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Abstract

Myocardial infarctions have been associated with PM2.5, and more recently with NO2 and O3, 

however counterfactual designs have been lacking and argument continues over the extent of 

confounding control. Here we introduce a doubly robust, counterfactual-based approach that deals 

with nonlinearity and interactions in associations between confounders and both outcome and 

exposure, as well as a double negative controls approach that capture omitted confounders.

We used data from over 4 million admissions for myocardial infarction in the US Medicare 

population between 2000 and 2016 and linked them by ZIP code of residence to high resolution 

predictions of annual PM2.5, NO2, and O3. We computed the counts of admissions for each ZIP 

code-year. In the doubly robust approach, we divided each pollutant into deciles, and for each 

decile, we fitted a gradient boosting machine model to estimate the effects of covariates, including 

the co-pollutants, on the counts. We used these models to predict, for all ZIP code-years, the 

expected counts had everyone be exposed in that decile. We also estimated the probability of 

being in that decile given all covariates, again with a gradient boosting machine, and used inverse 

probability weights to compute the weighted average rate of MI admission in each decile. In the 

negative control approach, for each pollutant, we fitted a quasi-Poisson model to estimate the 

exposure effect, adjusting for covariates including the co-pollutants, and negative exposure and 

outcome controls to control for unmeasured confounding.
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Each 1-μg/m3 increase in annual PM2.5 increased the admission for MI by 1.37 cases per 10,000 

person-years (95% CI: 1.20, 1.54) in the doubly robust approach, and by 0.69 cases (95% CI 0.60, 

0.78) using the negative control approach. Elevated risks were seen even below annual PM2.5 level 

of 8 μg/m3. Results for NO2 and O3 were inconsistent.

Keywords

Air pollution; PM2.5; Ozone; NO2; Causal modelling

1. Introduction

The association of short-term exposure to air pollutants, especially PM2.5, with myocardial 

infarctions (MI) is well established and recent studies provide substantial evidence for 

long-term exposure impacts as well (Madrigano et al., 2013; Zhang et al., 2021; Liao et 

al., 2021; Yazdi et al., 2021a; Hartiala et al., 2016). NO2 and O3 have been less studied 

for long-term effects on this outcome. Growing realization that multipollutant exposure 

studies are needed resulted in more studies reporting associations with multiple pollutants 

simultaneously, although those numbers are still limited. Studies at lower concentrations 

are still few, and studies making use of causal modeling are also limited. Such studies are 

important to evaluate current air quality standards and guidelines to determine whether they 

are adequate to protect public health. Importantly, different causal modeling approaches are 

subject to different risks of confounding and violations of assumptions, and an examination 

of several approaches with different confounding risks can provide more assurance that 

detected associations are causal than any single method.

Few studies have used causal modeling approaches to examine the concentration-response 

association, and those have focused on generalized propensity scores. Generalized 

propensity scores are not as robust as categorical propensity scores (Wu et al., 2019). 

Recent discussion has raised the issue of triangulation, that is using formal methods to make 

composite judgments based on studies with different potentials for bias. Hence studies of 

annual exposures to multiple pollutants in large cohorts including exposures below current 

standards and using such methods would be useful.

Causal inference seeks to determine the contrast between, in the simplest case, two 

counterfactual events: what would have occurred had the entire population been exposed 

versus what would have occurred had the entire population not been exposed. Obviously, 

both counterfactuals cannot be simultaneously observed, and usually neither is observed. 

Randomized trials seek to obtain valid surrogates for those counterfactuals by treating 

the outcome in the exposed as a surrogate for what would have occurred had the entire 

population been exposed, and similarly for the outcome in the unexposed. Since the 

population was randomized, we assume that the distribution of characteristics of the 

populations are essentially identical in the exposed and unexposed groups (with sufficient 

sample size) and therefore accept these as valid surrogates. For observational data, 

assignment is clearly not random, and causal modeling seeks methods to recover valid 

surrogates or counterfactuals.
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Propensity score methods are a standard approach for making exposure independent of 

measured population characteristics, and, assuming no unmeasured confounders and several 

other properties (Stable Unit Treatment Value Assumption-SUTVA), can also provide valid 

surrogates (Rubin, 1997). For continuous exposures, generalized propensity scores can in 

principle provide the same, however they are not as robust as propensity scores for a 

categorical exposure (Imai and van Dyke, 2004). One solution is to divide the continuous 

exposure into categories, and fit separate propensity scores for each category (Wei et al., 

2021). However, propensity score methods do not generate counterfactuals directly. They 

rely on the assumption that the inverse probability weights make exposure independent of 

all covariates, and hence that the effect in the people in exposure category k can be assumed 

to represent a valid substitute for the counterfactual has all participants been exposed in that 

category. Here we seek to gain insight by using methods with different potential sources 

of bias and estimate effect sizes using multiple causal models which require different 

assumptions and have different vulnerabilities to confounding.

First, we recover some robustness by a) dividing each air pollutant into deciles, as just 

mentioned, and b) by using regression adjustment to directly estimate the counterfactual 

outcomes for all subjects had they been exposed within each decile of exposure, and then 

c) additionally applying inverse probability weights to obtain a doubly robust estimate. The 

idea of regression adjustment is straightforward. Within a category of exposure, we fit a 

model predicting the outcome based on all the covariates, including other air pollutants. 

This gives us category specific coefficients of the effect of the covariates on the outcome, 

conditional on being exposed in that category. If the model fit is unbiased, we can use it to 

predict the mean outcome had everyone been exposed in that category, by predicting from 

that model for the entire cohort, and directly estimate the counterfactual. A limitation of 

this method is the need to assume that the model predicting outcome from covariates is 

properly specified. We make use of machine learning, which allows for nonlinearities and 

interactions amongst predictors, to make this assumption more reasonable, and based on 

different assumptions than a propensity score analysis, which requires correct specification 

of the model for the exposure. We then add the propensity score for a doubly robust estimate 

that should be valid if either the model for the outcome or the model for the exposure is 

correct. Again, we use machine learning to allow for flexibility in that model.

We used the US Medicare cohort between 2000 and 2016. We stratified each air pollutant 

exposure into deciles. Within each decile, we fit a gradient boosting algorithm predicting 

the risk of MI based on multiple SES variables, smoking rate, mean BMI, access to care 

variables, race/ethnicity, exposure to the other pollutants, and calendar year. We then used 

those 10 models to predict, for the entire cohort, the counterfactual rate of MI hospitalization 

had everyone been exposed to each decile. We bootstrapped the process 200 times to obtain 

confidence intervals. We then fit propensity scores estimating the probability of being in 

each decile given the covariates above and used inverse probability weights to compute the 

weighted average counterfactual risk had everyone been exposed in that decile.

While this doubly robust model provides considerable assurance that measured confounders 

have been addressed, it is susceptible to unmeasured confounding. Here we used two 

additional approaches. First, we used a negative outcome control and a negative exposure 
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control based on the approach described by Tchetgen-Tchetgen (Shi et al., 2020; Miao et al., 

2018). Basically, this approach uses the two negative controls to construct an instrumental 

variable for the omitted confounders, and controls for that variable. The critical assumption 

here is that the negative controls are truly negative controls, and that the instrument for 

the omitted confounders is strong enough to correct for bias. The second approach is 

a generalized difference-in-difference approach which we recently published, and whose 

results we take for comparison purposes. The critical assumption here is that the time trends 

in the counts due to unmeasured confounders are the same in all ZIP codes within the same 

cluster of ZIP codes clustered by socio-economic factors and race/-ethnicity. The key point 

is that the assumptions of the three different approaches are different, and similarities of 

results across the methods will imply a robust finding, and vice versa.

2. Data and methods

2.1. Study population

Our cohort comprised all fee-for-service Medicare beneficiaries who were 65 years of age 

or older, and who lived in the contiguous US between 2000 and 2016. We extracted these 

data from the Medicare denominator file and the Medicare Provider Analysis and Review 

(MEDPAR) file, which are available from the Center for Medicare and Medicaid Services. 

The denominator file contains age, race, sex, Medicaid eligibility, and ZIP code of residence 

for each beneficiary; and age, Medicaid eligibility, and ZIP code are updated annually. The 

MEDPAR file provides data on admissions to hospitals, ICD codes for discharge diagnoses, 

and IDs that match to the denominator files for fee for service participants. Participants 

entered the cohort on January 1 of the year after enrollment and were followed until they 

died or the end of the follow-up time (December 31, 2016). During that follow-up we 

recorded the year of any hospital admissions for a myocardial infarction, and multiple events 

were allowed per participant, provided they were at least 30 days apart. Medicare used 

International Classification of Diseases, Ninth Revision (ICD-9) codes through the end of 

the third quarter of 2015 and then switched to International Classification of Diseases, Tenth 

Revision (ICD-10). Myocardial infarction admissions were defined as those having ICD-9 

codes 410.×0 and 410.×1 and ICD-10 code I21 as the primary discharge code. Individual 

events were summarized to a count of MIs for each ZIP code for each year. We limited 

the dataset to zip codes where there were at least 100 beneficiaries. This study has been 

approved by the Harvard T.H. Chan School of Public Health’s institutional review board.

2.2. Exposure assessment

PM2.5, O3, and NO2 concentrations came from three high-resolution spatiotemporal models, 

each of which combined estimates from 3 different machine learning algorithms: a neural 

network, a gradient boosting machine, and a random forest (Di et al., 2019, 2020; Requia et 

al., 2020). The models used multiple predictors including land use terms, chemical transport 

model predictions, meteorologic variables, and satellite measurements to estimate daily 

levels of the pollutants on a scale of 1 km × 1 km. The machine learning models make 

no assumptions about the functional form of the association between the predictors and the 

air pollutants and readily incorporate nonlinearities and interactions among predictors. The 

accuracy of the predictions was assessed using 10-fold cross-validation against measured 

Schwartz et al. Page 4

Environ Res. Author manuscript; available in PMC 2023 September 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



values at held out monitoring sites across the United States. The resulting R2 values for 

annual average PM2.5, NO2, and O3 respectively were 0.89, 0.84, and 0.86. Grid-cell values 

were averaged across zip codes. Exposure was assigned based on the residential zip code 

of the beneficiary in that year. Long-term exposure in our study is defined as the annual 

concentration for the year of MI admission.

2.3. Covariate assessment

In addition to the individual-level covariates sex, race, age group, and Medicaid eligibility 

from the Medicare denominator file we used area level data as covariates. From the US 

Census and the American Community Survey we obtained the following zip code–level 

socioeconomic and demographic data: proportion of the population >65 years of age living 

below the poverty line, population density, median value of owner occupied properties, 

proportion of the population self-reporting as Black, median household income, proportion 

of housing units occupied by the owner, proportion of the population identified as Hispanic, 

and the proportion of the population >65 years of age who had not graduated from high 

school. Census data were available for 2000 and 2010 through 2016. Data for all other years 

and missing values were obtained using linear interpolation and extrapolation. We used lung 

cancer hospitalization rates in each zip code as a proxy for pack-years of smoking and 

derived this from the MEDPAR file. We obtained zip code–level data on mean body mass 

index and the smoking rate from the Behavioral Risk Factor Surveillance System of the 

Centers for Disease Control (CDC and Behavioral Risk Factor Surveillance System Control, 

2013). Behavioral Risk Factor Surveillance System data were collected at the county level 

and then linked to zip codes and temporally interpolated using linear regression to fill in 

missing values.

We obtained data on several access-to-care variables from the Dartmouth Atlas of Health 

Data (Wennberg and Cooper, 1996). These were the proportion of Medicare beneficiaries 

with at least 1 hemoglobin A1c test per year; proportion of diabetic beneficiaries who had a 

lipid panel test in a year; proportion of beneficiaries who had an eye examination in a year; 

proportion of beneficiaries with at least 1 ambulatory doctor visit in a year; and proportion 

of female beneficiaries who had a mammogram during a 2-year period. Data were collected 

at the hospital service area level and linked to the relevant zip code. Missing values were 

filled in using linear interpolation. We also included distance to hospital as a variable to 

measure access to health care. The distance to the nearest hospital was calculated from the 

centroid of the residential zip code of the participant. Hospital locations across the United 

States were derived from an ESRI dataset. Region of the US was used to control for other 

regional patterns in health. Observations with missing exposure or covariate information 

were assumed to be missing at random and were excluded from further analysis. These 

represented less than 1% of the data.

2.4. Statistical analysis

Method 1.—Each air pollutant was divided into deciles. Separate analyses were conducted 

for each exposure’s decile. We began by, within each decile of the exposure, fitting a 

gradient boosting machine predicting the counts of myocardial infarction occurring within 

each zip code for each year. The predictors included the other two pollutants as continuous 
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exposures, as well as all the covariates delineated above, and an offset term of the log of the 

population at risk. This produced 10 prediction models, each predicting the expected counts 

of MI based on covariates, given one was exposed in that decile. For consistency across 

deciles and pollutants we used the same tuning parameters for each model, choosing 1500 

trees, a shrinkage parameter of 0.005, and a depth of 3 for each tree. The gradient boosting 

machine can incorporate nonlinearities in the relationships between predictors and MI rates, 

as well as interactions among them.

We then used that model to predict for the entire dataset, based on covariates, the expected 

counts for MIs in each ZIP code and year, had the entire population been in that exposure 

decile, and computed the mean of the ratio of those counts to the population at risk to 

obtain the mean rate in that decile. Applied to each decile, this produces estimates of 

the counterfactual we wish to estimate. To estimate the uncertainty of this prediction, we 

bootstrapped the process 200 times. This entire process was repeated for each air pollutant. 

Using this data we produced two summary results for each pollutant—a plot of the predicted 

counterfactual rate of MI hospitalization in each decile, with confidence intervals, to see the 

concentration-response relationship, and a linear regression of the rate in each decile against 

the mean exposure in that decile, to produce a summary effect assuming linearity.

To better assure confounding was fully accounted for we also computed propensity scores 

for the probability of being exposed in each decile. These estimated the probability of being 

exposed in decile k, given all the covariates, including other pollutants. Again, we used 

a gradient boosting machine to predict the probability of being in exposure decile k to 

capture nonlinearities and interactions among the predictors. We generated stabilized inverse 

probability weights from these models. Then, in computing the mean rate of MI in each 

decile from the predicted counterfactual outcomes for each ZIP code and year, we used the 

inverse probability weights to compute weighted means. That is, if, given the covariates, 

there was a high probability that a ZIP code-year would be in that decile, we gave it a lower 

weight, with higher weights given to ZIP code-years which had lower probabilities of being 

in that decile of exposure given the covariates. This should provide a doubly robust estimate; 

that is, unbiased results if either the model predicting the MI rates in each decile or the 

model predicting the inverse probability weights is correct (Yazdi et al., 2021a).

Method 2.—To motivate this approach, we suppress the covariates. Suppose A is the 

exposure in the year of the MIs, Z the negative exposure control, for which we will use the 

exposure in the year after the MI count, Y the outcome, and W the negative outcome control, 

which we choose to be the counts of MI in the preceding year. Let U be the unmeasured 

confounder(s). Assume further the usual Poisson model:

Log(E(Y )) = βY 0 + βY AA + βY UU . (1)

and

Log(E(W )) = βW Y 0 + βW UU (2)

since by hypothesis W does not depend on A.
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Further assume that the confounder U is related to A and Z (else it is not a confounder) by

E(U) = βU0 + βUAA + βUzZ . (3)

Next, consider the model for the negative outcome control. By equation (2), W is a surrogate 

for U, which by (3) induces an association of W with A and Z. Hence if we regress W on 

A and Z the predicted W should capture the association of U with A and Z. Essentially, 

we now have an instrumental variable for U. In addition, if we replace U in (1) by its 

expectation in the third equation we have

log(E(Y )) = βY 0 + βY AA + βY U βU0 + βUAA + βUzZ

= βY 0 + βY UβU0 + βY A + βY UβUA A + βY UβUzZ

Hence the bias in the estimate of the effect of A is βY UβUA. If βUA = βUZ, then that is precisely 

the coefficient of Z, the negative control in the outcome regression, and subtracting it from 

the estimate of the coefficient of A in that model βY A + βY UβUA  will recover the true unbiased 

coefficient of A, βYA. Since in our case Z is the identical variable to A, a year later, this 

is not an unreasonable assumption. Using these two approaches to control for unmeasured 

confounding, we can now fit a quasi-Poisson model using both controls for U.

log(E(Y )) = βY 0 + βY AA + βY zZ + βY wPredW + βY CC

where C is measured confounders including the other two pollutants and covariates, and 

PredW  is predicted W given A and Z. The above regression should control for the omitted 

covariates U if either βUA = βUZ or if U is linearly related to A and Z.

Method 3.—For method 3 we will rely on a previously published difference in differences 

analysis, and compare those results with method 1 and 2. Specifically we used an extension 

of the model developed by Schwartz (Schwartz et al., 2021a). In this approach a dummy 

variable for every ZIP code controls for all slowly varying neighborhood level (and some 

personal level) covariates, measured or unmeasured, because it removes all contrast across 

ZIP codes. Confounding is still possible from time varying covariates and is addressed 

by including the other two pollutants and annual measures of SES, racial composition, 

smoking, BMI, and access to health care variables. To capture any remaining unmeasured 

temporally varying confounders, we classified each zip code into one of five clusters 

whose long-term trends might differ, using Ward’s Hierarchical Cluster Analysis and 

average values for the following socioeconomic and demographic variables: percent of 

the population who identify as black, percent of the population who identify as Hispanic, 

median household income, median house value, the proportion with at least one ambulatory 

doctor’s visit in a year, percent of the population over 65 living below the poverty line, 

percentage of the elderly population who did not graduate from high school, smoking rate, 

population density, and distance of zip code to the nearest hospital. Five clusters were 
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chosen based on an optimization of Euclidean distance and thirty indices in the “NbClust” 

package in R (Charrad et al., 2014). A separate spline of time was fit in each cluster to 

capture omitted time varying confounders.

3. Results

Table 1 shows the means and standard deviations of the data. The means of the air pollutants 

were well below the current US EPA ambient air quality standards. Ten percent of the 65+ 

population was living in poverty, and 13% was eligible for Medicaid. The population was 

56% female. There were roughly 10 myocardial infarctions per ZIP code per year, and on 

average 1083 participants in each ZIP code-year.

3.1. PM2.5

Method 1.—Fig. 1a, below, shows the estimated counterfactual rate of MI in each decile of 

PM2.5 concentration, and its 95% confidence interval. It shows a roughly linear association 

with a suggestion of a steeper slope for concentrations below 10 μg/m3. There is no 

suggestion of a threshold down to 4.3 μg/m3, the mean concentration in the lowest decile. 

Each 1 μg/m3 increase in PM2.5 increased the MI rate by 1.48 cases per 10,000 persons per 

year (95% CI 1.39, 1.56) in the linear model.

Using propensity scores in addition to the estimates of the counterfactual for each decile 

produced similar results. For PM2.5 each 1 μg/m3 increase in PM2.5 increased the MI 

rate by 1.37 cases per 10,000 per year (95% CI 1.20, 1.54). Fig. 1b shows the estimated 

counterfactual rate of MI for each decile of PM2.5, using inverse probability of exposure 

weights. The rates and confidence intervals for each decile are shown in e=supplemental 

Table 1.

Method 2.—Using the negative control model, we found that each 1 μg/m3 increase in 

PM2.5 increased the MI rate by 0.69 cases per 10,000 per year (95% CI 0.60, 0.78).

Method 3.—In the DID paper of Danesh Yazdi et al. (2022), a 1 μg/m3 increase in PM2.5 

increased the MI rate by 0.74 cases per 10,000 (95% CI 0.55, 0.96).

3.2. O3

Method 1.—Fig. 2a shows the estimated counterfactual rate of MI for each decile of 

ozone. The rates increased with increasing ozone up to about 40 ppb, and then decreased 

with further increases in ozone. In a linear regression, there was no significant association 

between ozone concentrations and rates of MI (0.06 cases per ppb per 10,000 per year, 95% 

CI −0.18, 0.304). Using propensity score weights, the effect estimate was 0.01 (95% CI 

−0.2, 0.2). The plot is shown in Fig. 2b. The rates and confidence intervals for each decile 

are shown in supplemental Table 1.

Method 2.—For each ppb increase in ozone, this method found a 0.048 increase in MI case 

per 10,000 persons per year, 95% CI (0.017, 0.079).
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Method 3.—In the DID paper, a 1 ppb increase in ozone was associated with a 0.22 

increase in the MI rate per 10,000 person years (95% CI 0.11, 0.34).

3.3. NO2

Fig. 3a shows the estimated counterfactual rate of MI for each decile of NO2. The rates 

increased up until the eighth decile, and then declined. Using inverse probability weights, 

the NO2 effect only declined in the highest decile (Fig. 3b). A linear regression of the rates 

Vs NO2 indicating that a 1 ppb increase in NO2 was associated with a 0.013 (95% CI 

−0.130, 0.156) case per 10,000 person-year increase in MI rates in the unweighted model 

and 0.045 (95% CI −0.063, 0.153) with the IP weights. The regression results are shown in 

Table 2 and the rates and confidence intervals per decile in Supplemental Table 1.

Method 2.—For each ppb increase in NO2, we found a 0.066 increase in MI cases per 

10,000 person-years (95% CI 0.033, 0.098).

Method 3.—For each ppb increase in NO2, the DID analysis found a −0.08 decrease in MI 

cases per 10,000 person-years (95% CI −0.001, −0.16).

4. Discussion

Using a doubly robust model we directly estimated the counterfactual rate of myocardial 

infarction hospitalization by decile of each of three air pollutants. For PM2.5 we found a very 

robust effect, with every decile showing significantly higher MI rates than the preceding 

decile, and a significant linear trend. This included a significant effect at exposures below 

8 μg/m3. For NO2, we found a significant increase in MI rates from the 1st to 9th decile, 

which then dropped in the highest decile, and the linear trend was not significant. The 

ozone association was less clear, showing an almost inverted U shape. The advantage of 

our first approach is that the double robustness means that if either the propensity score 

model and IP weights or the regression model within deciles of exposure correctly adjusted 

for confounders then the results are unbiased. Moreover, regression adjustment to directly 

estimate counterfactual rates for each decile of exposure has not been used previously 

and provides results from an alternative causal modeling strategy that does not depend on 

the accuracy of the model for the exposure, which helps evaluate the consistency of the 

associations across methods. Another advantage of the approach is that we used a very 

flexible analysis to predict the dependence of MI on covariates within each decile of each 

exposure, and another flexible one to predict the probability of being in each decile of 

exposure based on covariates, including the other air pollutants.

Propensity score and regression adjustment models require the assumption of no omitted 

confounders. We supplemented that approach with our second model, the negative outcome 

and exposure control model, which can control for omitted confounders as well. As long 

as the omitted confounder is linearly related to the negative control and true exposure, 

it can be controlled by this approach. This approach provides some assurance about 

omitted confounders and relies on different assumptions than previously published causal 

models. To that, we added the results of our third approach, the modified difference in 

differences model. This also controls for omitted confounders. In that case, all neighborhood 
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level confounders are controlled for by a dummy variable for each neighborhood, so 

the assumption of a linear association with outcome is not required for this subset of 

confounders. Omitted time varying confounders are controlled for by splines of time fit 

separately for each of 5 clusters of ZIP codes, where clustering was done by race/ethnicity 

and socioeconomic variables.

The complementarity of the approaches gives greater confidence to the identification of 

a causal effect if they have similar results. For example, while the DID study required 

that all unmeasured time varying covariates had the same temporal pattern of association 

with exposure and outcome within cluster, the negative control model does not, since 

time variation in omitted confounders is captured by time variation in the negative control 

exposure and outcome. On the other hand, the DID analysis does not assume the omitted 

confounder’s association with exposure or outcome is linear. Similarly, the first approach 

controls for measured covariates if either the regression model for each decile is correct 

or if the regression model for the probability of exposure being in each decile is correct 

and uses a very flexible machine learning algorithm to try to ensure a correct model. For 

PM2.5 all three approaches showed significant associations with MI, with moderately similar 

effect sizes. For O3, methods 2 and 3 found significant associations, but not method 1, so 

the strength of evidence is weaker. For NO2 method 1 found an insignificant positive effect, 

method 2 a significant positive effect, and method 3 a significant negative effect. Methods 

2 and 3 provided similar effect size estimates for PM2.5, however the estimate was almost 

twice as large for method 1. This may either be due to the existence of omitted confounders 

biasing upward the effect of Method 1, or its superior control for measured confounders 

(via machine learning) better controlling for negative confounders. For example, the more 

and finer scale area level SES the ACS study controlled for, the larger the effect size it 

found. Clearly, further research to validate and refine our approaches is warranted, in order 

to strengthen the evidence base and improve our understanding of the potential mechanisms.

A key feature of this study was our ability to look at counterfactual effects at low 

concentrations. For example, we estimate that the difference between the MI rate had the 

entire population be exposed in the third decile of PM2.5 (7.7 μg/m3) instead of in the first 

decile (4.3 μg/m3) would be a yearly increase in the MI rate of 6.4 cases per 10,000 persons 

per year. Applied to the 62.8 million Medicare participants in 2020, this would imply an 

increase of 40,000 additional myocardial infarctions per year. In contrast, EPA’s National 

Contingency Plan (40 C.F.R. § 300.430 (d)(1)) states that the range of acceptable lifetime 

risks (of developing cancer) for carcinogens should be set between 1 in 10,000 and 1 in a 

million over a 70-year lifetime. Hence the magnitude of the health burden we see is quite 

large at concentrations allowed by EPA.

Regarding the NO2 and O3 associations, the picture is more mixed. For NO2, in the doubly 

robust model, MI risk increases from 10 ppb to 25 ppb, but then fall at the highest annual 

concentrations. Because the highest decile is a very influential observation, the linear trend 

regression was not significant. However, due to quenching by NO, those highest NO2 

concentrations are almost invariably associated with quite low O3 concentrations. When two 

collinear variables are included in a model, it is common for one coefficient to increase 

and the other to decrease because of the collinearity. Hence, it is interesting that the effect 
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estimate at the lowest O3 decile increases and the effect estimate at the highest NO2 decile 

decreases compared to the adjacent decile. This higher collinearity at the extremes may 

explain the anomalous effect estimates in method 1.

Our results add to the growing literature indicating adverse effects of PM2.5 at 

concentrations below both the EPA standard of 12 μg/m3 and the previous WHO guidelines 

of 10 μg/m (; Yazdi et al., 2021b, 2021c; Pinault et al., 2016; Shi et al., 2016; Beelen et al., 

2014). The entire NO2 association takes place at concentrations below the EPA NO2 annual 

standard and again, other recent literature has also reported associations in that range (Wei 

et al., 2021; Ma et al., 2022; Schwartz et al., 2021b; Crouse et al., 2015). Previous results 

for O3 have been mixed, as were ours (Yazdi et al., 2021b; Cakmak et al., 2018; Sun et 

al., 2022; Sommar et al., 2021). In general, studies in North America have reported positive 

effects of O3, while studies in Europe have found negative, protective effects. One possible 

reason is that in the Europe incentives were provided to encourage the purchase of Diesel 

vehicles resulting in substantially higher NOx emissions, particularly in urban areas, where 

slow traffic is likely to drop the exhaust temperature below the 140 °C necessary for the NOx 

reduction catalyst to work. In that scenario, high O3 locations are even more likely to be 

low NOx locations, which could result in a protective effect for ozone. However, methods 2 

and 3 did provide support for an effect of ozone, and method 1 supports that conclusion for 

averages below 47 ppb. Although the European and Canadian studies used summer ozone, 

comparing results based on different exposure windows remains meaningful, as it allows for 

a comprehensive understanding of the potential health effects of air pollution over varying 

periods of time.

The strengths of our study are the use of multiple causal modeling methods requiring 

different assumptions to assess the robustness of the associations. These included regression 

calibration and inverse probability weighting to provide doubly robust estimates of the 

effects including direct estimates of the counterfactuals (what would have happened if 

everyone was exposed in the same decile), the use of machine learning to provide more 

robust estimates of the associations, the use of three pollutant models to account for 

potential confounding by other pollutants, the use of an alternative with negative outcome 

and exposure controls that can capture omitted confounders, and the very large sample 

sizes that Medicare provides. It also uses exposure models that have very high predictive 

accuracy. The limitations of the study are that there remain measurement errors in our 

exposure, including differences between individual exposure and neighborhood exposure. 

People do not spend all their time at home. However, the National Human Activity Pattern 

Survey in the U.S. reported that U.S. adults spent 69% of their time at home and 8% of the 

time immediately outside their home (Klepeis et al., 2001), and for the Medicare population 

it is likely higher. Also, our definition of a myocardial infarction was based on hospital 

discharge diagnoses reported to the Center for Medicare and Medicaid Services, and errors 

are likely in such data. We do not expect those coding error rates to be associated with 

air pollution, however. Further, the correlated pollutants posed the risk of multicollinearity, 

which can lead to the statistical inferences being less reliable for the second and third 

methods. However, the issue of multicollinearity mainly affects the statistical power and not 

the prediction accuracy of the regression calibration model, thereby alleviating the concerns 

regarding the first method.
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Fig. 1 shows the counterfactual rate of myocardial infarction and 95% confidence intervals 

in each decile of PM2.5 concentration. Fig. 1a is using regression adjustment and Fig. 1b 

adds inverse probability weighting.

Fig. 2 shows the counterfactual rate of myocardial infarction and 95% confidence intervals 

in each decile of O3 concentration. Fig. 2a is using regression adjustment and Fig. 2b adds 

inverse probability weighting.

Fig. 3 shows the counterfactual rate of myocardial infarction and 95% confidence intervals 

in each decile of NO2 concentration. Fig. 3a is using regression adjustment and Fig. 3b adds 

inverse probability weighting.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Counterfactual rate of myocardial infarction by decile of PM2.5.
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Fig. 2. 
Counterfactual rate of myocardial infarction by decile of O3.
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Fig. 3. 
Counterfactual rate of myocardial infarction by decile of NO2.
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Table 1

Mean and standard deviations of variables in the analysis.

Mean (SD) Mean (SD)

N (ZIP code-years) 435,246 Proportion < High School education 0.28 (0.16)

MI’s per ZIP code-years 9.68 (12.82) Nearest hospital (km) 11.38 (10.40)

pm25 μg/m3 9.79 (3.13) Pct Eye exam 67.24 (6.51)

no2 ppb 16.27 (9.11) Pct LDL test 78.52 (7.22)

ozone ppb 45.28 (5.59) Pct mammogram 63.82 (7.22)

proportion Black 0.09 (0.17) Pct owner occupied 73 (15)

Mean bmi (kg/m2) 28.03 (2.39) Lung Cancer Rate 0.00042 (0.0026)

Proportion Hispanic 0.09 (0.16) Population density ( 1495 (5098)

Median household income $ 49336 (21191) Smoking rate 0.47 (0.07)

Median house value 162466 (139309) Person-time per ZIP code 1083.20 (1259.96)

Pct A1c exam 83.17 (5.88) Female proportion 0.56 (0.04)

Pct ambulatory visit 79.25 (6.22) Medicaid 0.13 (0.10)

Pct in poverty 10 (8) Other race prop 0.04 (0.09)
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Table 2

Change in MI rate (per 10,000 persons) with Air Pollution exposure.

Model PM2.5a (95% CI) O3
b (95% CI) NO2

b (95% CI)

Regression Adjustment 1.48 (0.139, 0.156) 0.06 (−0.18, 0.30) 0.013 (−.013, 0.16)

Plus IPW 1.37 (1.20, 1.54) 0.01 (−0.2, 0.2) 0.093 (−0.05, 0.24)

Negative Controls 0.69 (0.60, 0.78) 0.048 (0.017, 0.079) 0.066 (0.033, 0.008)

Difference in Differences 0.75 (0.55, 0.96) 0.22 (0.11, 0.34) −0.08 (−0.001, −0.16)

a
Per 1 μg/m3.

b
Per 1 ppb.
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