
Allergies come clean: The role of detergents in epithelial barrier 
dysfunction

Benjamin L. Wright, MD1,2, Mia Y. Masuda1,3, Danna R. Ortiz1, Adelyn Dao1, Blake Civello4, 
Grace C. Pyon1, Aliviya R. Schulze1, James A. Yiannas, MD5, Matthew A. Rank, MD1,2, 
Hirohito Kita, MD1,2, Alfred D. Doyle, Ph.D.1

1Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic 
Arizona, Scottsdale, Arizona, USA

2Section of Allergy and Immunology, Division of Pulmonology, Phoenix Children’s Hospital, 
Phoenix, Arizona, USA

3Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA, and Mayo Clinic Arizona, 
Scottsdale, Arizona, USA

4University of Arizona College of Medicine - Phoenix, Phoenix, Arizona, USA

5Department of Dermatology, Mayo Clinic Arizona, Scottsdale, Arizona, USA

Abstract

Purpose of Review: The prevalence and incidence of allergic disease have been rising in 

Westernized countries since the 20th century. Increasingly, evidence suggests that damage to the 

epithelium initiates and shapes innate and adaptive immune responses to external antigens. The 

objective of this review is to examine the role of detergents as a potential risk factor for developing 

allergic disease.

Recent Findings: Herein, we identify key sources of human detergent exposure. We summarize 

the evidence suggesting a possible role for detergents and related chemicals in initiating epithelial 

barrier dysfunction and allergic inflammation. We primarily focus on experimental models of 

atopic dermatitis, asthma, and eosinophilic esophagitis, which show compelling associations 

between allergic disease and detergent exposure. Mechanistic studies suggest that detergents 

disrupt epithelial barrier integrity through their effects on tight junction or adhesion molecules and 

promote inflammation through epithelial alarmin release.

Summary: Environmental exposures that disrupt or damage the epithelium may account for 

the increasing rates of allergic disease in genetically susceptible individuals. Detergents and 
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related chemical compounds represent possible modifiable risk factors for the development or 

exacerbation of atopy.
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Introduction

Allergies are among the most common chronic diseases in industrialized nations and 

incorporate manifestations at nearly every skin and mucosal surface of the human body. 

In the United States (US), approximately 30% of the population reports at least one form 

of atopy. Allergic rhinitis is the most common allergic disease affecting 18.9% of children 

and 25.7% of adults [1]. Thirteen percent of the US population has asthma [2] and up to 

8% of children have food allergy [3]. Alarmingly, rates of allergic disease are increasing, 

particularly among children. For example, food allergy prevalence increased 50% among 

children 0-17 years old from 1997-2011 in the US. This increase is paralleled by an almost 

70% increase in skin allergies over the same timeframe [4]. Recent decades have also 

seen the emergence of new allergic diseases such as eosinophilic esophagitis (EoE). First 

described in the 1990’s [5, 6], this disease now has an estimated prevalence of 0.5-1:1000 

and is the leading cause of food impaction in adults [7–9].

The etiology of atopic disease is multifactorial; however, the environment likely plays 

a significant role. Increases in allergic disease have been attributed to changes in the 

microbiome linked with the transition from an agrarian lifestyle to living in industrialized 

urban settings (i.e., hygiene or old friends hypothesis) [10, 11]. As an extension, several 

alterations in microbial exposure may lead to dysbiosis and have been linked with 

increased risk of atopy, including the following: antibiotic use, Cesarean delivery, lack 

of breastfeeding, and changes in food processing [12–14]. Climate change (e.g., increased 

pollen season duration due to warming temperatures) and environmental pollutants (e.g. 

microplastics) are additional factors of interest. Mechanistic investigations have identified 

the epithelium at the center of the immune alterations associated with allergic disease 

[15, 16]. Indeed, many of the same pathways and disease processes implicated in atopic 

dermatitis also play a role in asthma. Moreover, a disrupted epithelium provides a logical 

starting point for understanding the immune dysregulation characteristic of atopy that 

likely begins as an immuno-protective response. Consequently, it is critical to evaluate the 

environmental exposures, which may initiate epithelial barrier dysfunction.

Since the 1940’s, detergents have been incorporated into household products such as 

laundry detergents, industrial cleaners, shampoos, and toothpaste [17]. These products 

were historically evaluated for their acute toxicity, but their chronic effects on the 

epithelial barrier are increasingly appreciated. Pothoven and Schleimer proposed the barrier 

hypothesis, which postulates that allergic sensitization and type 2 inflammation result from 

epithelial barrier dysfunction and inappropriate exposure to the environment [18]. Akdis 

et al, extended the barrier theory to suggest that detergents and other compounds provoke 
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epithelial barrier dysfunction and promote dysbiosis and translocation of microbiota through 

the epithelium [16].

Herein, we provide background information on common household detergents and review 

epidemiologic and mechanistic studies examining detergents and related compounds as risk 

factors for allergic disease.

Detergents

History and Definition

Detergents belong to a class of surfactants characterized by an amphiphilic structure with 

polar and nonpolar moieties. The polar moiety is hydrophilic and nonpolar moiety is 

hydrophobic, facilitating the mixture of hydrophobic compounds (e.g., oil) with water 

[17]. Detergents form micelles in water above specific concentrations (i.e. critical micelle 

concentration, CMC), which can remove grease. Most surfactants employed in everyday 

household use are anionic, but surfactants may also be cationic, nonionic, or amphoteric.

Detergents are synthetic soap substitutes that were developed for cleaning applications due 

to critical shortages of the natural fats required to make soap during World War I. German 

chemists alkylated naphthalene and polynuclear aromatics from coal tar with short-chain and 

fatty alcohols to produce alkylaromatics which were then sulfonated to produce surfactants. 

Alkylene sulfates presented unique advantages to traditional soap because they are soluble 

in hard water and do not leave scum. Further advancements by the chemicals industry led 

to the production of the first alcohol sulfates in the 1930’s from coconut and palm kernel 

oil derivatives. Refinements in the petrochemicals industry led to the production of branched 

chain alkyl benzenes, which were incorporated into laundry detergents in the 1940’s-1950’s. 

However, branched chain alkyl benzenes were found to be poorly biodegradable, leading to 

the development of linear alkyl sulfates, including sodium lauryl sulfate (SLS also known as 

sodium dodecyl sulfate or SDS) and sodium dodecyl benzenesulfonate (SDBS) [19]. These 

are the most common detergents used in commercial household products and are the focus 

of recent investigations into the potential link between detergents and atopic disease.

Linear alkyl sulfates have been assessed for safety, and SDS and SDBS are generally 

considered safe at exposure levels commonly found in the household. Indeed, SDS is 

even approved as a food additive at low concentrations [20]. Previous assessments have 

identified these detergents as irritants. Unfortunately, these studies generally focus on 

toxicity and mutagenicity and do not assess effects on mucosal barrier function or alterations 

to microbiota or the potential effects of early-life exposure [21].

Sources and Routes of Exposure

Surfactants have been incorporated into most of the cleaning and personal care products 

used daily. According to a database of 97,370 active personal and home care products, 

unmodified SDS is contained in 3,990 products. Modified sulfate surfactants are present in 

a total of 10,564 products [22]. This ubiquitous exposure begins at birth during neonatal 

resuscitation with laundered cloths or blankets, followed by swaddling and clothing, and 
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then with an infant’s first bath. Table 1 lists common routes and sources of human exposure 

to detergents.

Effects on Barrier Function

SDS can penetrate the skin [23], enhances intestinal permeability [23], and has been used 

to facilitate uptake of pharmacological agents [24]. Detergents are capable of solubilizing 

plasma membranes [25, 26] through saturation of the plasma membrane with detergent 

monomers followed by fragmentation and release of mixed micelles comprised of detergent 

monomers and membrane lipids [27]. Notably, SDS can also alter protein structure and 

function [28, 29].

Association with antigen sensitization

Some detergents can elicit an allergic response; however, SDS and SDBS are largely 

considered irritants that do not provoke direct sensitization. On the other hand, SDS may 

serve as a vehicle (skin penetrating/irritant agent) or adjuvant, facilitating sensitization 

to nickel and chrome when painted on the skin only when mixed with 1% SDS [30]. 

Indeed, SDS has since been used in multiple skin tests for allergens or irritants in humans, 

specifically to enhance skin permeability and aid in assessment of sensitization [31]. Recent 

studies suggest SDS can lower the sensitization threshold by up to a factor of 10 for a 

weak sensitizer [32]. Studies in mice indicate that SDS can enhance local lymph node 

responses to sensitizers, possibly by increasing dendritic cell migration [33, 34]. Another 

noteworthy study showed that mice injected subcutaneously with 1-10 mg/L SDS with 

ovalbumin (OVA) promoted anti-OVA IgE production [35]. Interestingly, rat peritoneal mast 

cells release up to 85% of stored histamine at SDS concentrations as low as 0.03 mM [36].

Other cofactors may play an important role. Notably, sensitivity to isothiazolinone, which is 

often found in liquid laundry detergents as a preservative, is extremely common [37, 38]. It 

is unclear if this may be linked with co-exposure to surfactants such as SDBS.

Organ-specific Effects

Skin

The irritant properties of SDS on the skin are well appreciated. In fact, SDS serves as a 

prototypical irritant for pharmacologic investigations of anti-inflammatory topicals and is 

utilized in routine patch testing to assess skin irritability [39]. SDS causes lipid extraction 

and swelling in exposed skin [40, 41] and increases absorption of hydrophilic compounds, 

in particular [42]. Investigations with confocal Raman and infrared microspectroscopy have 

revealed penetration of SDS to the stratum corneum and, with longer incubation, to the 

dermal region, suggesting SDS may directly interact with keratinocytes [43]. Penetration 

of the stratum corneum has also been shown by radiolabeled probe assays [44, 45]. SDS 

activates the NLRP3 inflammasome and induces caspase-dependent IL-1β secretion by 

human keratinocytes [46]. Additionally, SDS increases intracellular reactive oxygen species 

(ROS) and IL-1α secretion by human keratinocytes by increasing intracellular calpain 

activity and intracellular Ca2+ concentration, promoting prostaglandin E3 (PGE3) release 
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[47, 48]. Notably, SDS also alters protease expression and S100 proteins, including filaggrin, 

in keratinocytes [49].

Atopic dermatitis

The role of detergents such as SDS and SDBS in promoting atopic dermatitis is unclear; 

however, clinical studies have shown that atopic dermatitis patients are more susceptible 

to SDS-induced irritant dermatitis [50] and show increased transepidermal water loss in 

response to SDS. Moreover, detergent use can trigger flares of atopic dermatitis [51]. 

In vitro studies identified both SDS and SDBS as having cytotoxic effects on human 

keratinocytes [52]. Notably, in air-liquid interface (ALI) cultures, both SDS and SDBS 

affected barrier function at nontoxic doses, reducing transepithelial electrical resistance 

(TEER) and increasing FITC-dextran permeability. These results were also observed 

using commercial detergents at a 106 dilution. Moreover, alterations in tight junction 

proteins claudin-1 and occludin were variously observed with SDS, SDBS, and commercial 

detergents. Together, these results suggest anionic surfactants can influence skin barrier 

function, opening the possibility of increased penetration of toxicants and allergens, which 

may contribute to atopic dermatitis.

Contact Dermatitis

Contact dermatitis encompasses irritant contact dermatitis (ICD: ~80% cases) and allergic 

contact dermatitis (ACD: ~20%) along with photocontact dermatitis and contact urticaria. 

ICD irritants can cause damage on the first exposure (i.e. an adaptive immune response 

is not required), whereas ACD is a type IV delayed hypersensitivity reaction requiring 

sensitization. SDS is considered an irritant; however, it is commonly used in testing for 

ACD to facilitate penetration of the skin by potential allergens. For example, a 1955 study 

found that 1% SDS painted on guinea pig skin could provoke a response to nickel and 

chrome. Specifically, fur-clipped guinea pig skin was painted with nickel or chrome in the 

presence or absence of 1% SDS for 8 days and then challenged at day 12. The authors found 

that, in the absence of SDS, nickel and chrome produced mild to no reactions. However, 

in the presence of SDS, they observed scaling, erythema, and inflammation. The authors 

concluded that the eczematogenic properties of the metals were “brought about by the 

permeability of the skin increasing under the influence of lauryl sulphate” [30].

SDS has also be used to enhance sensitization in humans. Specifically, various methods 

of altering inflammation were tested to maximize contact sensitization, including tape 

stripping, UV exposure, cantharidin blistering, freezing, dimethylsulfoxide (DMSO), and 

SDS. Of all methods tested, SDS was the most effective at inducing contact sensitization 

[53]. Many early studies are now considered unethical as experiments were performed on a 

prison population without appropriate respect or protections for the subjects. SDS appears to 

have a synergistic effect with nickel likely due to increased penetration and proinflammatory 

effects that lower the threshold for elicitation of an allergic response [54].

Other detergents are more clearly linked with ACD. Namely, cocamidopropyl betaine, the 

ingredient in no-tears formulations of shampoo, was named Allergen of the Year in 2004 
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by the American Contact Dermatitis society due to its propensity to induce type IV contact 

hypersensitivity reactions in up to 7.2% of exposed individuals [55, 56].

Lung

Asthma—Defective epithelial barrier function is associated with asthma [57–59]. Several 

studies show an increased incidence of allergic respiratory symptoms and risk of asthma 

development due to occupational exposure to detergents and cleaning products (e.g., 

detergent factory workers and domestic housekeepers) [60–66]. Most of these reports are 

related to sensitization to enzymes as components of commercial detergents.

Recently, Wang et al. [67] investigated the effects of SDBS on the human respiratory 

epithelium using ALI cultures. The goal of this study was to test the effects of laundry 

detergents on human bronchial epithelial cell barrier function and identify changes in the 

transcriptomic and epigenomic signatures following detergent exposure. The authors found 

that the SDBS concentration in rinse residue was approximately a 1:2,500 dilution of 

the laundry detergent. Using this concentration, they demonstrated cytotoxic and barrier-

disruptive effects on human bronchial epithelial cells in vitro. This was evidenced by 

decreased tight junction protein expression (occludin and zonulin-1), decreased TEER, 

and increased FITC-dextran flux in ALI cultures. No significant epigenetic changes 

were identified, and RNAseq revealed downregulation of genes related to cell adhesion 

and upregulation of genes related to lipid metabolism and apoptosis. Using monolayer 

cultures, they showed dose-dependent cytotoxicity with two different commercial detergents 

at dilutions less than 1:20,000-1:40,000. Even at nontoxic detergent concentrations, the 

authors noted decreased staining intensity of junctional proteins by immunofluorescence. 

Interestingly, these findings were reproducible with a 1:10 dilution of residual liquid 

from laundered clothing. These observations suggest that SDBS at low concentrations 

compromises the barrier function of airway epithelial cells and alters their gene expression.

Gastrointestinal Tract

Oral Ulcers and Oral Allergy Syndrome—SDS is a common component of toothpaste 

at concentrations up to 3% w/v and can be found in mouthwash as well. As toothbrushing 

is typically performed multiple times daily for several minutes, the oral mucosa is one of 

the most highly exposed tissues to SDS. SDS increases oral mucosa permeability in rabbits 

[68] and has been linked with oral ulceration [69]. Oral desquamation from toothpaste 

was noted in 1972 [70]. Later studies found that SDS could mediate this activity [71, 72]. 

A double-blind, cross-over clinical study of 28 females found that toothpaste containing 

as little as 0.5% SDS significantly increased oral desquamation relative to detergent-free 

toothpaste or toothpaste containing a less hydrophilic detergent, cocoamidopropyl-betaine 

[71]. Interestingly, one study found that 1% SDS in mouthwash reduced salivary bacterial 

counts, which remained significant at 7 hours post rinse. This antimicrobial activity was 

greater than 0.2% triclosan [73]. In addition, SDS is reported to have direct antimicrobial 

properties [74, 75]. Specifically, SDS may form pores in the lipid membranes of gram-

positive organisms. Gram-negative organisms appear to be resistant to this bacteriostatic 

property [76, 77]. The significance of the sensitivity to SDS in the oral cavity and whether 
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there could be any link to allergic sensitization and/or oral allergy syndrome requires 

investigation.

Eosinophilic Esophagitis—Recent investigations in our laboratory revealed that ALI 

cultures of human esophageal epithelium (i.e., EPC2 cells) exposed to 5,000 ng/mL SDS 

(~1:600 dilution of the SDS concentration in toothpaste) decreased TEER and increased 

passage of 4 kDa FITC-dextran, indicating induction of barrier dysfunction. Moreover, 

expression of DSG-1, an epithelial junction protein dysregulated in active EoE subjects, was 

markedly decreased while expression of the epithelial alarmin IL-33 was increased. IL-33 

can potentiate type 2 immune responses and is upregulated in active EoE [78]. Further, 

mice exposed to 0.5% SDS in drinking water (~1/6th the concentration in toothpaste) 

for two weeks exhibited striking EoE-like pathology including eosinophilia, eosinophilic 

abscesses, dilated intracellular spaces, and basal zone hyperplasia. Interestingly, infiltration 

of CD4+ cells was increased in the esophagus, and RNAseq pathway analysis on whole 

esophagus homogenates indicated increased innate and adaptive immune responses along 

with responses to external biotic stimuli [79]. In unpublished studies, we have found marked 

alterations of the esophageal microbiome of mice in response to oral SDS exposure. Future 

studies are needed to understand the extent and contribution of dysbiosis to the observed 

pathology and to explore the potential for sensitization to food components. Concerningly, 

we were not the first to note the potential hazards of oral exposure to detergents. In 1939, 

Epstein et al. noted gastrointestinal irritation of the esophagus and forestomach in rats 

exposed to low concentrations of SDS over the course of 7 weeks, including edema, loss 

of keratin, and leukocytic infiltration, warning of the potential injurious effects of replacing 

traditional soap with SDS in toothpastes [80].

Household cleaning products often contain detergents mixed with other types of cleaning 

agents. Thus, it may be critically important to evaluate the sensitization potential in 

combination with proteases. Notably, Tanzer et al [81] found that laundry detergent 

containing microbial proteases damaged the skin barrier in mice, and, when combined with 

OVA, epicutaneous exposure (~10% concentrated laundry detergent), induced sensitization 

to OVA. Markedly increased IL-33 expression was noted in the skin, and sensitized mice 

challenged intranasally with OVA alone showed eosinophilic inflammation in the esophagus.

Intestinal permeability and food allergy—Ethoxylated alcohols are nonionic 

surfactants and are a component of rinse aids commonly used in commercial washers to 

leave dishes with a clean appearance. A recent study by Ogulur et al [82] found that human 

gut epithelial cell lines exposed to diluted rinse aid showed evidence of toxicity at levels 

similar to those present on cleaned dishes (e.g., 1:10,000). Moreover, evidence of barrier 

disruption was observed at a 1:40,000 dilution. Specifically, monolayer cultures of Caco-2 

or HT-29 cells exposed to dilutions of rinse aid revealed cellular lysis at dilutions as low 

as 1:20,000. Liquid-liquid interface cultures of differentiated Caco-2 cells and organoid 

cultures responded similarly. Rinse aid was also found to induce barrier disruption with 

decreased TEER following five days of exposure to a 1:10,000 dilution. Increased FITC-

dextran permeability and altered immunofluorescent staining of claudin-1 and occludin were 

observed at three days at a 1:20,000 dilution. Similar results showing barrier disruption 
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were observed using Caco-2 cells in a gut-on-a-chip model. Finally, transcriptome analysis 

of Caco-2 monolayer cultures exposed to rinse aid showed altered expression of epithelial 

junction proteins. In addition, pathway analysis showed upregulation of proinflammatory, 

pattern recognition, and cytokine pathways. Similar results were observed by proteomic 

analysis. Strikingly, rinse aid residues extracted from cups washed in a professional 

dishwasher induced toxicity to Caco-2 cells even at a 1:10 dilution, while a 1:5 dilution 

impaired barrier function.

Notably, the authors also found that 1:20,000 dilutions of multiple common household 

dishwasher detergents also induced toxicity to Caco-2 cells though this is a higher 

concentration than the 1:80,000 dilution commonly used in dishwashers. These dishwasher 

detergents may contain SDS, which was also found to affect barrier function in Caco-2 cell 

cultures.

Together, these results suggest the gut epithelial barrier is susceptible to commonly used 

detergents, indicating the potential for barrier dysfunction, increased allergen exposure, and 

effects on chronic inflammation of the gut.

Conclusions

Allergic disease has increased markedly since the mid-20th century. Although the etiology 

of allergic disease is unknown, the environment plays a prominent role in disease 

pathogenesis. Coincident to increases in atopic disease, is the widespread use of detergents 

in household and personal care products in industrialized nations. The epithelium is central 

to the pathogenesis of allergic diseases. Common household detergents induce epithelial 

barrier dysfunction in the skin, lung, and gastrointestinal tract. While detergents are 

widely considered irritants, they appear to lower the threshold for sensitization, possibly 

by enhancing epithelial permeability and inducing inflammatory responses. In addition to 

these direct effects on the epithelium, detergents induce dysbiosis, which is associated with 

allergic disease. Pervasive and perpetual exposures position detergents prominently among 

environmental pollutants that may provoke barrier dysfunction. Figure 1 summarizes the 

potential role of detergents in allergic disease pathogenesis.

Additional research is needed to better understand the immunologic and molecular 

mechanisms involved in detergent-induced barrier dysfunction and inflammation. Studies 

examining each epithelial surface is needed to understand how timing, route, and co-

exposure with potential allergens promote allergic disease. This knowledge must be 

combined with research on gene-environment interactions as detergent exposure is common, 

but not all those exposed develop atopy. Further work investigating the effects of other 

chemical compounds with surfactant properties (i.e., emulsifiers) is needed. It will also be 

important to examine whether detergent-induced dysregulated barrier function, immunity, 

and the microbiome possibly contribute to other forms of immune mediated disease, such as 

autoimmunity.
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Figure 1. Detergent exposure model.
Exposure to detergents and other environmental toxicants, particularly in genetically 

susceptible individuals, results in epithelial barrier dysfunction, microbial dysbiosis, and 

alarmin release. This milieu promotes allergic sensitization, epithelial remodeling, and 

allergic disease.
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Table 1.

Routes and sources of human detergent exposure

Route of Exposure Surfactant Source or Product

Skin Laundry detergent

Dishwashing detergent

Hard surface cleaning agents

Detergent residue in clothing

Bubble bath

Cosmetics

Shampoo

Bar and hand soap

Shaving cream

Inhalation Laundry detergent dust

Surface cleaning sprays

Oral Toothpaste

Medications

Residue on fruits and vegetables

Processed foods (e.g., dairy and baked goods)

Residue on utensils and dishware

Drinking water
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