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Abstract

Background: Prior predictive models using logistic regression for stillbirth do not leverage the 

advanced and nuanced techniques involved in sophisticated machine learning methods, such as 

modeling non-linear relationships between outcomes.

Objective: To create and refine machine learning models for predicting stillbirth using data 

available prior to viability (22–24 weeks) and throughout pregnancy using demographic, medical, 

and prenatal visit data, including ultrasound and fetal genetics.

Study Design: This is a secondary analysis of the Stillbirth Collaborative Research Network, 

which included data from pregnancies resulting in stillborn and liveborn infants delivered at 59 
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hospitals in 5 diverse regions across the US from 2006–2009. The primary aim was creation 

of a model for predicting stillbirth using data available prior to viability. Secondary aims 

included refining models with variables available throughout pregnancy and determining variable 

importance.

Results: Among 3000 live births and 982 stillbirths, 101 variables of interest were identified. Of 

the models incorporating data available prior to viability, the Random Forests model had 85.1% 

accuracy (area under curve [AUC]) and high sensitivity (88.6%), specificity (85.3%), Positive 

Predictive Value (85.3%), and Negative Predictive Value (84.8%). A Random Forests model 

using data collected throughout pregnancy resulted in accuracy of 85.0%; this model had 92.2% 

sensitivity, 77.9% specificity, 84.7% Positive Predictive Value, and 88.3% Negative Predictive 

Value. Important variables in the pre-viability model included previous stillbirth, minority race, 

gestational age at earliest prenatal visit and ultrasound, and 2nd trimester serum screening.

Conclusions: Applying advanced machine learning techniques to a comprehensive database of 

stillbirths and live births with unique and clinically relevant variables resulted in an algorithm that 

could accurately identify 85% of pregnancies that would result in stillbirth, before they reached 

viability. Once validated in representative databases reflective of the United States birthing 

population and then prospectively, these models may provide effective risk stratification and 

clinical decision-making support to better identify and monitor those at risk for stillbirth.

Tweetable statement:

A machine learning algorithm can predict stillbirth risk with data collected prior to viability with 

85.1% AUROC.

Keywords
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Introduction

Stillbirth is among the most devastating obstetric outcomes. Evidence-based interventions 

for preventing stillbirth are not well-developed; thus, identifying those at risk for stillbirth 

is crucial.1 Previously, logistic regression and other methods relying on linear relationships 

between variables to achieve classification have been utilized to attempt to predict—and 

thereby prevent—stillbirth.2–15 While the predictive accuracy for stillbirth from regression 

has reached up to 88% (based on third trimester cerebroplacental ratio and uterine artery 

dopplers, in this particular model), these methods do not usually leverage the advanced 

and nuanced techniques involved in sophisticated machine learning, which includes (but 

are not limited to) modeling non-linear relationships between covariates in larger datasets 

that can handle large amounts of variables without overfitting.16,17 More recently, others 

have attempted to utilize machine learning to predict stillbirth; however, these models are 

limited by both accuracy and variable availability, relying on measures collected even after 

the stillbirth has occurred (i.e., fetal weight or gestational age).17–19 The absence of a 

model combining advanced machine learning techniques with a detailed, clinically accurate 
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database has hampered the creation of an ideal predictive calculator for stillbirth. Similar 

sophisticated models in obstetrics have improved prediction of vaginal birth after cesarean 

(VBAC) over traditional logistic regression, for example, proving machine learning to be an 

invaluable tool.20

The Stillbirth Collaborative Research Network (SCRN) was developed to create a database 

of stillbirths and representative livebirths to ascertain the causes, incidence, and risk 

factors for stillbirths.21 Participants in this case-control study completed a comprehensive 

clinical interview, consented to pathological work-up, and had clinical data abstracted by 

trained research personnel. The granularity and relative clinical accuracy of this large, 

comprehensive database of stillbirths and livebirths renders the SCRN dataset well-suited for 

attempting to develop a machine learning model for predicting stillbirth.

We sought to utilize the SCRN database develop a machine learning model that predicts 

stillbirth risk with high accuracy and sensitivity. Our primary objective was the production 

of a pilot model that could predict stillbirth using data available prior to viability (22–

24 weeks). Our secondary objectives included further refining that model using variables 

obtained throughout pregnancy as well as determining variable importance within these 

models.

Materials and Methods

Sample derivation

Data were derived from SCRN, a multi-site case-control study of stillbirths and 

representative livebirths conducted from 2006–2009.21 The study included a heterogenous 

sample of patients who delivered a live or stillborn fetus at >18 weeks gestational age 

(GA) from five catchment areas across the United States (RI, MA, GA, TX, UT). Hospital 

locations were chosen such that patients approached for study participation included 

>90% of stillbirths and livebirths in the geographic region. Design, methods, recruitment 

experience, and participant inclusion/exclusion criteria have been described in-depth.21 

Livebirths <32 weeks gestation (in order to mitigate the large difference in GA between 

stillbirths and livebirths, on average) and participants of Black race (given the increased 

stillbirth rates at baseline in Black patients) were oversampled. Data collection included 

initial maternal interview, chart abstraction, pathology examination and biospecimens, and 

follow-up interview. Each study site’s Institutional Review Board approved study procedures 

as well as the Data Coordinating and Analysis Center; participants gave written, informed 

consent at time of enrollment and for pathologic examinations and follow-up interview.

For this pilot model, participants were included if they (1) delivered a singleton stillbirth 

or livebirth during the study period and (2) had sufficient available data (defined as ≤80% 

missing) from which our models could be derived using standard methods for imputing 

missing data.

Variable selection

The SCRN dataset includes over 6000 measures collected during the initial maternal 

interview, post-mortem pathologic examination, medical record abstraction, cause of death 
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analysis, and follow-up interview. We selected a series of risk factor variables based on 

literature review within the following categories: maternal demographics, biologic father of 

the baby (BFOB) demographics, family history, maternal health history (including mental 

health history), prenatal laboratory data, 2nd trimester screen (“Quad screen”), prenatal care 

history, ultrasound, social determinants of health (defined as demographic and economic 

information extracted from maternal interview, including those intended as markers of 

underlying structural inequality), and substance use.2–14,22–28 We also sought to reduce the 

confounding effect of earlier GA at birth in stillbirths in several measures. For example, 

the raw values of GA at last prenatal visit are skewed higher in livebirths not by virtue of 

an intrinsic process but rather because, in the parent database, livebirths have a later GA 

on average than stillbirths; however, the fact that livebirths were born later than stillbirths 

in the parent database is not valuable to a predictive model. Therefore, instead of using 

GA at delivery, we calculated ratios of several measures to GA at birth to establish the 

relative difference in care between stillbirths and livebirths as a potential predictor: GA 

of last prenatal visit, total number of prenatal visits, and GA of last ultrasound. Several 

measures were included as surrogates for underlying racism and healthcare inequality, 

including maternal and BFOB self-reported race (Black, Asian, Pacific Islander, American 

Indian, Alaskan Native, multiracial, or other race) and ethnicity, income assistance, years of 

education, and mother or BFOB born in the United States; these measures are intended only 

as social placeholders for those at higher risk of experiencing implicit bias in their medical 

care and do not represent an organic difference in participants.

Variables with >80% missing data (n = 51) and measures that were only discoverable 

at delivery and would not be helpful in a predictive model (i.e., GA and fetal weight 

at delivery) were removed from consideration. Missing data were imputed for the 

remaining pre-viability variables using Multivariate Imputation by Chained Equations 

(“mice” package); this method can handle high levels of missingness (up to 80%, which 

we used as our threshold) by looking to data from other columns and predicting the best 

estimate for the missing value.29 All variables were confirmed to be “missing at random,” 

as is required for this imputation method. Iteration number was set to 80 per protocol of 

one iteration per percent of missing data. Our final literature-based variable set included 101 

measures.

After completing variable selection based on literature review, which allows for selection 

of a wide array of variables, we selected a series of variables using Exploratory Factor 

Analysis (EFA), as is standard for machine learning methods. This unsupervised machine 

learning method helps identify which variables best explain the variance within a dataset 

by creating factors, or groups of variables, that correlate with underlying structures that 

define the data; using both methods of variable selection (clinically significant variables 

and variables that explain the most variance in the sample) allows for testing of several 

different sets of variables.30 Using the “psych” package in R, we first determined the ideal 

number of factors using the elbow method; using this result, we then computed an EFA 

model using varimax rotation and a polychoric, heterogenous correlation matrix for binary 

data (“polycor” package). We then determined factor loadings and selected variables within 

the factors that simultaneously maintained the largest sample size to avoid overfitting and 

optimized variance explained.
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Machine learning models

We selected several learners based on a priori criteria: (1) utilizes supervised learning; (2) 

produces variable importance; (3) available from the “caret” package. The following learners 

were selected: decision trees (tree-based structure defined by a set of if/then statements), 

boosted trees (a set of decision trees that are reliant on the previous tree, combined 

in an ensemble for a final prediction), random forests (a set of decision trees that are 

run independently and combined for a final prediction), and single layer neural networks 

(simulates connected layered processes, combined for a final prediction). Logistic regression 

was also completed for each set of variables (pre-viability, all-pregnancy, using EFA, etc.) to 

allow for comparison with linear statistical methods.

Prior to entry into all models (logistic regression and advanced machine learning), all 

measures were centered, scaled, and dummy coded. We employed synthetic minority 

sampling technique (SMOTE) to weight our observations (R package “DMwR”). Data 

was then partitioned into training and testing sets at a 3:1 ratio with 100 k-fold cross-

validation.31 Tuning matrices unique to each model were utilized to optimize probability 

threshold cutoffs rather than specifying thresholds ad hoc. Confusion matrices were derived 

from the tested models, reporting accuracy (area under receiver operating characteristic 

[AUROC]), sensitivity, specificity, positive predictive value (PPV), and negative predictive 

value (NPV), and error rate (Type I and II). Variable importance was also reported for the 

best model for each set of variables, scaled to 0–100 (0 = least important, 100 = most 

important).

In pursuit of our primary aim, we included those measures collected prior to viability (22–

24 weeks, herein referred to as “pre-viability”). For this primary aim, computational time 

and memory usage were also calculated to understand future system requirements. For our 

secondary aims (model refinement), we ran several additional models including measures: 

(1) available throughout pregnancy (“all-pregnancy”), (2) derived from EFA, and (3) without 

2nd trimester serum screening results, which were more commonly utilized at the time of 

SCRN data collection compared to the present. The best model was chosen as that which 

optimized AUROC and sensitivity.

Statistical analysis

All analyses were conducted using RStudio (version 2022.07.1, R version 4.1.3). In addition 

to those statistical measures collected for each model listed above, we also completed 

sample descriptive analyses comparing stillbirths to livebirths for each measure. We utilized 

Mann-Whitney tests for continuous variables and Chi-Square tests for categorical variables. 

P-values <0.05 were considered significant.

Results

Sample description

The SCRN data consisted of 3000 livebirths and 982 stillbirths. Though all were eligible 

for inclusion in the primary model, 924 births (586 livebirths, 338 stillbirths) did not have 

sufficient prenatal visit data from later pregnancy and were thus excluded from secondary 
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models that included data from the entirety of pregnancy. Of the 101 measures with <80% 

missing data assessed, 83 were collected prior to viability (22–24 weeks) and were included 

in the pre-viability model, and 44 were selected for inclusion in the EFA-derived model. 

Sample and variable selection are depicted in Supplemental Figure 1.

Measure comparisons between stillbirths and livebirths are depicted in Supplemental Table 

1. Notable measures with significantly lower mean ± standard deviation/incidence in 

stillbirths included positive anemia screen during early pregnancy (defined as hematocrit 

<33%, per World Health Organization guidelines for anemia during any trimester of 

pregnancy), preterm labor, anemia during labor/delivery, and ratios of latest prenatal visit 

and total prenatal visits to birth GA.32 Notable measures with significantly higher mean 

± standard deviation/incidence in stillbirths included maternal minority race; maternal and 

family history of fetal death and/or recurrent pregnancy loss; significant life events 12 

months prior to delivery (adapted from the Pregnancy Risk Assessment Monitoring System, 

which has been validated for use in assessing the contributions of self-reported stressful life 

events in the year prior to childbirth towards adverse pregnancy outcomes of the index 

pregnancy); leukocytosis during labor and delivery (defined as white blood cell count 

> 11×109/L); 2nd trimester maternal serum alpha-fetoprotein (MSAFP) Multiples of the 

Median (MoM); prenatal fluid loss, preterm labor, reduced fetal movement; ultrasound with 

fetal anomaly, abnormal fluid, or abnormal growth; and ratio of GA of latest ultrasound to 

birth GA.33,34

Primary Aim

Our primary aim was achieved via creation of a series of models that distinguished stillbirth 

from livebirth using data available prior to viability (Figure 1). Results from logistic 

regression with these variables yielded an AUROC of 0.761. The best pre-viability model 

utilized a Boosted Trees learner and had AUROC of 0.851, sensitivity of 0.852, specificity 

of 0.849, PPV of 0.883, and NPV of 0.811. Type I error rate was 14.8%; type II error 

rate was 15.1%. Model time to completion was variable according to processor speed and 

required 3.94 kilobytes (kB) of memory.

Secondary Aim: alternate models

Compared to AUROC of 0.863 from logistic regression, the best all-pregnancy model 

utilized a Random Forests learner and had AUROC of 0.850, sensitivity of 0.922, specificity 

of 0.779, PPV of 0.847, and NPV of 0.883. Compared to AUROC of 0.747 from logistic 

regression, the best EFA-derived model utilized a Random Forests learner and had AUROC 

of 0.867, sensitivity of 0.869, specificity of 0.864, PPV of 0.895, and NPV of 0.832. 

Compared to AUROC of 0.741 from logistic regression, the best pre-viability model without 

serum screening for genetic aneuploidy utilized a Boosted Trees learner and had AUROC of 

0.867, sensitivity of 0.869, specificity of 0.864, PPV of 0.895, and NPV of 0.832.

Secondary Aim: variable importance

Variable importance for pre-viability and all-pregnancy models is shown in Table 1. The 

following 10 variables were most contributory to AUROC in the pre-viability model (from 

most to least important): maternal minority race, GA of earliest prenatal visit, paternal 
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minority race, GA of earliest ultrasound, history of intrauterine fetal demise, 2nd trimester 

human chorionic gonadotropin (hCG), income assistance received, positive anemia screen, 

BFOB years of education, and BFOB Hispanic ethnicity. Though the most important 

variables for the pre-viability model are highlighted above, a multitude of other variables, 

including ultrasound evidence of abnormal fluid (oligo- or polyhydramnios) were important 

for other models and are listed in Tables 1 and 2.

Comment

Principal Findings

With 85.1% AUROC, we were able to utilize machine learning to identify pre-viable 

participants at risk for stillbirth in a nationwide dataset. Using measures collected 

throughout pregnancy results in AUROC of 85.0%. Our analyses identified variables 

obtained prior to viability associated with increased risk of developing stillbirth, which 

included maternal minority race, prior stillbirth, GA of earliest prenatal visit and ultrasound, 

and 2nd trimester serum screening. Overall, our pilot models had high AUROC and 

sensitivity; in the context of preventing stillbirth, the bias towards sensitivity is preferred 

as this model is unlikely to miss those at risk for such a devastating event. These findings 

provide an important first step in developing a widespread risk calculator that will allow 

providers to accurately triage those at increased risk of stillbirth.

Results in the Context of What is Known

Predicting risk of stillbirth has been a longtime aim in clinical obstetric research, 

resulting in many publications utilizing simple modeling methods such as logistic 

regression.3,5–14,23,25,26,28,35,36 A more limited selection of literature has focused on 

utilizing sophisticated machine learning methods, which offer the ability to address non-

linear relationships between measures in large datasets. Koivu et al. were able to achieve 

accuracy of 73–74% utilizing information from maternal medical and obstetric history, 

while Malacova et al. achieved maximum accuracy of 84% using measures collected from 

current pregnancy and maternal medical and obstetric history.17,18 Neither study included 

ultrasound or fetal genetic information in their models, even though data obtained via 

prenatal ultrasound and fetal genetic screening or testing can be pivotal in increasing risk 

of subsequent stillbirth.37 Khatibi et al. utilized sophisticated feature selection (via K-means 

cluster analysis) to identify variables of interest and enter these into machine learning 

classifiers.19 While these authors were able to achieve high model accuracy (up to 90.6%), 

they did so using measures such as GA at delivery, which is not clinically relevant in 

predicting cases other than intrapartum stillbirths.

As mentioned previously, our study included ultrasound and fetal genetic information, 

ubiquitous diagnostic tools that will likely continue to advance, offering us the opportunity 

to expand our model as technology becomes more widely utilized. Furthermore, unlike 

other machine learning models, we sought to identify patients at risk for stillbirth using 

data available prior to viability, rather than at or around delivery. Though delivery-based 

prediction is valuable in expediting delivery, a pre-viability model offers the opportunity 

to intervene earlier (at or before the usual initiation of antenatal testing, 28 weeks) with 
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less invasive methods such as fetal surveillance for patients at highest risk, hopefully 

preventing subsequent stillbirth as early as the extreme prematurity period. However, before 

this or other machine learning algorithms can be employed in clinical settings for in vivo 

risk prediction, these algorithms must first be validated prospectively. Then, if high rates 

positive prediction persist in prospective studies, clinical guidelines can be developed that 

incorporate these models to predict risk of stillbirth at the level of individual patients.

Clinical Implications

Our model offers a highly accurate tool for predicting stillbirth pre-viability, which, when 

validated and refined, could be easily implemented as a risk calculator for clinicians during 

prenatal visits. While concerns exist regarding computational requirements for running such 

models, machine learning tools have been successfully implemented in the clinical setting 

in a number of fields, including radiology and critical care.38,39 Implementation of such 

models have, furthermore, been associated with improvements in clinical workflow despite 

possible increased work burden or system requirements.40 Our pre-viability model requires 

3.94kB of memory, which is reasonable and feasible to use in most microcontrollers and 

larger devices for patient-level computations.41 Though automated data extraction from the 

electronic health record to provide real-time risk prediction poses its own challenges, several 

risk calculators—such as the Sequential Organ Failure Assessment to provide real-time 

identification for organ failure and a risk calculator for automatic detection of people at 

risk for psychosis—have been successfully developed and implemented.42,43 Once this 

calculator has been prospectively validated in a novel database, we will aim to incorporate 

the streamlined, embedded risk predictor into commonly used electronic health records.

Recent attention has been drawn to the effect of involving predictive modeling on clinical 

counseling and patient experience. Several recent presentations showed that patients had 

varying feelings surrounding the use of a calculator to predict successful VBAC.44,45 

Moreover, clinicians cited use of such a calculator more often to discourage rather than 

encourage a trial of labor.46 Given that stillbirth is a devastating and anxiety-provoking 

event, it would be important to consider the effect of receiving any result from a predictive 

stillbirth model on patient care. Stillbirth counseling is often multidisciplinary, and such 

counseling would have to be adjusted in the setting of a new predictive calculator.47 Further 

studies using our algorithm will assess the necessary support structures for patients and 

clinicians in order for them to utilize a stillbirth calculator.

The results of our variable importance analyses (secondary aim) indicate that certain 

demographic and pregnancy history measures are more important in predicting stillbirth 

than others. One of the most important measures was history of past stillbirth, which 

is to be expected: those with prior stillbirth have 2–10 times higher risk of recurrent 

stillbirth in a subsequent pregnancy compared to those without this history.47 Self-reported 

maternal minority race was important in the accuracy of our model. Black women have 

a two-fold higher risk for stillbirth even when controlling for other contributing factors, 

largely attributable to structural factors that perpetuate healthcare inequities according to 

race, especially structural racism.48–51 GA at first/earliest prenatal visit was significant 

within our model; when examining the variance between stillbirths and livebirths in this 
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measure, stillbirths had an earlier GA at first prenatal visit than livebirths. Past literature 

has suggested a relationship between underutilization of prenatal care and risk for stillbirth; 

though our stillbirth cohort presented earlier to care than our livebirth cohort, this does not 

necessarily indicate more adherence to recommended prenatal care schedules, which may 

impact stillbirth risk.52–55 It is also possible that these patients presented earlier to care due 

to early pregnancy complications that predisposed them to ultimately having a stillbirth such 

as bleeding, pregnancy of unknown location, or hyperemesis gravidarum. None of these 

datapoints were included in our analyses as they were not comprehensively collected in the 

parent database. However, the impact of such conditions on prenatal care utilization and 

subsequent stillbirth risk will be investigated in future iterations of this work.56

Research Implications

The future directions for this work are expansive given the opportunities such an accurate 

model provides. The model first must be validated in a database with representative stillbirth 

rates (as the SCRN database oversampled for stillbirths) and then prospectively using an 

external dataset; this process will ensure that its predictive abilities are as strong in other 

populations. Once validated, the model may be implemented in the setting of a randomized 

control trial, which will yield further information for researchers not just regarding the utility 

of the model, but also patient and clinician perspectives on this predictive score and possibly 

the most effective interventions for preventing stillbirth (e.g., content/quality of prenatal 

care, antenatal testing, serial ultrasounds, or timing of induction of labor).

Strengths and Limitations

Our model has several strengths of note. The SCRN dataset is unusually granular, allowing 

us to include high-quality metrics such as ultrasound data that are not incorporated into other 

predictive models.17,19,37 Our methodology is also balanced between sophisticated (utilizing 

a systematic approach to identify the best learner from a series of models) and accessible 

(easily implemented using limited memory). Our model is also interpretable: by producing 

results that include variable importance, we avoid the “black box” of machine learning 

wherein results are derived without an understanding of contributing factors, which can be 

valuable in a clinical setting.57

Our model also has several limitations. First, the SCRN study enrollment intentionally 

oversampled stillbirths, and controls were also biased towards higher-risk population 

(including a large proportion of preterm livebirths with obstetric complications). Use of 

this model in low-risk cohorts may result in lower PPV, although AUROC, sensitivity, 

and specificity should be maintained. Therefore, validation of the model in an external, 

generalizable cohort remains our primary next step; this validation will also allow us to 

assess externally whether any of our models were overfit. Second, the SCRN data included 

complete 2nd trimester (quad) screen, which was a routine part of prenatal care in the United 

States when the SCRN database was created but is less commonly utilized now. Therefore, 

we ran additional models without this screening panel, which yielded similar model metrics. 

Current American College of Obstetricians and Gynecologists guidelines suggest that non-

invasive prenatal testing for aneuploidy should be offered to all patients regardless of age or 

genetic risk.58 While our primary model is applicable for patients and communities where 
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quad screening is still performed, inclusion of the current schema (cell-free DNA ± nuchal 

translucency ± MSAFP) is a high-priority for future iterations of this work.59 We expect this 

to increase the predictive accuracy of our model, especially if metrics such as fetal fraction 

or even results of whole genome sequencing are included.60 We also recognize that several 

novel biomarkers, including soluble fms-like tyrosine kinase 1 (sFlt-1) to placental growth 

factor (PlGF) ratio, have been identified for predicting adverse pregnancy outcomes; these 

may have utility for inclusion in future iterations of this model as well.61

It is possible that some variables included in our model—such as leukocytosis—may occur 

more often among stillbirth pregnancies due to presence of an infection that may have 

contributed to fetal demise or as an inflammatory response to a retained stillbirth. However, 

this possibility is less likely give the rates of leukocytosis among those with stillbirth and 

livebirth were clinically similar in the parent database (32.7% livebirths versus 38.7% of 

stillbirths). Finally, though our dataset is robust, including stillbirths of many etiologies and 

gestational ages, it does not account for the clinical decision making that providers may have 

already been doing to prevent stillbirth in high-risk patients, which may explain why clinical 

factors with clear associations with stillbirth were not found to be significant in our model. 

For example, pregnancies with known fetal growth restriction may have undergone close 

fetal antenatal surveillance, thereby reducing their risk of stillbirth.

Conclusions

Using a comprehensive dataset of stillbirths and livebirths, sophisticated machine learning 

techniques created a pilot model with 85.1% AUROC for predicting stillbirth using data 

available prior to viability. Once validated in generalizable datasets and prospectively, such a 

model holds great promise for serving as a clinical decision-making tool, allowing providers 

to assess an individual patient’s risk of stillbirth and design an individual surveillance plan 

in the hope of preventing this devastating pregnancy outcome.
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AJOG at a glance:

Why was this study conducted?

• Prior models for predicting stillbirth do not leverage the nuanced techniques 

involved in sophisticated machine learning methods and incorporate data 

points after viability.

• Using data derived from the Stillbirth Collaborative Research Network, we 

sought to develop a machine learning model for predicting stillbirth using 

data available prior to viability.

What are the key findings?

• Using data derived prior to viability, our model predicted stillbirth had high 

predictive ability to identify a patient that would go on to have a stillbirth 

versus a livebirth (area under the curve [AUC] 85.1%; sensitivity 85.2%, 

specificity 84.9%, positive predictive value [PPV] 88.3%, negative predictive 

value [NPV] 81.1%), likelihood ratio [LR] 5.64.

• Machine learning models that incorporated variables collected throughout 

pregnancy—including after viability—resulted in AUC of 85.0%.

What does this study add to what is already known?

• Few sophisticated machine learning models for predicting stillbirth risk have 

been created.

• Our pilot model uses novel variables, including ultrasound and fetal genetics, 

and provides a framework for prospective validation that may, should results 

remain similar to those produced by the current model presented here, help to 

accurately predict stillbirths using data available prior to viability.

• Once externally validated, our model may be used for clinical decision-

making support.
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Figure 1: Model confusion matrices
Legend: Area under receiver operating characteristic (AUROC), sensitivity, specificity, 

positive predictive value (PPV), and negative predictive value (NPV) for each model. 

Models listed are: Random Forests (RF), Decision Trees (DT), Boosted Trees (BT), 

and Neural Networks (NN). Models listed including pre-viability variables, all-pregnancy 

variables, Exploratory Factor Analysis (EFA)-derived variables, and pre-viability variables 

without 2nd trimester serum screening. Asterisk (*) indicates best model for the given set of 

variables.
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Table 1:

Variable importance for pre-viability & all-pregnancy models

Category Measure Pre-viability All-pregnancy Pre-viability without 
2nd trimester 
screening

Demographics (maternal) Age (years) 3.93 26.0 7.62

Education (years) 10.9 18.7 26.4

Ethnicity (Hispanic) 1.54 14.9 3.91

Race (minority) 100.0 40.7 100.0

Born in United States 2.99 3.83 2.07

Interview conducted in English 0.00 1.96 0.23

Demographics (biologic father of 
baby)

Ethnicity (Hispanic) 13.8 13.8 12.6

Race (minority) 56.5 11.1 80.2

Education (years) 14.4 18.7 10.1

Born in United States 0.41 6.41 0.57

Family history Chromosomal anomaly 0.31 0.82 0.59

Congenital disorder 0.25 1.48 0.00

Developmental delay 0.77 0.75 1.21

Congenital heart disease 2.39 1.50 4.18

Neonatal death 2.29 4.77 5.00

Blood disorder 0.20 1.77 0.98

Neuromuscular disorder 0.00 10.4 0.00

Intrauterine fetal demise 5.52 10.8 5.11

Recurrent pregnancy loss 1.37 1.73 2.78

Diabetes 0.32 2.98 0.00

Maternal health history Any chronic condition 0.00 13.3 4.19

Asthma 0.55 1.87 0.24

Blood disorder 0.00 14.2 0.00

Cardiovascular disease 0.82 12.6 1.46

Gastrointestinal disorder 0.29 6.87 0.00

Hypertension (pre-pregnancy) 0.80 1.83 1.58

Diabetes (pre-pregnancy) 1.30 1.30 2.13

Obesity (body mass index ≥30) 1.46 4.98 5.41

Rheumatologic disease 0.00 11.5 0.00

Kidney disease 0.59 15.5 0.54

Thyroid disease 0.00 0.58 0.00

Mental health condition 0.00 7.59 0.00

Depression 0.44 8.64 0.28

Sexually transmitted infection 0.46 1.62 0.22

Surgery 0.36 8.73 2.81
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Category Measure Pre-viability All-pregnancy Pre-viability without 
2nd trimester 
screening

Urinary tract infection 0.25 3.36 7.21

Obstetric history Intrauterine fetal demise 28.8 10.9 54.3

Fertility treatment 1.37 2.25 0.00

Spontaneous abortion 3.60 3.50 3.05

Total pregnancies (number) 8.45 11.1 16.9

Social history Received income assistance 17.5 10.5 17.0

Significant life events 12 months prior to 
delivery

13.5 9.83 14.9

Marital status (married) 3.19 16.9 1.92

Moved during pregnancy 9.64 4.84 8.08

Biologic father of baby involved in 
pregnancy care

0.00 5.23 0.00

Partner desired pregnancy 2.24 10.5 2.05

Patient desired pregnancy 1.97 19.0 1.23

Unstable living situation 2.44 1.13 3.02

Substance use Smoking during pregnancy 0.80 2.30 0.97

Alcohol during pregnancy 5.03 17.2 2.75

Other drug use during pregnancy 0.00 0.43 0.00

Prenatal laboratory data Anemia screen (positive) 16.6 8.54 36.6

Rubella screen (positive) 0.21 0.61 0.00

Chlamydia (positive) 0.22 0.63 1.36

Diabetic screen (positive) Not in model 0.98 Not in model

Anti-D antibodies 0.00 0.90 2.20

Urine culture (positive) Not in model 2.52 Not in model

Bleeding disorder (labor/delivery) Not in model 11.0 Not in model

Anemia (labor/delivery) Not in model 20.9 Not in model

Leukocytosis (labor/delivery) Not in model 7.48 Not in model

Thrombocytopenia (labor/delivery) Not in model 1.34 Not in model

Proteinuria Not in model 8.77 Not in model

2nd trimester (quad) screen Down syndrome risk 3.62 23.6 Not in model

hCG (MoM) 23.1 44.3 Not in model

MSAFP (MoM) 12.6 27.2 Not in model

UE3 (MoM) 1.66 28.6 Not in model

Prenatal care Fluid loss Not in model 1.76 Not in model

Abdominal pain (prior to onset of labor) Not in model 23.4 Not in model

Vaginal bleeding Not in model 5.15 Not in model

Hospitalization (prior to delivery) Not in model 25.5 Not in model

Preterm labor (prior to delivery) Not in model 3.42 Not in model

Reduced fetal movement Not in model 13.4 Not in model
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Category Measure Pre-viability All-pregnancy Pre-viability without 
2nd trimester 
screening

Elevated blood pressure Not in model 8.05 Not in model

Influenza during pregnancy Not in model 9.30 Not in model

Earliest prenatal visit (GA) 67.7 57.0 64.8

Ratio of latest prenatal visit to bGA Not in model 92.9 Not in model

Ratio of total prenatal visits to bGA Not in model 26.0 Not in model

GA at which pregnancy discovered 11.7 27.2 24.5

Ultrasound Fetal anomaly 6.88 1.53 12.0

Sex (female) 5.64 29.9 9.85

10-week ultrasound (completed) 2.80 9.70 0.75

Anatomy ultrasound (completed) 0.00 17.6 9.95

Abnormal fluid (oligohydramnios or 
polyhydramnios)

Not in model 16.1 Not in model

Abnormal growth (large [>90th percentile] 
or small [<10th percentile] for gestational 
age)

Not in model 1.13 Not in model

Placental anomalies Not in model 1.23 Not in model

Earliest ultrasound (GA) 46.0 60.7 66.4

Ratio of latest ultrasound to bGA Not in model 100.0 Not in model

Values are given as variable importance (range 0–100). Values >10 (higher importance to model accuracy) indicated in bold.

Non-contributory to model (importance <1.0): Family history of cystic fibrosis, neural tube defect; maternal health history of cancer, seizures; 
history of emotional, physical, or sexual abuse; positive gonorrhea, syphilis, or antibody screen

Abbreviations: hCG = human chorionic gonadotropin; MoM = multiples of median; MSAFP = maternal serum alpha-feto protein; UE3 = 
unconjugated estriol; GA = gestational age; bGA = gestational age at birth/delivery
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Table 2:

Variable importance for exploratory factor analysis-derived model

Category Measure EFA-derived

Demographics (maternal) Age (years) 47.5

Ethnicity (Hispanic) 16.5

Race (minority) 61.7

Born in United States 7.48

Interview conducted in English 4.34

Demographics (biologic father of baby) Ethnicity (Hispanic) 23.2

Race (minority) 28.0

Education (years) 43.1

Born in United States 8.17

Maternal health history Any chronic condition 7.18

Blood disorder 4.13

Cardiovascular disease 3.84

Gastrointestinal disorder 4.55

Rheumatologic disease 4.94

Kidney disease 3.65

Mental health condition 5.09

Depression 6.26

Sexually transmitted infection 5.75

Surgery 11.1

Social history Received income assistance 11.7

Significant life events 12 months prior to pregnancy 21.2

Marital status (married) 8.81

Biologic father of baby involved in pregnancy care 5.45

Partner desired pregnancy 6.22

Patient desired pregnancy 13.3

Substance use Alcohol during pregnancy 10.1

Other drug use during pregnancy 2.23

Prenatal laboratory data Anemia screen (positive) 13.0

Chlamydia (positive) 1.52

Bleeding disorder (labor/delivery) 11.2

Anemia (labor/delivery) 11.8

Leukocytosis (labor/delivery) 11.0

Proteinuria 16.1

Prenatal care Abdominal pain (prior to onset of labor) 7.34

Elevated blood pressure 7.43

Influenza during pregnancy 7.22

Earliest prenatal visit (GA) 97.3
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Category Measure EFA-derived

Ratio of total prenatal visits to bGA 51.3

GA at which pregnancy discovered 55.8

Ultrasound 10-week ultrasound (completed) 6.71

Anatomy ultrasound (completed) 11.1

Earliest ultrasound (GA) 100.0

Values are given as variable importance (range 0–100). Values >10 (higher importance to model accuracy) indicated in bold.

Abbreviations: GA = gestational age; bGA = gestational age at birth/delivery
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