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Abstract

The immunosuppressant tacrolimus is a first-line agent to prevent graft rejection following 

pediatric heart transplant; however, it suffers from extensive inter-patient variability and a 

narrow therapeutic window. Personalized tacrolimus dosing may improve transplant outcomes 

by more efficiently achieving and maintaining therapeutic tacrolimus concentrations. We sought 

to externally validate a previously published population pharmacokinetic (PK) model that 

was constructed with data from a single site. Data were collected from Seattle, Texas, and 

Boston Children’s Hospitals, and assessed using standard population PK modeling techniques 

in NONMEMv7.2. While the model was not successfully validated for use with external data, 

further covariate searching identified weight (p<0.0001 on both volume and elimination rate) 

as a model-significant covariate. This refined model acceptably predicted future tacrolimus 

concentrations when guided by as few as three concentrations (median prediction error = 7%; 
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median absolute prediction error = 27%), supporting the potential clinical utility of the model to 

provide personalized tacrolimus dosing guidance.
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Introduction

Heart transplantation is an accepted therapeutic option for children with end stage heart 

failure, congenital heart disease, and cardiomyopathy. More than 400 heart transplants 

are performed annually in children across the United States with improving outcomes in 

recent decades, though mortality from rejection, infection and coronary vasculopathy remain 

significant[1, 2]. Transplant survival in excess of 20 years following heart transplantation 

has been observed, with more than 70% of transplants expected to achieve greater than 5 

year survival[1, 3]. Much of this success can be attributed to the use of immunosuppressive 

therapy to prevent the rejection of the transplanted heart.

The calcineurin inhibitors (CNI) tacrolimus and cyclosporine play a vital role 

in immunosuppressive therapy. Currently, tacrolimus is preferred in comparison to 

cyclosporine, due to its improved safety profile, especially with regards to hypertension 

and dyslipidemia[1]. However, tacrolimus suffers from extensive inter- and intra-patient 

pharmacokinetic (PK) variability, which necessitates frequent drug monitoring to guide 

therapeutic dosing. Several publications have explored the sources of variability in 

tacrolimus PK; however, few are targeted to the pediatric heart transplant population[4–15].

We previously published a population PK model of tacrolimus in pediatric heart transplant 

that demonstrated potential for guiding tacrolimus dosing[16]. One of the key limitations 

to this prior work was that it was conducted at a single center that serves a relatively 

homogenous Caucasian population. To address this limitation, we conducted a retrospective 

study with the primary objective of validating our previously published population PK 

model with data from external sites representing greater racial and ethnic heterogeneity. 

However, once the previously published model could not be validated, we utilized these 

external data to refine our population PK model, with the objective of better predicting 

future tacrolimus concentrations across all pediatric demographics.

Methods

Data Collection

Study approval was granted by each site’s Institutional Review Board (IRB), including the 

combined IRB of the University of Utah, Intermountain Health, and Primary Children’s 

Hospital (PCH)); Seattle Children’s Hospital (SCH) IRB, Boston Children’s Hospital (BCH) 

IRB, and Texas Children’s Hospital (TCH) IRB. Data for the study included event times, 

dose amount, tacrolimus concentrations, demographics, and clinical laboratory values. 

Approaches for collecting these data differed by site, including by direct query of the 

site’s electronic medical record or by manual chart review when necessary. Children were 
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eligible for study inclusion if they received tacrolimus during an inpatient stay within the 

first 6 weeks following heart transplant between the years of 2007 to 2018. The initial 

published population PK model was limited to <18 years; however, ongoing work using 

the model at our site has been limited to children between the ages of 6 months and 

18 years. Therefore, children outside of this age range were excluded from the study a 
priori. Children meeting these criteria must have had at least one dose of tacrolimus and 

one subsequent tacrolimus concentration to be incorporated into the study. Tacrolimus 

was typically administered twice daily, either orally or enterally through a nasogastric or 

nasojejunal tube. Tacrolimus concentrations and clinical laboratory values were determined 

by each institution’s laboratory service.

Pharmacokinetic Modeling

The initial single-site population PK model has been described previously[16] and is 

parameterized on elimination rate (ke) and volume of distribution (Vd). Briefly, PK modeling 

utilized NONMEM software (v7.3, ICON Development Software, Ellicott City, MD, USA) 

interfaced with PDx-Pop (v5.0) and Pirana 2.9.2 (pirana-software.com). The first order 

conditional estimation with interaction (FOCE-I) method was used throughout model 

building and evaluation. Model selection was based on parsimony, objective function value 

(OFV), and visual diagnostic plots. After the base model was established, covariates were 

tested in the model using a stepwise forward inclusion (p<0.05) – backward exclusion 

(p<0.01) regression method using the stepwise covariate modeling (SCM) module available 

in Pirana. Median values of continuous covariates were determined within the module, and 

used to normalize covariate values at individual time points within the model. Time-varying 

covariates were updated for each observed tacrolimus concentration and analyzed using a 

standard covariate model approach, in which the impact of the covariate on the population 

parameter estimate is the same for a given covariate value [17]. Covariates were added to 

the model in a stepwise fashion, and allowed to remain in the model if covariate inclusion 

decreased the OFV by at least 3.84 (p < 0.05, χ2, df = 1), and its exclusion increased the 

OFV by at least 6.63 (p < 0.01, χ2, df = 1). Validation of our previously published model 

included a prediction corrected visual predictive check and bootstrapping accomplished 

using PsN 4.4.0 (psn.sourceforge.net) and Pirana, both using 1000 simulated datasets, as 

well as the use of an internal validation dataset. Subsequent refinements to the population 

PK model throughout this study used a similar approach.

Predicting Tacrolimus Concentrations

The previously published single-site and refined final population PK model structure was 

used to investigate the model’s ability to predict future tacrolimus concentrations and 

thus, guide tacrolimus dosing. In our previous publication, we determined that three prior 

tacrolimus concentrations were required to predict future concentrations accurately and with 

minimal bias[16]. Using a similar approach, we determined the accuracy and bias of the 

model for predicting future concentrations at the external sites. Briefly, this analysis was 

done by changing all but the first three concentrations for each patient to be a missing 

dependent variable (i.e. DV=−1), within the dataset. Next, an EVID (event identification) 

column was added to the dataset. For each row (corresponding to a time at which there 

was a study event, either a dose or concentration), the EVID column value was set to 0 for 
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the concentrations being used to determine the patient-specific post-hoc parameter estimates 

(i.e. MDV=0), 1 for all dosing events, and 2 when the concentration had been set to missing 

(i.e. MDV=1). For all rows where EVID=2, NONMEM will generate an individual predicted 

(IPRED) concentration based on the patient’s post-hoc parameter estimate. This manipulated 

dataset was then analyzed in NONMEM and the output was used to compare predicted 

individual concentrations to the actual observed concentrations using median prediction 

error (MPE) and median absolute prediction error (MAPE). For a patient with 13 samples 

collected over the course of the study, the comparison between predicted and observed 

concentrations would utilize the final 10 samples (as the first three samples were used to 

generate the individual parameter estimates). MPE ≤ ±15% and MAPE ≤30% were targeted 

to accept the model as accurately and precisely predicting future tacrolimus concentrations.

Results

Study Population

Data were collected from a total of 285 patients receiving tacrolimus following heart 

transplant at the three study institutions. Of these, complete datasets from 57 subjects 

were excluded from the dataset for being less than 6 months or greater than 18 years 

of age (a priori inclusion/exclusion criteria, n=29), missing concentration and/or dose 

event data (n=6), having three or fewer concentrations total in the dataset (n=4), and/or 

a nonsensical data pattern (i.e. multiple concentrations without intervening doses over 

a span of several days or having multiple distinct dose amounts given at identical date/

time stamps)(n=18). Therefore, concentrations data from 228 participants were used for 

the analyses. Demographics for these 228 participants are described in table 1. Study 

participants included 54 SCH, 105 TCH, 69 BCH, 94 female, 134 male, 159 white, 28 

black, 161 non-Hispanic, and 65 Hispanic children. The median (interquartile, IQR) age 

and weight of study participants were 10.7 (3.7, 15.3) yr and 30.9 (14.3, 52.8) kg. A total 

of 1840 observed trough concentrations were obtained for these participants (an average 

of 8 samples per participant, with a maximum of 36). Tacrolimus trough concentrations 

ranged from 1.1 to 30.6 ng/mL, with a median value of 9.0 ng/mL. Target tacrolimus 

trough concentrations were 10 to 12ng/mL at all sites, in contrast to the initial publication, 

where the target trough concentrations were 10 to 14 ng/mL at PCH. The median (IQR) 

administered daily dose was 2.8 (1.2, 5.0) mg/day typically divided into two daily doses, 

though some younger participants received three daily doses. Oral capsule and suspension 

use was approximately even (46% vs. 54%). Data from TCH indicated use of the brand 

name (Prograf) tacrolimus, however, brand vs. generic (Sandoz) tacrolimus use was not 

available from other sites. In addition to tacrolimus, all participants received mycophenolate 

for immunosuppression. Outside of immunosuppressive therapy, study participants received 

extensive polypharmacy, with up to 180 unique medications used at a given site. The most 

common medications included anti-infectives and medications for managing pain, fluid 

retention, and blood pressure, more specific details are provided in supplementary table 1.

External Model Validation and Improvement

We first evaluated the previously published single-site population PK model to determine the 

bias (MPE) and accuracy (MAPE) of the model when applied to data collected at external 
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sites. PK parameters were fixed to the values determined in the previously published model, 

then concentrations were simulated based on the collected dosing information. For all sites, 

the MPE and MAPE (IQR) were −16% (−61%, 91%) and 66% (36%, 96%), indicating poor 

model performance when directly applied to the external dataset.

We next evaluated whether the model’s failure to externally validate was a function of model 

parameter estimates or model structure. The potential for poor model parameterization was 

assessed first, by allowing the model to estimate parameters using the external dataset 

(of note, existing covariate relationship parameter estimates were fixed). In comparison 

to our previously published population PK model (ke=0.0408 hr−1, Vd=233 L), parameter 

estimates from the external dataset were ke=0.0231 hr−1 and Vd=362 L. The improved 

model parameters yielded MPE and MAPE (IQR) of −2.6% (−24%, 18%) and 21% (10%, 

39%), indicating adequate but variable model performance. This finding indicates that 

the inability to externally validate the model is most likely due to parameter estimates 

differing between the original population (Primary Children’s Hospital) and the populations 

at external sites, rather than model structure (i.e. one vs. two compartment).

Model Refinement Using External Data

While refining parameter estimates improved model performance, the variability around 

the MPE and MAPE reflect a potential need to identify additional covariates to explain 

variability in tacrolimus PK. Existing parameter-covariate relationships (ke: creatinine 

clearance, fluconazole use; Vd: age) were retained in the model. During covariate modeling, 

parameters describing the impact of creatinine clearance and age were estimated, however, 

due to the extremely limited frequency of fluconazole use in the external dataset, this 

parameter was fixed to that of our prior published PK model. Covariate searching identified 

race and weight as significant covariates on both ke and V after the backwards exclusion 

step, in addition to the covariates age (V), creatinine clearance (calculated using the Bedside 

Schwartz equation) (ke), and fluconazole (ke) included based on our prior work. Notably, 

excluding age (V) from this model increased the model’s OFV by 7.49 (p=0.0062), while 

excluding CRCL (ke) increased the OFV by 14.9 (p=0.0001), indicating the importance of 

these covariates from the prior model to the updated final model.

During covariate searching, race had three states: white/Caucasian (race=0), black/African-

American (race=1), and other/unknown (race=2), however, parameter estimates for both 

ke and V were similar whether race=1 or 2. Model instability was observed when race 

was allowed to have three states, which was lessened when race was allowed two states 

(either white or non-white). The difference in OFV between two state and three state race 

was minimal (ΔOFV=0.684). Therefore, race was coded as either white or non-white for 

the remaining analyses. Non-white race was found to decrease ke by 33% (p=0.0013) 

and increase V by 93% (p<0.0001) relative to white race. However, the model continued 

to demonstrate some instability (i.e. an inability to successfully minimize the covariance 

matrix) was observed when race was included on both V and ke, as well as when the 

covariate was included on either one or the other PK parameter. Moreover, the removal of 

race as a covariate did not significantly impact other parameter estimates in the model (i.e. 

all parameters changed by <5%), nor did it impact the model prediction analysis described 
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below (i.e. no change in MPE or MAPE between models with and without race). Therefore, 

based on parsimony, the race covariate was removed from the model.

Weight was included in the model using piecewise linear (V) and power (ke) 

relationships, with p<0.0001 for both relationships. Changing these relationships to follow 

allometric scaling (i.e. V∝WT/70 and ke∝WT/70^0.75) significantly worsened the model 

(ΔOFV=227). Final model parameters were defined using the equations (theta abbreviations 

are spelled out in table 2):

ke = θ1 × CRCL
115.6

θ4 × W T
32.3

θ5 × θ6 if   FLUC = yes

V d = θ2 × AGE
5.7

θ7 × 1 + θ8 × W T − 32.3

Final model parameter estimates are summarized in table 2. The appropriateness of the 

model fit was verified by model diagnostic plots (figure 1), visual predictive check (VPC, 

supplementary figure 1) and bootstrapping (table 2), though these analyses indicate a 

moderate level of variability remains associated with the model.

Predicting Concentrations from External Sites

We then assessed the refined model’s ability to predict future concentrations for patients in 

the external dataset. Specifically, we investigated the accuracy and bias of model predictions 

when guided by between 2 and 5 prior concentrations for each individual patient (table 3). 

The use of two concentrations yielded MPE (14%) and MAPE (30%) which passed criteria, 

however, the associated 95% confidence interval (CI) indicate a wide range of variability 

around these estimates. The use of three concentrations substantially decreased MPE (7%) 

and improved the MAPE (27%), indicating better predictive ability when one additional 

concentration was used. Moreover, the use of a third concentration for the predictions 

reduced the variability in the predicted concentrations, as evidenced by the 95% CI of 

both the MPE and MAPE. Thus, the minimum number of values needed for acceptable 

model predictions is three concentrations. Plots showing an example of the model’s 

predictive ability using three concentrations for refining individual parameter estimates for 

an individual at each site are shown in figure 2. The use of a fourth concentration moderately 

improved both the MPE and MAPE (as well as their associated 95% CI), while the use of a 

fifth concentration did not improve the model’s predictive ability.

Discussion

Direct application and validation of our previously published population PK model to 

external data from three sites was unsuccessful. Further model refinement identified 

both race and weight as model significant covariates, though only weight performed 

with sufficient stability to be retained in the model. When guided by as few as three 

concentrations, this refined model successfully predicted future tacrolimus concentrations in 

a larger, more heterogenous population of children following heart transplant. Importantly, 
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while the model does accurately predict future concentrations, the associated variability in 

these estimates indicate a need for further investigation and refinement of the described 

model using a more richly sampled prospective approach.

The most likely explanation for the previously published population PK model failing 

validation is that the dataset used to construct the model was relatively homogenous. While 

PCH possesses a large regional catchment area of patients, the population is served by 

this hospital is predominantly white and rural. As such, only two of the participants in 

the initial study were of black race. In contrast, the external validation dataset consists 

of 28 participants of black race, in addition to 41 individuals of either unknown or other 

race. Consequently, the current study had the ability to test and identify as significant the 

role of race on tacrolimus PK. A primary clearance mechanism for tacrolimus is hepatic 

metabolism via CYP3A5[18–21], which is known to be polymorphic, with allele frequencies 

differing by race[22, 23]. Indeed, the CYP3A5*1 allele associated with extensive CYP3A5 

metabolism has been shown to occur more frequently in individuals of black race, whereas 

the inactive CYP3A5*3 is the predominant allele in the white population[22, 23]. Genetic 

differences in CYP3A5 have previously been shown to greatly alter the required therapeutic 

tacrolimus dose in both children and adults[24–27]. Interestingly, in the absence of CYP3A5 

genotype data due to the retrospective nature of the current study, the impact of race was 

observed to decrease, rather than increase, the elimination of tacrolimus in the current study 

population. However, the inclusion of race as a covariate was observed to cause model 

instability, and race was found to be potentially confounded with renal function (p=0.03), 

leading to its removal from the final model. Nonetheless, our data support the need for 

appropriately powered future work to reconcile the impact of CYP3A5 genotype and race on 

tacrolimus PK.

Another possible explanation for the inability to validate the model is the discrepancy in 

hematocrit between the PCH population and this dataset from external sites. The PCH 

population studied to construct our published population PK model was found to have 

an average hematocrit of 43.2%, compared to average hematocrits of between 34–36% at 

the external sites. The distinct hematocrits between sites may be caused by differences 

in altitude between PCH (largely a high altitude population) and the external sites 

(predominantly sea-level), as prior research has demonstrated that individuals acclimated 

to living at higher altitudes are associated with having higher hematocrit levels than those 

at sea-level[28–30]. Aside from altitude, clinical approaches to transfusions and maintaining 

fluid balances can vary between sites, not only impacting hematocrit values between 

sites, but between individuals at a single site. Hematocrit was identified as a potential 

model-significant factor (on Vd) during the forward inclusion step of covariate searching, 

however, this relationship was removed during backwards elimination, supporting the role 

of hematocrit as a factor potentially impacting tacrolimus PK. It is important to note that 

the current study does not include study participants from PCH, which may have limited 

the model’s ability to fully ascertain the impact of hematocrit on tacrolimus PK. It is 

well-established that tacrolimus sequesters into red blood cells[15, 18, 31, 32]. Increased 

red blood cell content in individuals with a high hematocrit may represent an additional 

drug storage depot, leading to elevated tacrolimus concentrations in these individuals. Given 

these findings, future research combining data should more closely evaluate the impact of 
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hematocrit on tacrolimus PK, especially in studies with sites at different altitudes, and the 

potential need to account for this difference when guiding tacrolimus dosing.

Another potential rationale for the model’s poor performance when combined with external 

data is the different approaches for quantifying tacrolimus between sites. Tacrolimus 

concentrations obtained at PCH are generated using a validated liquid chromatography-

tandem mass spectrometry (LC-MS/MS) assay at ARUP® Laboratories, a national reference 

laboratory at the University of Utah. LC-MS/MS was utilized at both BCH and SCH, 

however, another approach would be to use an immunoassay to determine tacrolimus 

concentrations, as is standard practice at TCH. Importantly, immunoassay exhibits less 

analytical selectivity compared to LC-MS/MS assay, resulting in reported values that include 

signal from cross-reactive substrates (i.e. a tacrolimus metabolite). These values would 

therefore be greater than tacrolimus concentration values reported from the more selective 

LC-MS/MS approach[33]. The potential impact of immunoassay vs. LC-MS/MS determined 

concentrations on model parameter estimates was evaluated by including site as a potential 

covariate in the model. This covariate was found to be significant during a univariate 

screen (data not shown), however, it was not found to be model-significant during stepwise 

covariate model searching. Therefore, while the use of immunoassay vs. LC-MS/MS is 

unlikely to be a significant contributing factor to the inability to validate the previously 

published model, future multi-center studies should consider standardizing the analytical 

platform used to determine tacrolimus concentrations.

Though the previously published population PK model could not be validated for use 

with external datasets, the model was successfully refined using data from these sites, 

identifying weight as an additional model significant covariate. Weight represents an 

additional indicator of the child’s maturation, as weight corresponds to organ growth and 

cardiac output [34, 35]. The refined model can predict future concentrations with acceptable 

accuracy and bias when guided by as few as three concentrations. Data driven approaches, 

such as population PK model guided dosing, allow dose optimization and individualization 

that can reduce the time to and increase the time at effective tacrolimus dosing, as well as 

reduce the number of blood draws and patient/parent/provider time devoted to managing 

tacrolimus dosing. Promptly achieving therapeutic tacrolimus concentrations is expected 

to improve transplant outcomes and longevity, as is maintaining therapeutic tacrolimus 

concentrations, particularly in the immediate post-transplant period[1, 36]. It is important 

to note that personalized dose recommendations following pediatric heart transplant are not 

a singular event in practice, rather they must continue to be refined as the patient recovers 

post-transplant (for example, in response to changes in renal function or fluid status). 

Therefore, the finding that the model’s predictive accuracy and bias (and importantly, 

the precision of these errors) improves when more than three concentrations are used to 

guide model predictions lends support to the model’s adaptability to guide dosing in the 

clinical setting. Studies testing the clinical implementation of our previously published 

model are ongoing at PCH, with early results indicating more rapid achievement of stable 

therapeutic tacrolimus concentrations compared to historical controls. More work is required 

to understand how long-term outcomes may improve in children who more rapidly achieve 

and maintain therapeutic tacrolimus concentrations. Combined, these results support the 

integration of personalized dosing tools into standard post-operative care.
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Descriptions of pediatric heart transplant PK data and/or models in the literature are limited. 

Furthermore, recent work by Pasternak et al. found that tacrolimus models developed in 

pediatric kidney transplant populations did not extend well to pediatric heart transplant 

recipients, suggesting a need for organ-specific PK models[37]. In addition to demonstrating 

that CYP3A5*1 genotype conferred a greater dose requirement in pediatric heart transplant 

recipients, Gijsen et al. found that the weight-normalized dose requirement decreased with 

increasing age[24]. On the surface, this finding contrasts with our model which determined 

that increased age increases volume of distribution, which would suggest a greater dose 

requirement in older children. However, the impact of age in our model is confounded by 

the inclusion of weight on both elimination rate and volume of distribution, hampering 

a straightforward analysis of the impact of age on dose requirement from our model. 

Population PK models reported in the literature are summarized in a review by Brooks et al. 

for liver and kidney transplants, in both children and adults[38]. The review demonstrates 

that there exists a wide range of published parameter estimates, covariates, and variability 

associated with tacrolimus PK. As might be expected from the variation in published 

models, external validations of these models have frequently failed[39–42], as was the case 

in our current study. This supports the continued need to pursue a broadly generalizable 

population PK model yielding accurate and precise Bayesian forecasting of tacrolimus 

doses.

Though the described results are supportive of the potential benefit of implementing 

personalized dose guidance clinically, there are limitations to consider. The first is that 

the model was built using retrospective data. Retrospective data is expected to, but may 

not, contain a full and accurate accounting of tacrolimus dose, concentration, and associated 

lab and/or demographic data. Our observation of the collected data showed that some 

individuals had data that was either missing, replicated, or non-sensical, and thus, these 

data and/or individuals were removed from the analysis. It is possible that removing these 

data and/or individuals may impact the described results, however, it is likely that the 

impact would be observed as slight shifts in the parameter estimates and not as changes to 

the structural or covariate model. Furthermore, we opted to use a data-inclusive approach, 

wherein data that did not demonstrate a clear rationale for biasing the analysis were retained 

in the dataset. This approach likely increases the imprecision of parameter estimates, leading 

to an overestimation of between-subject variability. Furthermore, these data represent trough 

data collected from therapeutic drug monitoring data, which inherently limits the model’s 

ability to precisely estimate structural and error model parameters, particularly volume 

and inter-individual variability. This likely explains the poor precision of the age on V 

covariate relationship, as well as the high shrinkage value on ke (which is confounded 

with V, as ke=CL/V). A model using the same covariate structure, but parameterized on 

clearance (CL) rather than ke, had shrinkages of 10% and 21% for clearance and volume, 

respectively, further supporting that the study design limits the ability to precisely determine 

V. However, conducting a more richly sampled prospective study that would better define 

V within this fragile population that is already undergoing substantial blood sampling 

presents many challenges, particularly as it relates to the safe blood volume to collect from 

these children. The use of retrospective data obtained from standard clinical practice also 

prevents the collection of CYP3A5 genotype for analysis, precluding the investigation of 
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whether this genotype affects the association of race and tacrolimus PK. An additional 

limitation is that the model includes creatinine clearance as a covariate, which is intriguing 

given the predominant clearance mechanism for tacrolimus is hepatic metabolism, and not 

urinary excretion. Moreover, it is unclear how the model is impacted by this covariate when 

patient receives some form of dialysis, which not only artificially alters the observed serum 

creatinine values used to calculate creatinine clearance, but may also represent an additional 

mechanism of drug clearance. More work is needed to understand the role of renal function, 

creatinine clearance, and dialysis on tacrolimus PK.

In summary, our previously published PK model was refined and successfully applied 

to external datasets consisting of a more heterogeneous population than is present at 

our local institution. The presented data support the further development of personalized 

dosing tools using the described model to more efficiently achieve therapeutic tacrolimus 

concentrations. It is anticipated that more efficiently achieving and effectively maintaining 

therapeutic tacrolimus concentrations will decrease care events (blood draws, therapeutic 

drug monitoring assays, patient/provider interactions) and may also improve long-term 

transplant outcomes and longevity, though further studies with larger patient populations are 

needed to confirm this hypothesis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Model diagnostic plots for the refined model, indicating that the individual predicted 

concentrations match well with observed concentrations, and that residuals are not correlated 

with time after dose.
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Figure 2: 
Observed concentration data (filled dots) and model predicted concentrations (connected 

lines) for individuals from each of the three study sites: (A) Seattle Children’s Hospital 

[SCH], (B) Texas Children’s Hospital [TCH], and (C) Boston Children’s Hospital [BCH], 

depicting typical concordance between observed and predicted concentration data for each 

site.
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Table 1:

Demographics of the study participants.

Participant # by Site 54 (24%) Seattle Children’s Hospital
105 (46%) Texas Children’s Hospital
69 (30%) Boston Children’s Hospital

Sex 94 (41%) Female
134 (59%) Male

Race 159 (70%) White
28 (12%) Black
41 (18%) Unknown/Other

Ethnicity 161 (71%) Non-Hispanic
65 (29%) Hispanic
2 (<1%) Unknown/Other

Age (yr) 10.7 (3.7, 15.3)

Weight (kg) 30.9 (14.3, 52.8)

Creatinine Clearance (mL/min/1.73m2, Bedside Schwartz) 116 (82.1, 125)

ALT (IU/L) 32.0 (24, 46)

AST (IU/L) 37.0 (29, 74)

Hemoglobin (g/dL) 11.8 (11.0, 12.7)

Hematocrit (%) 35.7 (34.5, 36.7)

Tacrolimus Trough Concentration (ng/mL) 9.00 (6.60, 11.5)

Total Daily Dose (mg) 2.8 (1.2, 5.0)

*
Continuous variables are reported as median (interquartile range)
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Table 2:

Parameter estimates from the previously published model, the final model constructed using external data, and 

the bootstrap analysis. Model parameter estimates are reported as population mean (% relative standard error) 

[η-shrinkage] while results from the bootstrap analysis represent the mean (95% confidence interval).

Published Model Final Model Bootstrap Analysis
(906/1000 successful)

Parameter

Ke (1/hr) (θ1) 0.0408 (15%) 0.0255 (11%) 0.0256 (0.0198, 0.0312)

Vd (L) (θ2) 233 (17%) 314 (16%) 325 (216, 412)

Ka (1/hr) (θ3) 3.43 (fixed) 3.43 (fixed) 3.43 (fixed)

Ke:CRCL (θ4) 0.850 (24%) 0.232 (43%) 0.241 (0.031, 0.434)

Ke:WEIGHT (θ5) n/a −0.471 (21%) −0.470 (−0.653, −0.289)

Ke:FLUCONAZOLE (θ6) 0.657 (5%) 0.657 (fixed) 0.657 (fixed)

Vd:AGE (θ7) 0.775 (13%) 0.353 (63%) 0.330 (−0.003, 0.708)

Vd:WEIGHT (θ8) n/a 0.025 (33%) 0.025 (0.013, 0.037)

Between-Subject Variability

ωKe
2 0.262 (40%) 0.118 (25%) [43%] 0.114 (0.055, 0.181)

ωVd
2 0.329 (35%) 0.303 (13%) [13%] 0.297 (0.227, 0.380)

Residual Error

Additive (ug/L) 3.69 (13%) 3.13 (7%) [7%] 3.13 (2.91, 3.35)
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Table 3:

MPE and MAPE (95% confidence interval) when between 2 and 5 concentrations are used to guide the 

model’s predictions.

Concentrations MPE (95%CI) MAPE (95%CI)

2 14% (−11%, 58%) 30% (12%, 61%)

3 7% (−17%, 40%) 27% (13%, 49%)

4 5% (−19%, 33%) 24% (12%, 46%)

5 5% (−17%, 33%) 23% (11%, 44%)
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