140-022-02099-1 [PubMed: 36371579] 

18. Dreizin D, Nixon B, Hu J, Albert B, Yan C, Yang G et al. (2022) A pilot study of 
deep learning-based CT volumetry for traumatic hemothorax. Emerg Radiol 29:995. 10.1007/
S10140-022-02087-5 [PubMed: 35971025] 

19. Zhou Y, Dreizin D, Li Y, Zhang Z, Wang Y, Yuille A (2019) Multi-scale attentional network 
for multi-focal segmentation of active bleed after pelvic fractures. Lecture Notes Comput 
Sci (Including Subseries Lecture Notes in Artif Intell Lecture Notes Bioinformatics) 11861 
LNCS:461–9. 10.1007/978-3-030-32692-0_53/COVER

20. Roth HR, Xu Z, Tor-Díez C, Sanchez Jacob R, Zember J, Molto J et al. (2022) Rapid 
artificial intelligence solutions in a pandemic—The COVID-19–20 Lung CT Lesion Segmentation 
Challenge. Med Image Anal 82:102605. 10.1016/j.media.2022.102605 [PubMed: 36156419] 

21. Lessmann N, Sánchez CI, Beenen L, Boulogne LH, Brink M, Calli E et al. (2021) 
Automated assessment of COVID-19 reporting and data system and chest CT severity scores 
in patients suspected of having COVID-19 using artificial intelligence. Radiology 298:E18–
28. 10.1148/RADIOL.2020202439/ASSET/IMAGES/LARGE/RADIOL.2020202439.FIG6.JPEG 
[PubMed: 32729810] 

22. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S et al. (2012) 3D 
Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson 
Imaging 30:1323–1341. 10.1016/j.mri.2012.05.001 [PubMed: 22770690] 

23. Loftis KL, Price J, Gillich PJ (2018) Evolution of the Abbreviated Injury Scale: 1990–2015. Traffic 
Inj Prev 19:S109–S113. 10.1080/15389588.2018.1512747 [PubMed: 30543458] 

24. Baker SP, O’Neill B, Haddon W, Long WB (1974) The injury severity score: a method for 
describing patients with multiple injuries and evaluating emergency care. J Trauma 14:187–196. 
10.1097/00005373-197403000-00001 [PubMed: 4814394] 

25. Ferguson ND, Fan E, Camporota L, Antonelli M, Anzueto A, Beale R et al. (2012) The Berlin 
definition of ARDS: an expanded rationale, justification, and supplementary material. Intensive 
Care Med 38:1573–1582. 10.1007/S00134-012-2682-1 [PubMed: 22926653] 

26. Isensee F, Jaeger PF, Kohl SAA, Petersen J, Maier-Hein KH (2020) nnU-Net: a self-configuring 
method for deep learning-based biomedical image segmentation. Nat Methods 18(2):203–11. 
10.1038/s41592-020-01008-z [PubMed: 33288961] 

27. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M et al. (2017) A 
survey on deep learning in medical image analysis. Med Image Anal 42:60–88. 10.1016/
J.MEDIA.2017.07.005 [PubMed: 28778026] 

28. Aerts HJWL, Velazquez ER, Leijenaar RTH, Parmar C, Grossmann P, Cavalho S et al. (2014) 
Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat 
Commun 5:1–9. 10.1038/ncomms5006

29. Zou KH, Tuncali K, Silverman SG (2003) Correlation and simple linear regression. Radiology 
227:617–622. 10.1148/RADIOL.2273011499 [PubMed: 12773666] 

Sarkar et al. Page 8

Emerg Radiol. Author manuscript; available in PMC 2023 September 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



30. Dreizin D, Munera F (2012) Blunt polytrauma: evaluation with 64-section whole-body CT 
angiography. Radiographics 32:609–632. 10.1148/RG.323115099 [PubMed: 22582350] 

31. Sangster GP, González-Beicos A, Carbo AI, Heldmann MG, Ibrahim H, Carrascosa P et al. 
(2007) Blunt traumatic injuries of the lung parenchyma, pleura, thoracic wall, and intrathoracic 
airways: multidetector computer tomography imaging findings. Emerg Radiol 14:297–310. 
10.1007/S10140-007-0651-8 [PubMed: 17623115] 

32. Clark GC, Schecter WP, Trunkey DD (1988) Variables affecting outcome in blunt chest trauma: 
flail chest vs. pulmonary contusion. J Trauma 28:298–304. 10.1097/00005373-198803000-00004 
[PubMed: 3351988] 

33. Navarrete-Navarro P, Rodriguez A, Reynolds N, West R, Habashi N, Rivera R et al. (2001) 
Acute respiratory distress syndrome among trauma patients: trends in ICU mortality, risk 
factors, complications and resource utilization. Intensive Care Med 27:1133–1140. 10.1007/
S001340100955 [PubMed: 11534560] 

34. Hudson LD, Milberg JA, Anardi D, Maunder RJ (1995) Clinical risks for development of 
the acute respiratory distress syndrome. Am J Respir Crit Care Med 151:293–301. 10.1164/
AJRCCM.151.2.7842182 [PubMed: 7842182] 

35. Hoyt DB, Simons RK, Winchell RJ, Cushman J, Hollingsworth-Fridlund P, Holbrook T et al. 
(1993) A risk analysis of pulmonary complications following major trauma. J Trauma 35:524–531. 
10.1097/00005373-199310000-00005 [PubMed: 8411274] 

36. Bellani G, Pham T, Laffey JG (2020) Missed or delayed diagnosis of ARDS: a common and 
serious problem. Intensive Care Med 46:1180–1183. 10.1007/S00134-020-06035-0/FIGURES/1 
[PubMed: 32328723] 

37. Yadav H, Thompson BT, Gajic O (2017) Is acute respiratory distress syndrome a 
preventable disease? Am J Respir Crit Care Med 195:725–736. 10.1164/RCCM.201609-1767CI/
SUPPL_FILE/DISCLOSURES.PDF [PubMed: 28040987] 

38. Dreizin D, Staziaki PV, Khatri GD, Beckmann NM, Feng Z, Liang Y et al. (2023) 
Artificial intelligence CAD tools in trauma imaging: a scoping review from the American 
Society of Emergency Radiology (ASER) AI/ML Expert Panel. Emerg Radiol 30:251. 10.1007/
S10140-023-02120-1 [PubMed: 36917287] 

39. Agrawal A, Khatri GD, Khurana B, Sodickson AD, Liang Y, Dreizin D (2023) A survey of ASER 
members on artificial intelligence in emergency radiology: trends, perceptions, and expectations. 
Emerg Radiol 30:267. 10.1007/S10140-023-02121-0 [PubMed: 36913061] 

40. Guo Y, Liu Y, Georgiou T, Lew MS (2018) A review of semantic segmentation using deep neural 
networks. Int J Multimed Inf Retr 7:87–93. 10.1007/S13735-017-0141-Z/FIGURES/3

41. Röhrich S, Hofmanninger J, Negrin L, Langs G, Prosch H (2021) Radiomics score predicts acute 
respiratory distress syndrome based on the initial CT scan after trauma. Eur Radiol 31:5443–5453. 
10.1007/S00330-020-07635-6/TABLES/5 [PubMed: 33733689] 

42. Roth HR, Xu Z, Diez CT, Jacob RS, Zember J, Molto J, et al. (2021) Rapid artificial intelligence 
solutions in a pandemic - the Covid-19–20 lung CT lesion segmentation challenge. Res Sq. 
10.21203/RS.3.RS-571332/V1

43. Zhang L, LaBelle W, Unberath M, Chen H, Hu J, Li G, et al. (2023) A vendor-agnostic, PACS 
integrated, and DICOM-compatible software-server pipeline for testing segmentation algorithms 
within the clinical radiology workflow. Res Sq. 10.21203/RS.3.RS-2837634/V1

44. Oikonomou A, Prassopoulos P (2011) CT imaging of blunt chest trauma. Insights Imaging 2:281. 
10.1007/S13244-011-0072-9 [PubMed: 22347953] 

45. Dreizin D, Rosales R, Li G, Syed H, Chen R (2021) Volumetric markers of body composition 
may improve personalized prediction of major arterial bleeding after pelvic fracture: a secondary 
analysis of the Baltimore CT prediction model cohort. Can Assoc Radiol J 72:854–861. 
10.1177/0846537120952508 [PubMed: 32910695] 

Sarkar et al. Page 9

Emerg Radiol. Author manuscript; available in PMC 2023 September 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
A Typical appearance of pulmonary contusion in the right peripheral lung; ground-

glass appearance with subpleural sparing. B 3D reconstructed images of pulmonary 

contusion and lung volume. Sup = superior view; LAO = left anterior oblique view. C 
Automated segmentation in 8 representative patients. Light red areas are areas of automated 

segmentation only. Darker red areas are areas of overlap between manual and automated 

segmentation. Lung volume is denoted with gray outline, corresponding with the pleural 

margin in all patients illustrated
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Fig. 2. 
Violin plot of the distribution of auto-LCI in non-ARDS patients (left) and ARDS patients 

(right)
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Table 2

Mean Dice Score Coefficient (DSC) and Volume Similarity Index (VSI) of the nnU-Net models

Model Mean DSC (± SD) Mean VSI (± SD)

2D 0.60 (± 0.22) 0.77 (± 0.22)

3D low-Resolution 0.65 (± 0.21) 0.80 (± 0.21)

3D full-resolution 0.65 (± 0.20) 0.80 (± 0.20)

3D cascaded full-resolution 0.62 (± 0.21) 0.77 (± 0.23)

Ensemble 0.67 (± 0.20) 0.82 (± 0.20)
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