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Abstract

Thrombosis is the leading cause of death in many diseased conditions. Oxidative stress 

is characteristic of these conditions. Yet the mechanisms through which oxidants become 

prothrombotic are unclear. Recent evidence suggests protein cysteine and methionine oxidation as 

prothrombotic regulators. These oxidative post-translational modifications occur on proteins that 

participate in the thrombotic process, including Src family kinases, protein disulfide isomerase, 

β2 glycoprotein I, von Willebrand factor, and fibrinogen. New chemical tools to identify oxidized 

cysteine and methionine proteins in thrombosis and hemostasis, including carbon nucleophiles 

for cysteine sulfenylation and oxaziridines for methionine, are critical to understanding why clots 

occur during oxidative stress. These mechanisms will identify alternative or novel therapeutic 

approaches to treat thrombotic disorders in diseased conditions.
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1. Introduction

Oxidative stress is characteristic of many systemic and metabolic disorders. Oxidants 

generated during oxidative stress promote thrombus formation, the leading cause of organ 

failure and death in diseased conditions [1]. These clots include arterial thrombotic 

disorders, which are observed in heart attack and stroke relating to metabolic syndromes 

[2,3], deep vein thrombosis present in inflammatory conditions and aging [4], and 

microvascular thrombosis during hemoglobinopathy [4], infection, and other blood 

disorders. The mechanisms that transduce oxidants into prothrombotic entities are poorly 

understood. Oxidants target cellular constituents, including lipids, nucleotides, and amino 

acids [5], and could be the mechanism for their thrombogenicity. Oxidation of the amino 

acids cysteines and methionines does not initiate clot formation, nor are these oxidative 

events the final effectors of clotting. Protein oxidation is thus an additional layer of 

regulation in the thrombotic process. A better understanding of protein oxidation in 

thrombus formation is critical to identify therapeutic targets whose inhibition will prevent 

pathogenic clots yet maintain sufficient hemostasis to prevent bleeding. In this review, we 

discuss the process of thrombosis and hemostasis and focus on recent evidence of redox-

sensitive proteins of endothelial, platelet, and plasma origin containing oxidizable cysteines 

and methionines. Oxidation of cysteines and methionines within these proteins promotes 

thrombus formation through mechanisms that require further investigation.

2. Thrombosis and Hemostasis

Thrombosis and hemostasis are multifactorial processes regulated by oxidative stress and 

involve circulating blood platelets, the endothelium, and clotting factors in the plasma 

(Figure 1). The quiescent endothelium affords an anti-thrombotic surface that prevents 

thrombus formation [6], involving the potent anti-thrombotic agents nitric oxide [7] 

and prostacyclins [8]. Vascular damage, such as physical trauma to the vessel wall, 

exposes a subendothelial extracellular matrix that initiates platelet adhesion, activation, and 

aggregation [9]. The aggregated platelets form a hemostatic plug to prevent further blood 

loss. Plasma clotting factors also maintain the integrity of the clot. In pathologic conditions, 

the regulation of these stages is impaired, and the platelet plug can form a superficial 

thrombus, potentially occluding the lumen of the vessel. Such occlusion may be defined by 

multiple signaling modalities that are redox-regulated.

3. Oxidative Cysteine Modifications in Thrombosis

Cysteine is a versatile amino acid for redox reactions. The cysteine thiol is in equilibrium 

with its thiolate anion, and the thiolate form is nucleophilic and reactive to oxidants. The 
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fraction of the thiolate form is controlled by the pKa of the cysteine, which has a wide range 

dependent on the protein microenvironment surrounding the cysteine. A cysteine favors the 

deprotonated thiolate form if the pKa is lower than the pH of the local environment. As such, 

cysteine residues with a pKa less than 7.4 favor the thiolate form at physiologic pH. These 

thiolates are thus susceptible to oxidation by peroxides and other oxidants. Other factors that 

regulate thiolate formation are detailed in [10].

Several lines of evidence indicate a functional role for oxidative cysteine modification in 

thrombotic machinery. The thrombogenicity of cysteine oxidation depends on the type of 

modification and the protein [11]. In this review, we focus on cysteine sulfenylation (section 

3.1; Figure 2A), disulfide formation (section 3.2; Figure 2A), and nitrosation (section 3.3; 

Figure 2A) as, to date, these modifications are the best-studied cysteine oxoforms implicated 

in thrombus formation. Other modifications, including glutathionylation and sulfhydration 

(section 3.4; Figure 2A), are implicated as regulators in thrombosis and hemostasis, but their 

functional roles require further investigation. Cysteine modifications not studied in detail 

in thrombosis include sulfinylation, sulfonylation, thiosulfenates, and sulfenamides. As the 

type of cysteine modification determines whether the oxoform is pro- or anti-thrombotic, 

further investigation of each oxoform is needed as they relate to clotting.

3.1 Cysteine sulfenylation during dyslipidemia

The thiolate (-S−) of a cysteine residue can be oxidized to a sulfenic acid (-SOH). 

Further oxidation can lead to a sulfinic acid (-SO2H) and, subsequently, a sulfonic acid 

(-SO3H). Sulfenic acids can also react with other cysteine or small molecule thiols (e.g. 

glutathione) to form disulfides. A detailed review of these mechanisms is found in [12]. 

Signaling transducers link oxidative stress in diseased conditions to a prothrombotic 

response. Sulfenylation (Figure 2A) of these effectors controls protein function and thus 

lowers the threshold for platelet activation. Src family kinases are abundantly expressed 

in platelets and are examples of signaling transducers that regulate platelet function [13]. 

Cysteine sulfenylation of Src kinases promotes kinase activity by oxidation of Cys185 

[14,15]. During the inflammatory process of dyslipidemia, oxidized low-density lipoprotein 

(oxLDL) particles are abundantly present in the circulation and are recognized by a 

platelet membrane protein called cluster of differentiation 36 (CD36) [16,17]. CD36 is a 

scavenger receptor of the innate immune system that is highly expressed on the platelet 

surface to initiate downstream oxidant generation from NADPH oxidase 2 (NOX2) [18,19]. 

Hydrogen peroxide (H2O2) is the two-electron oxidant generated, which sulfenylates 

platelet protein cysteine residues [20]. Determining the identity of the entire sulfenylated 

proteome in this context requires further proteomic studies; however, proteomic analysis 

during platelet pathogen-inactivation indicated many oxidizable proteins [21]. These protein 

families include integrin signaling proteins and cytoskeletal regulatory proteins. Src family 

kinases were also sulfenylated in this screen. In dyslipidemia, Src family kinases link 

CD36 signaling at the membrane level to intracellular signaling cascades that ultimately 

cause pro-aggregatory integrin αIIbβ3 activation and externalization of procoagulant 

phosphatidylserine [16,22]. Src family kinases are a target of CD36-mediated H2O2 

generation (Figure 2B). Sulfenylation of Src family kinases promotes their kinase activity 

[14] and is a positive feedback loop to lower the threshold for platelet activation in the CD36 
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signaling pathway. In addition, using a benzothiazine-based (BTD) carbon nucleophile 

identified in the Carroll laboratory to target sites of sulfenylation [20] selectively, we 

found that this benzothiazine probe decreases platelet and fibrin deposition in vivo on 

an injured arterial vessel wall in a mouse model of dyslipidemia [20]. The mechanism 

for reduced thrombus formation is unclear, as the alkylation of sulfenic acids with the 

benzothiazine probe results in a stable thioether that prevents the cysteines from being 

reduced or further oxidized. Notably, the benzothiazine probe did not prevent thrombus 

formation in control non-dyslipidemic conditions. Further analytical work is required to 

understand the bioavailability and reactivity profile of the benzothiazine probe in vivo. 

These data suggest that in vivo, cysteine sulfenylation or subsequent oxidative modifications 

control the thrombogenicity of platelets.

In addition to Src kinases, we recently found that thiol isomerases are redox-sensitive 

enzymes sulfenylated in dyslipidemia [23]. Thiol isomerases are endoplasmic reticulum-

resident enzymes classically known for their roles in oxidative protein folding. Vascular thiol 

isomerases escape the endoplasmic reticulum upon platelet and endothelial cell activation 

and are found extracellularly to support thrombus formation [24,25]. Protein disulfide 

isomerase (PDI) is the archetypal thiol isomerase and the most studied in thrombosis and 

hemostasis compared to the other thiol isomerase family members [26]. PDI has an a-b-b′-
a′-c domain configuration with its catalytic redox-sensitive cysteines within a Cys-Gly-His-

Cys (CGHC) motif in the a and a′ domain [27]. PDI has multiple functions, including 

the ability to reduce cysteine disulfides (reductase activity), oxidize cysteines to disulfides 

(oxidase activity), and rearrange disulfides (isomerase activity) [11,26]. The enzymatic 

activity of PDI is controlled by redox-regulation of its horseshoe-shaped structure, where 

the reduced form of the protein adopts a more closed configuration and the oxidized form a 

more open configuration [28]. Extracellular oxidized PDI is implicated in platelet reactivity 

and aggregation [29]. We found that the CGHC motif in the a domain is sensitive to 

sulfenylation by peroxides and that sulfenylation is an intermediate modification to disulfide 

formation, thus converting extracellular PDI from a reductase into an oxidase during 

oxidative stress (Figure 2C) [23]. The finding that PDI sulfenylation is an intermediate to 

disulfide formation supports previous biochemical data of sulfenic acids as oxidized sulfur 

intermediates toward disulfide formation [30]. Surprisingly, the a′ domain was found to be 

already oxidized when purified. In dyslipidemia, circulating oxidized lipoprotein particles 

enhance PDI sulfenylation, likely through lipid and amino acid hydroperoxides, and promote 

platelet accumulation in vivo after experimentally injuring the arteriolar vessel wall in mice 

[23]. These studies suggest that PDI is sensitive to oxidative stress in dyslipidemia and 

promotes thrombosis.

Although dyslipidemia is an oxidative stress model with sulfenylation implicated in 

thrombus formation, whether sulfenylation of Src family kinases and thiol isomerases is 

required for clot formation in other oxidative stress-diseased conditions will be critical to 

determine in future studies.
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3.2 Allosteric disulfides in thrombus formation

Oxidants during oxidative stress induce disulfide bond formation, and protein cysteine 

disulfides are a sensitive marker of oxidative stress in blood disorders [31]. Oxidant-induced 

disulfides are more promiscuous than enzyme-mediated disulfide formation by the thiol 

isomerase family members. Identifying proteins that are reduced or oxidized by thiol 

isomerases is an active area of research with a current list of thrombotic proteins published 

in [32]. We highlight recent biochemical data on β2-glycoprotein I (β2GPI), a plasma protein 

whose disulfide redox switches are regulated by thiol isomerases to enhance thrombus 

formation.

β2GPI clears necrotic cells, neutralizes cell debris, binds to anionic phospholipids, and 

participates in the clotting cascade of antiphospholipid syndrome [33], an autoimmune 

blood disorder with clots in various vascular beds [34]. Oxidative stress is associated 

with antiphospholipid syndrome [35], and oxidized β2GPI is the hypothesized redox form 

of the protein that is the immunogenic target of pathogenic antibodies in the disorder 

[36]. Allosteric disulfide bonds of oxidized β2GPI were identified over 10 years ago 

as a substrate of thiol isomerase in vitro and in vivo [37,38]. Specifically, thioredoxin 

1 and PDI regulate the disulfide on β2GPI [38]. Yet, recent structural insights through 

mutagenesis studies revealed that loss of the allosteric Cys288-Cys326 disulfide in Domain 

V of β2GPI is sufficient to impair binding to anionic phospholipids [39]. The Cys32-Cys60 

disulfide in domain I of the protein is a target of pathogenic anti-β2GPI antibodies; 

however, this disulfide is more critical structurally than as an allosteric regulator. These 

studies complemented the findings of Bucholz and coworkers, who found that chemical 

or enzymatic reduction of Cys288-Cys326 affords flexibility to β2GPI, allowing β2GPI to 

adopt a more open configuration for pathogenic antibodies to bind [40]. In non-pathogenic 

blood clotting, β2GPI domain V regulates thrombus formation as β2GPI deficiency in mice 

shows decreased platelet and fibrin accumulation in vivo after vessel injury; this defect was 

rescued by the infusion of recombinant domain V [41]. Infusion of recombinant proteins 

or specific domains, such as described for β2GPI in experimental thrombosis in mice, can 

determine if these proteins participate in oxidative stress clots. These studies underscore 

the importance of allosteric disulfides regulated by thiol isomerases to tune the thrombotic 

response during thrombus formation.

3.3 Anti-thrombotic cysteine nitrosation

Nitric oxide is potently antithrombotic. The anti-thrombogenic potential of nitric oxide is 

beneficial in preventing thrombosis but could increase the risk of bleeding complications. 

Nitric oxide produced enzymatically from nitric oxide synthases regulates vascular tone and 

prevents platelet activation by nitrosylating the ferrous heme of soluble guanylate cyclase 

[42]. Soluble guanylate cyclase nitrosylation promotes antithrombotic signaling through 

protein kinase G signaling. Higher-order nitric oxide species can also oxidize cysteine 

residues resulting in cysteine nitrosation (Figure 2A) [43,44] and subsequent regulation 

of thrombotic machinery. We focus again on thiol isomerases, as thiol isomerases also 

support anti-thrombotic signaling through cysteine nitrosation. PDI is sensitive to enzymatic 

regulation by cysteine nitrosation in the active site motif [45]. PDI can also transnitrosate 

membrane proteins on platelets, including integrin αIIbβ3. Nitrosated PDI prevents platelet 
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aggregation in vitro, and infusion of nitrosated PDI limits platelet and fibrin accumulation in 
vivo. These findings suggest that, in addition to the classic role of nitric oxide in regulating 

platelet activation through soluble guanylate cyclase, PDI coordinates nitric oxide signaling 

within the vasculature to prevent pathogenic thrombosis.

3.4 Other cysteine modifications in thrombosis and hemostasis

Other oxidative cysteine modifications could be either pro- or anti-thrombotic, depending 

on the cysteine oxoform and protein site(s) modified. As such, these other cysteine 

modifications may regulate thrombosis and contribute to thrombotic disorders. Like 

nitrosation, cysteine glutathionylation and sulfhydration (Figure 2A) regulate platelet 

activation and aggregation [46,47]. Cysteine glutathionylation of the platelet proteome is 

expectedly linked to a decrease in the available reduced glutathione levels [48]. Although the 

mechanism requires further investigation, it involves glutathionylation of actin cytoskeletal 

proteins [48], which could be linked to the decreased cytoskeletal mobilization needed 

for platelet shape change and granule secretion. As reduced glutathione is critical for the 

redox buffering capacity of the cell, determining if a difference in the intracellular redox 

buffering capacity is related to intracellular protein glutathionylation and either platelet pro- 

or anti-thrombotic potentials during oxidative stress would be of great interest.

Hydrogen sulfide is a reactive sulfur species that is formed enzymatically by three 

human enzymes — cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), and 3-

mercaptopyruvate sulfurtransferase (3MST) — and is present in nano- to low micro-molar 

ranges in human plasma (reviewed in [49]). Hydrogen sulfide is nucleophilic and can react 

with oxidized thiols [50]. For example, hydrogen sulfide reaction with disulfides or sulfenic 

acids can result in cysteine persulfides (i.e. sulfhydration). As such, the redox mechanisms 

of hydrogen sulfide is multifaceted [50]. Evidence suggests that hydrogen sulfide is an 

anti-thrombotic agent [47]. GYY4137, a hydrogen sulfide donor, was used to investigate the 

mechanism of protein cysteine sulfhydration in the thrombotic machinery [47]. Although 

GYY4137 promoted protein sulfhydration in platelets, the sulfhydrated proteins were not 

identified. Functionally, GYY4137 concentration-dependently prevented platelet activation 

and prolonged the time to thrombus formation [47]. Implementing proteomic methods 

to identify proteins sulfhydrated by hydrogen sulfide [51,52] would help explain why 

GYY4137 decreases platelet activation and prolongs thrombus formation. In addition, 

assessing if the physiologic generation of hydrogen sulfide impacts thrombus formation 

in the setting of inflammation would be of great interest. In this condition, endogenous 

hydrogen sulfide levels are expected to increase [49].

4. Methionine Oxidation in Thrombosis and Hemostasis

Like cysteines, the sulfur atom of methionine is prone to oxidation and is important in 

regulating pathogenic thrombosis. Methionine oxidation is akin to cysteine oxidation. The 

first oxidation results in oxygen added to the sulfur of the methionine thioether sidechain in 

two different stereoisomers, methionine-R-sulfoxide and methionine-S-sulfoxide, which can 

induce structural and functional changes to a protein. This is a reversible mechanism back 

to a thioether similar to the reversibility of a cysteine sulfenic acid to a free reduced thiol. 
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Methionine sulfoxides can be enzymatically reduced to methionine by methionine sulfoxide 

reductase. Like sulfenic acids, further oxidation of methionine sulfoxides generates 

irreversible sulfones. Vascular thrombotic proteins are susceptible to methionine oxidation 

and have been reviewed in detail [53], including a disintegrin and metalloproteinase 

with a thrombospondin type 1 motif member 13 (ADAMTS13) [54], thrombomodulin, 

protein C, and others [55]. Based on recent publications, we focus on two major clotting-

related proteins, von Willebrand factor (vWF), a large multimeric glycoprotein released 

from vascular endothelial cells, and fibrinogen, a plasma protein that mediates platelet 

aggregation and fibrin clot formation. We also focus on methionine sulfoxidation of actin as 

it relates to platelet cytoskeletal dynamics during a growing thrombus.

vWF is a high molecular weight plasma protein assembled in multiple domains with 

the configuration D1-D2-D′-D3-A1-A2-A3-D4-B1-B2-B3-C1-C2-CK [56]. vWF supports 

platelet adhesion to the subendothelial connective tissue and helps solubilize clotting Factor 

VIII. vWF is a redox-sensitive cysteine-rich protein—the cysteines are required for disulfide 

bond formation to support multimerization for clotting [56]. In the blood, multimerization of 

vWF into high molecular weight species is necessary for hemostasis, and vWF is regulated 

by proteolytic cleavage by ADAMTS13 (Figure 3A). This circulating zinc metalloprotease 

cleaves vWF between Tyr1605 and Met1606 into less-reactive species. Several methionine 

residues within the vWF A1-A2-A3 domains are susceptible to oxidation. Specifically, 

Met1606 in the A2 domain at the ADAMTS13 cleavage site can be oxidized to a methionine 

sulfoxide [57]. Met1606 sulfoxidation in the large multimer prevents ADAMTS13-catalyzed 

cleavage (Figure 3A). As proteolysis by ADAMTS13 limits vWF assembly to large 

multimers, the Met1606 oxidation event promotes thrombosis by enhancing platelet binding 

by preventing ADAMTS13-catalyzed cleavage. Met1606 sulfoxidation within vWF is thus 

a thrombogenic mechanism during inflammation and in patients with sickle cell disease. In 

addition, efficient ADAMTS13 cleavage of vWF at Met1606 is controlled by auto-inhibition 

with the adjacent A1 and A3 domains. Recent molecular dynamic simulations suggest that 

Met1606 sulfoxidation inhibits auto-regulation by the A1 and A3 domains [58]. These in 
silico studies were validated experimentally using dynamic flow chambers to simulate blood 

rheology where Met1606 sulfoxidation in the A2 domain prevents A1 and A3 binding. vWF 

methionine sulfoxidation is thus a prothrombotic mechanism to control thrombosis.

Fibrinogen is an additional plasma protein whose methionine oxidation regulates clot 

formation. Fibrinogen is a hexameric homodimer of Aα, Bβ, and γ chains made in the 

liver and supports clotting by its proteolytic conversion to fibrin by thrombin [59]. Fibrin 

increases clot stability by forming a fibrous gel before fibrinolysis for its degradation. 

Sulfoxidation on all three chains of fibrinogen occurs preferentially on γ-Met78, Bβ-

Met367, and Aα-Met476 and reduces the fiber size making the fibrous gel weaker (Figure 

3B). Some studies suggest that fibrinogen oxidation prevents lateral fibrin polymerization 

needed for the fibrin mesh to form [60–62]. Oxidation also prolongs fibrinolysis time, 

making it difficult to degrade a clot during oxidative stress [62]. The net effect of fibrinogen 

oxidation is complex. Fibrinogen oxidation may weaken the clot and increase the potential 

for embolism. Prolonged fibrinolysis increases the risk of bleeding during trauma, as 

evidenced by plasminogen activator inhibitor 1-deficiency, a serine protease that regulates 

Yang and Smith Page 7

Curr Opin Chem Biol. Author manuscript; available in PMC 2024 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



fibrinolysis [63]. Hyperfibrinolysis correlates with unstable clots and a rebleeding phenotype 

[64]. The net effect of methionine sulfoxidation on fibrinogen requires further investigation, 

especially in clot resolution.

The platelet cytoskeleton is highly dynamic. During cellular activation, cytoskeletal 

rearrangement is required for platelet formation, shape change, activation, aggregation, and 

the formation of the hemostatic plug [65]. Actin is essential to these dynamics and is an 

abundant protein within the cell. Actin can undergo reversible methionine sulfoxidation on 

Met44 and Met47 through MICAL (molecule interacting with CasL) family enzymes, a 

conserved family of flavin oxidoreductases that oxidize specific methionines of actin [66]. 

Met44 and Met47 are located in the D-loop of the subdomain 2 of the protein, which is an 

actin-actin contact site [67]. These oxidation events promote filamentous actin disassembly 

and regulate actin repolymeraization. Met44 and Met47 could also be oxidized chemically 

by reactive oxygen species [66]. Although actin oxidation has not been studied in the 

platelets, the importance of cytoskeletal dynamics during a hemostatic plug formation in 

oxidative stress warrants further investigation.

5. Conclusions and Knowledge Gaps

Cysteine and methionine oxidation during oxidative stress is a potential mechanism 

connecting oxidants to a prothrombotic phenotype. The studies highlighted above 

underscore the importance of cysteine and methionine oxidative signaling as potential 

therapeutic targets to regulate thrombosis in diseased conditions. However, these studies 

are primarily within the bounds of in vitro and ex vivo experimentation. Critical knowledge 

gaps remain, including whether oxidative cysteine and methionine modifications are present 

in vivo during a growing thrombus and whether specific proteins or a network of proteins 

are required. The availability of chemical probes that target particular sulfur oxoforms 

of cysteine [68] and methionine residues [69] allows investigation of oxidation during 

thrombosis. Intravital microscopy could also connect oxidative cysteine and methionine 

modification to phenotypic function. Infusing reductases to specific cysteine and methionine 

sulfur oxoforms and thrombotic proteins harboring specific cysteine and methionine 

oxidative modifications will connect these oxidative events to thrombus formation in vivo 
if the enzymes or proteins impair or enhance the clot. Lastly, probes with appropriate 

permeability and pharmacokinetics for in vivo use will afford chemoproteomic strategies to 

identify new protein targets of cysteine- and methionine-oxidization. Rapid-reacting carbon 

nucleophiles could detect and probe the function of cysteine sulfenic acids by alkylation 

(Figure 4A). Oxaziridine-based probes [69] that selectively label methionines may be used 

to identify both reactive methionines and oxidative methionine modification as oxaziridine 

labeling is competitively blocked by oxidation (Figure 4B). In the latter case, a loss of 

labeling would be used as a readout of methionine sulfur oxoforms, similar to probes that 

selectively react with reduced cysteines (e.g. maleimides or haloacetamides) to detect the 

loss of free thiols as a readout of cysteine oxidation [70]. Identifying the oxidized proteins 

and the consequence of oxidation on protein function will provide mechanistic information 

on why pathogenic clots occur in diseased conditions, allowing for alternative or new 

therapeutic approaches.
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Highlights

• Oxidative stress promotes thrombosis in diseased conditions.

• The mechanisms linking oxidants to thrombosis are poorly understood.

• Cysteine and methionine residues are prothrombotic targets of oxidants.

• Cysteine and methionine modification are potential antithrombotic drug 

targets.
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Figure 1. Clot formation in pathologic thrombosis.
Clot formation is initiated by physical injury to the vessel wall. This injury damages 

the endothelium and exposes a subendothelial matrix that enhances platelet adhesion, 

recruitment, and aggregation. Platelet dynamics ultimately form a platelet plug to prevent 

blood loss (i.e. hemostasis). The damaged surfaces or the injury-induced trauma activates 

a series of coagulation cascades (via the Factors XII, XI, IX, VIII, X pathway or the 

Tissue Factor-Factors VII, X, V pathway). The coagulation cascade activates the zymogen 

prothrombin to thrombin, a protease that cleaves soluble fibrinogen to form fibrin. Fibrin 

stabilizes the platelet plug by creating a fibrous gel-like structure before degradation by 

fibrinolysis mechanisms. The formed superficial thrombus could cause clinically significant 

events, including heart attack, stroke, and organ failure. Created with BioRender.com.
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Figure 2. Oxidative cysteine modification and implications in platelet CD36 and protein disulfide 
isomerase redox signaling in dyslipidemia.
(A) Structure of the oxidative cysteine modifications sulfenylation, disulfides (e.g. 

glutathionylation), nitrosation, and sulfhydration. (B) Circulating oxidized low-density 

lipoprotein (oxLDL) particles are present in dyslipidemia. OxLDL is recognized by platelet 

scavenger receptor CD36 to promote oxidant generation from NADPH oxidase. The two-

electron oxidant H2O2 sulfenylates the platelet proteome, including Src family kinases. 

Src kinase sulfenic acid (SOH) formation promotes Src kinase activity to enhance integrin 

αIIbβ3 activation for platelet aggregation and externalization of phosphatidylserine for 

procoagulant potential during pathophysiologic thrombosis. (C) Intracellular PDI from the 

endothelium and platelets is secreted upon cellular activation. Sulfenylation of extracellular 

PDI is an oxoform of the secreted pool of PDI; other PDI oxoforms may be present in 

the extracellular environment. Biochemical analysis of the protein domains revealed that 

the active-site cysteines in the 397Cys-Gly-His-Cys400 motif of the a′ domain of PDI are 

already oxidized to disulfides in the basal state and that it is the 57Cys-Gly-His-Cys60 motif 

in the a domain with the available thiols for H2O2-mediated sulfenic acid generation. The 

most likely mechanism involves disulfide formation in the a domain with sulfenic acid as 

a necessary intermediate. Whether Cys57 or Cys60 is sulfenylated is currently unclear. The 

proposed mechanism is based on Cys57 as the more nucleophilic thiolate. Created with 

BioRender.com.
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Figure 3. Oxidative methionine modification on the plasma proteins von Willebrand factor 
(vWF) and fibrinogen.
(A) The domain structure of vWF. Oxidative methionine modification occurs on the A1, A2, 

and A3 domains of the protein. In the A2 domain of vWF, the metalloprotease a disintegrin 

and metalloproteinase with a thrombospondin type 1 motif member 13 (ADAMTS13) 

cleaves the protein between Tyr1605 and Met1606. This cleavage regulates thrombosis 

by preventing vWF from multimerizing. During oxidative stress, sulfoxidation occurs on 

Met1606, preventing ADAMTS13 cleavage of vWF. This mechanism potentiates thrombosis 

by maintaining vWF in a large multimeric state. (B) The domain structure of fibrinogen. 

Fibrinogen consists of homodimeric Aα, Bβ, and γ chains. Fibrinogen polymerizes to form 
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a fibrin mesh to support clot stability. Methionine sulfoxidation occurs on all chains of the 

protein. Specifically, sulfoxidation of Met78 in the γ chains, Met367 in the Bβ chains, and 

Met476 in the Aα chains decreases fibrin polymerization, diameter, pore size, total turbidity, 

clot lysis, stiffness, and viscosity. The fibrin densities are larger in size compared to the 

unoxidized form. Created with BioRender.com.
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Figure 4. Chemical probes to study oxidative cysteine and methionine modification in thrombotic 
disorders.
(A) Using carbon nucleophiles to probe for sulfenic acid detection and function in 

thrombosis. The cysteine thiol is in equilibrium with its deprotonated thiolate anion. The 

nucleophilic thiolate anion is then oxidized to a sulfenic acid by oxidants generated during 

oxidative stress. Sulfenic acid is both a nucleophile and an electrophile and is a precursor 

to further sulfur oxoforms (e.g. sulfinic and sulfonic acids). Sulfenic acids can also be 

converted to disulfides in the presence of proximal thiols. Carbon nucleophiles, such as 

benzothiazine-based probes developed by the Carroll laboratory, covalently and selectively 

target sulfenic acids. Benzothiazine (BTD) with an alkyne arm detects cysteine sulfenylation 

on proteins using click chemistry with azides in the context of thrombotic disorders. In 

addition, an alkyneless BTD can probe the function of the sulfenic acid as alkylation 

prevents further oxidation and reduction of the cysteine. Additional studies are essential to 

determine what proteins are sulfenylated and the impacts on protein function and subsequent 

thrombotic activity. (B) Methionine residues can be oxidized to methionine sulfoxides. 

This oxidative event is reversible with the enzyme methionine sulfoxide reductase. Further 

oxidation of the sulfoxide yields methionine sulfone, thought to be irreversible. Recent 

oxaziridine-based probes can label unoxidized methionines. Labeling of the methionine via 

a sulfimide linkage can be coupled with click chemistry to identify proteins that undergo 

oxidative methionine modification, as shown by a loss of probe labeling.
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