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Summary

Background: Timely and accurate intra-operative cryosection evaluations remain the gold 

standard for guiding surgical treatments for gliomas. However, the tissue freezing process often 

generates artifacts that make histologic interpretation difficult. In addition, the 2021 WHO 

Classification of Tumors of the Central Nervous System incorporates molecular profiles in the 

diagnostic categories, and thus standard visual evaluation of cryosections alone cannot completely 

inform diagnoses based on the new classification system.

Methods: To address these challenges, we develop the context-aware Cryosection 

Histopathology Assessment and Review Machine (CHARM) using samples from 1,524 glioma 

patients from three different patient populations to systematically analyze cryosection slides.
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Findings: Our CHARM models successfully identified malignant cells (AUROC = 0.98 ± 0.01 

in the independent validation cohort), distinguished IDH-mutant tumors from wildtype (AUROC 

= 0.79 – 0.82), classified three major types of molecularly-defined gliomas (AUROC = 0.88 

– 0.93), and identified the most prevalent subtypes of IDH-mutant tumors (AUROC = 0.89 

– 0.97). CHARM further predicts clinically important genetic alterations in low-grade glioma, 

including ATRX, TP53, CIC mutations, CDKN2A/B homozygous deletion, and 1p/19q codeletion 

via cryosection images.

Conclusions: Our approaches accommodate the evolving diagnostic criteria informed by 

molecular studies, provide real-time clinical decision support, and will democratize accurate 

cryosection diagnoses.

Graphical Abstract

eTOC

Nasrallah et al. established the Cryosection Histopathology Assessment and Review Machine 

(CHARM), a context-aware machine learning method for glioma diagnosis during surgery. They 

showed that CHARM identifies pathology imaging patterns indicative of molecular diagnoses of 

glioma defined by the new WHO Classification.
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INTRODUCTION

Advances in understanding the molecular pathogenesis of brain tumors have resulted in 

the identification of new diagnostic entities and substantial refinement in the diagnosis of 

infiltrating gliomas, the most common primary tumor of the central nervous system. The 

integration of molecular and histologic information has not only expanded the recognition 

of novel tumor types but has also improved prognostication and guided therapeutic 

decisions. The 2021 WHO Classification of Tumors of the Central Nervous System now 

recognizes 19 new official tumor types, as well as 3 additional provisional entities, which 

include molecular features for their classification1. Despite the plethora of entities, adult 
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infiltrating gliomas most often fall into one of three major types: astrocytoma, IDH-mutant; 

oligodendroglioma, IDH-mutant and 1p/19q-codeleted; and glioblastoma, IDH-wildtype2. 

These three tumor types have significantly different survival outcomes, therapeutic options, 

and clinical trial eligibility3.

Establishing the IDH mutational status is essential to making a complete diagnosis given its 

prognostic significance4. In the absence of an IDH mutation, an infiltrating astrocytoma in 

an adult is most often a glioblastoma. In the presence of an IDH variant, 1p/19q codeletion 

status (along with other molecular aberrations) must be established to further classify the 

tumor as either astrocytoma or oligodendroglioma1. Given the necessity of incorporating 

molecular information with histologic findings to reach a diagnosis, pathologists are 

dependent on both for a definitive conclusion as to the nature of a tumor.

Because surgery continues to be the mainstay therapy for infiltrating gliomas, intra-operative 

examination of frozen tissue, also known as cryosection, is frequently performed to provide 

a preliminary diagnosis, guide the surgery, and determine treatment strategies6,7. Recent 

studies suggested that the extent of resection has a differential prognostic impact on patients 

with different molecular subtypes of glioma defined by the WHO Classification8,9. These 

findings indicated the need for fast intraoperative glioma diagnosis to guide treatment 

decisions. Because the WHO guidelines of glioma classification now involve molecular 

profiles (e.g., IDH mutation and 1p/19q codeletion status), the standard visual evaluation 

of cryosection tissues alone cannot determine the new diagnostic categories of gliomas, 

nor guide therapeutic decisions. Due to these limitations, a reliable tool for providing both 

histologic and molecular analyses at the time of surgery will have significant added value 

both for hospitals without a neuropathologist and institutions where novel therapies may be 

initiated at the time of, or shortly after, surgery.

Machine learning has enabled augmented pathology interpretation in recent years10. 

Advanced methods for analyzing whole-slide pathology images11–15 successfully predicted 

multi-omics profiles and treatment responses of lung, breast, ovarian, or renal cancers16–20. 

Gliomas remain one of the most challenging targets in this field because of their significant 

histologic heterogeneity. While a few studies have attempted to develop machine learning 

methods for glioma interpretation,21–23 these approaches either attained substantially 

lower performance compared with other cancer types or required advanced microscopy 

techniques24. In addition, most of the previous studies have focused their models on 

permanent slides24–26, which require several days to process and thus are not suitable for 

timely diagnosis during surgical intervention. Reliable quantitative methods for analyzing 

cryosection slides for glioma diagnosis and classification are currently lacking28.

In this study, we developed the Cryosection Histopathology Assessment and Review 

Machine (CHARM), a novel interpretable deep learning framework that incorporates a 

hierarchical vision transformer (ViT)29, to analyze cryosection samples from multiple 

patient cohorts. Using digital cryosection whole-slide images, CHARM successfully 

identified glioma cells, classified the histologic grades, and predicted key molecular 

alterations that define the 2021 WHO Classification, such as IDH mutation and 1p/19q 

codeletion status. We validated our results using three large patient cohorts. We showed 
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that CHARM achieved better performance in these diagnostic and prediction tasks 

than state-of-the-art convolutional neural networks (CNNs). We further interpreted how 

CHARM arrives at its predictions and correlated these interpretations with the current 

neuropathology knowledge. Our results demonstrated the potential of interpretable computer 

vision approaches in analyzing cryosection tissue for real-time, intra-operative decision 

support for brain tumor diagnosis.

RESULTS

Overview

The machine learning workflow of CHARM is summarized in Figure 1. To minimize the 

manual efforts required for annotating the digital pathology slides, we employed a weakly-

supervised learning approach to analyzing the whole-slide images16,19,29 and assigned the 

slide-level labels, such as histological grade or genomic biomarkers, to all tiles sampled 

from this slide. The patient demographics and distributions of genomic profiles of our study 

cohorts are summarized in Table 1.

CHARM Identified Cryosection Diagnoses and Classified the Histologic Grades for Glioma

Confirming whether a sample contains malignant glial cells is the most important task 

of cryosection diagnoses conducted for suspected gliomas during neurosurgery. However, 

cryosection slides produced during surgery are difficult to evaluate due to artifacts of the 

cryosections and the heterogeneity of brain tumors. To address this challenge, we first 

investigated the performance of the CHARM framework in identifying cancer cells from 

cryosections. We collected 213 cryosection slides that were obtained intra-operatively from 

BWH to develop our CHARM model for this task. Among these slides, 145 contain glioma 

cells (labeled as cancer) while the other 68 do not have any cancer cells (labeled as benign). 

CHARM achieved an AUROC of 0.94 ± 0.02 in the held-out test set from BWH, while 

the conventional CNN method achieved an AUROC of 0.80 ± 0.10 (Figure 2A). We further 

evaluated our models’ generalizability using 1,121 patients in the TCGA cohort. CHARM 

demonstrated better generalizability (AUROC of 0.98 ± 0.01) compared with CNN (AUROC 

of 0.88 ± 0.06) in this independent evaluation (Figure S1). We visualized the prediction 

results of each region using heatmaps and showed that our models correctly identified 

regions of neoplastic cells and adjacent benign regions (Figures 2D and 2E).

Next, we examined the CHARM’s capability of classifying the histologic grades of glioma, 

a pathology evaluation task that assists in determining patients’ prognoses. Each patient was 

labeled as low histology grade (histologic grade 2 or 3) or high histology grade (histologic 

grade 4) by neuropathologists. Both CHARM and CNN models were trained using the 

TCGA data and achieved high performance in the hold-out test set with a mean AUROC of 

0.96 ± 0.01 (Figure 2B). When evaluated on independent cohorts from BWH and UPenn, 

both models demonstrated high prediction performance (CHARM: 0.84 ± 0.08 and CNN: 

0.86 ± 0.06; Figure 2C). Figure 2F shows the prediction results of a patient with low-grade 

glioma, and Figure 2G visualizes a high-grade glioma sample overlaid with our model 

predictions. These visualization results suggested that CHARM independently discovered 

that dense areas of tumor cells with necrosis are associated with high histologic grade.
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CHARM Predicted IDH Mutational Status

We next employed the CHARM framework to predict IDH mutational status, a key 

component in the new WHO classification guideline for adult gliomas. To identify additional 

morphologic patterns indicative of IDH mutational status beyond histologic grades, we built 

separate models for the two grade groups. In the low histology grade group, results show 

that CHARM achieved similar performance compared with CNN on TCGA (AUROCs: 0.80 

± 0.074 versus 0.79 ± 0.083; Figure 3A). However, when evaluated with the independent 

datasets, CHARM outperformed the CNN baseline (0.82 ± 0.11 vs. 0.77 ± 0.08; Figure 3B). 

Glioma samples in the high histologic grade group were once all considered glioblastoma. 

The 2021 WHO classification, however, requires an infiltrating glioma to be IDH wildtype 

to be considered glioblastoma, even in the presence of classic “glioblastoma” histologic 

features, such as pseudopalisading necrosis and microvascular proliferation. In the high 

histologic grade group, we further showed that CHARM performed significantly better than 

CNN in identifying morphological signals indicative of IDH mutational status (AUROCs: 

0.79 ± 0.04 versus 0.60 ± 0.05, Figure S2).

To investigate the morphological features employed by CHARM in IDH mutation 

prediction, we visualized the feature space extracted by our IDH classification models 

(Figure 3C). We found that most adult patients with IDH-wildtype infiltrating astrocytoma 

(i.e., the new “glioblastoma” category based on the 2021 WHO Classification) formed 

a distinct cluster in the two-dimensional projected feature space. Based on the data 

distribution in the UMAP plot, we further investigate the morphological differences between 

IDH-wildtype and IDH-mutant samples (Figure 3D). We found that our models focused on 

tumor regions with high cellularity when predicting IDH mutation status, while ignoring 

adjacent non-neoplastic tissues (Figure 3E). In IDH-wildtype patients, the regions receiving 

high attention levels from the model displayed signs of edematous changes.

CHARM Identified Three Major Types of Gliomas in the 2021 WHO Classification

In the 2021 WHO Classification, most adult infiltrating gliomas belong to one of the 

three major categories: IDH-mutant with 1p/19q co-deletion (molecular oligodendroglioma), 

IDH-mutant with intact 1p/19q (molecular astrocytoma) and IDH-wildtype (molecular 

glioblastoma). These molecular subtypes of gliomas have different clinical prognoses and 

management strategies30. To address this clinical need, we employed CHARM to predict 

these new classifications.

Our results show that both CHARM and the CNN baseline models performed well in 

classifying patients into the major molecular subtypes of glioma. The AUROCs of CHARM 

for identifying these molecular categories are 0.88 ± 0.03, 0.90 ± 0.02, and 0.93 ± 0.02. 

The AUCs of CNN for the same diagnostic classifications are 0.86 ± 0.02, 0.87 ± 0.03, 

and 0.92 ± 0.02 (Figure 4A). Figures 4B–D visualize our model’s attention for classifying 

these tumor types. Overall, CHARM relies on atypical nuclei and edematous regions for 

differentiating the molecular groups. In addition, the extent of cellularity helps to distinguish 

between tumor types, as indicated by the placement of the reddest contours around regions 

of high cellular density.
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To further characterize the morphological feature space CHARM utilized for differentiating 

these molecular types, we extracted imaging features from each sample and applied UMAP 

to project them to a two-dimensional visual space (Figure 4E). Our results indicate that 

patients with molecular glioblastoma (IDH-wildtype) form a cluster distinct from the 

IDH-mutated gliomas. Among the IDH-mutated gliomas, we can further identify the two 

clusters related to the presence and absence of 1p/19q co-deletion. Moreover, quantitative 

measurements of the proximity of imaging features32 also suggest that patients with IDH-

wildtype gliomas are distinct from IDH-mutant tumor patients with or without 1p/19q 

codeletion (cosine similarity scores = 0.897 and 0.906, respectively). In comparison, the 

morphological difference between samples with and without 1p/19q codeletion in the 

IDH mutation group is less prominent (cosine distance = 0.958). These observations are 

consistent with the insights from the 2021 WHO Classification that IDH mutation and 

1p/19q codeletion plays a pivotal role in differentiating tumors and is crucial for determining 

appropriate treatment plans.

CHARM Identified 2021 WHO Subtypes within IDH-Mutant Gliomas

In the 2021 WHO Classification, IDH-mutant gliomas are further classified into multiple 

tumor subtypes by their histologic and molecular profiles. To address this clinical need, we 

further employed CHARM to predict three major subtypes with relatively high prevalence: 

(1) oligodendroglioma with IDH mutation and 1p/19q codeletion (category 1), (2) lower 

grade astrocytoma with IDH mutation but without CDKN2A/2B homozygous deletion (HD) 

(category 2), and (3) IDH-mutant grade 4 astrocytoma (category 3). TableS1 presents the 

number of patients in each category. Our results show that both CHARM and CNN are 

capable of classifying patients into these three categories, especially for identifying patients 

from category 1 (AUROC of CHARM = 0.97 ± 0.02; AUROC of CNN = 0.95 ± 0.03) 

and category 2 (CHARM: 0.94 ± 0.03; CNN: 0.96 ± 0.03). CHARM has slightly better 

performance for detecting patients in category 3 (0.89 ± 0.07 versus CNN: 0.84 ± 0.07), 

but the difference is not statistically significant (Wilcoxon signed-rank test P=0.273; Figure 

S3A). While these models directed attention to edematous tissue for the less aggressive 

tumor (oligodendroglioma, category 1), hypercellularity with prominent vasculature and 

incipient necrosis with microvascular proliferation is highlighted in samples of categories 2 

and 3 (Figures S3B–D).

In addition to these established glioma categories, previous studies indicate the clinical 

importance of CDKN2A/2B and the worse prognosis for IDH-mutant glioma with 

homozygous deletion of these genes2. Therefore, we investigated a new group of patients 

with IDH-mutant low-grade astrocytoma with CDKN2A/2B HD (category 4). Only 11 

patients have this subtype in our study cohort. In the image feature space projected by 

UMAP (Figure S5E), patients in category 3 are mapped into two clusters (blue); ten out 

of eleven patients in category 4 occupy locations close to one of these two blue clusters. 

Additionally, the proximity of imaging features computed by cosine similarity scores32 

among patients in categories 3 and category 4 suggests that these two groups of patients 

possess similar morphological profiles (cosine distance = 0.997 between categories 4 and 

3; cosine distance = 0.928 between categories 4 and 2). These quantitative findings are 

consistent with clinical evidence showing that these two subgroups of tumors are more 
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aggressive and have worse clinical outcomes than other subtypes32. Similar analytical 

approaches can investigate the heterogeneity of neoplasm samples within an established 

tumor group.

CHARM Predicted Diagnostic Genetic Biomarkers of Glioma

We further evaluated CHARM for predicting mutations in multiple genetic biomarkers 

(ATRX, TP53, CDKN2A/B HD, CIC mutations, 1p/19q codeletion, chromosome 7/10 

alteration, and EGFR amplification) related to glioma diagnostics and treatment options. We 

conducted separate tests for the two histology grade groups (low-grade versus high-grade), 

respectively, to identify the morphological patterns indicative of these molecular profiles, in 

addition to histologic grade. CHARM successfully predicted ATRX mutation (AUROC = 

0.79 ± 0.052), TP53 mutation (AUROC = 0.87 ± 0.041), CDKN2A/B HD (AUROC = 0.80 

± 0.063), CIC mutation (AUROC = 0.79 ± 0.03), and 1p/19q codeletion (AUROC =0.82 ± 

0.047) in the low histologic grade group using cryosection images (Figure 5A). Additionally, 

CHARM reached an AUROC of 0.71 ± 0.031 for predicting EGFR amplification (Figure 

S4A), which is frequently present in glioblastoma (Table S2). Figures 5B–E and S4B–C 

visualize the attention weights that CHARM employed to predict each of these molecular 

biomarkers. For example, CHARM associated classic histologic features, such as round 

nuclei and intermediate cellularity, with oligodendrogliomas, employed cortical infiltration 

for predicting ATRX mutation, and highlighted areas of prominent vascularity when 

identifying EGFR amplification.

Lastly, because TMB is a known predictor of patients’ responses to immune checkpoint 

blockade in many cancer types33, we developed prediction models for estimating TMB 

using whole-slide images. Our model that integrates cryosection imaging and demographic 

profiles achieved a significantly better prediction than a demographic-based baseline model 

(Spearman’s correlation coefficient: histopathologyempowered = 0.58 ± 0.042, baseline 

model = 0.35 ± 0.041, Wilcoxon signed-rank test P-value = 0.04; Figure S5).

DISCUSSION

This is the first study that systematically examines the relationship between cryosection 

histology and the molecular profiles of glioma. We developed the CHARM framework to 

provide accurate diagnostic and subtype prediction, and we validated our machine learning 

models in multiple patient cohorts, showing the reliability of our approaches. In addition, 

we visualized our models’ attention scores for identifying IDH mutational status from 

cryosection histopathology, which illuminated the histologic patterns potentially indicative 

of these important molecular aberrations. Given the fast inference time (less than one second 

per image tile) of our automated approach, this methodology can be practically applied to 

intra-operative diagnoses of glioma subtypes, which can enhance intra-operative surgical 

decisions, expedite enrolling eligible patients into clinical trials, and provide up-to-date 

diagnostic classification in resource-limited regions.

The updated molecular-based WHO classification improves our understanding and 

prognostic assessments of gliomas. With new molecular profiling techniques and emerging 

treatments, the WHO regularly updates its guidelines for categorizing cancers, including 
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a major overhaul of CNS cancer classification in 202134. However, patients living 

in areas without access to genetic sequencing could not fully benefit from the new 

classification criteria35–39. In addition, obtaining molecular diagnostic results requires days 

to weeks, which cannot provide real-time decision support during the surgical removal of 

glioma tissues. CHARM addresses these issues by enabling fast and low-cost evaluations 

based on cryosection slides, attains significantly better prediction performance compared 

with previous studies40,41, and differentiated the molecular subtypes of glioma defined 

by the 2021 WHO Classification. CHARM further associated histologic features with 

molecular profiles. For example, round nuclei, edema, and intermediate cellularity were 

identified in oligodendrogliomas defined by IDH mutation and 1p/19q codeletion. Hence, 

CHARM demonstrated the potential for data-driven approaches to identify morphological 

characteristics related to novel molecular biomarkers. Our machine learning-based methods 

allow researchers to reevaluate morphological patterns and tumor microenvironments related 

to the new diagnostic guidelines.

In addition, our quantitative analyses provide new insights into the morphology associated 

with key genetic aberrations and illuminate morphological similarities between cancers 

with similar clinical behavior. For example, CHARM revealed the morphological similarity 

between IDH-mutant low-grade astrocytomas with CDKN2A/2B HD, and IDH-mutant 

grade 4 astrocytomas. This pathology finding is consistent with clinical evidence showing 

these two subgroups of tumors are more aggressive than other subtypes.

The hierarchical ViT architecture of CHARM preserves the global contextual connections 

between image features remotely scattered in a slide43. In contrast, CNN-based models 

used convolution kernels that emphasize the local interaction between regions nearby. In 

practice, pathologists evaluate a slide using both local and global contextual findings, which 

is aligned with how the hierarchical vision transformer processes images43 This observation 

may explain why CHARM achieved better performances in most tasks compared with 

CNNs. When training on smaller datasets (e.g., n=25 for detecting IDH-mutant samples 

within the high histological grade group), ViT’s capability of learning useful embeddings 

is more limited43. Overall, our results suggested that CHARM with ViT performs better in 

most glioma classification tasks, while CNN-based models may be useful for scenarios with 

limited training samples.

Another critical clinical challenge CHARM overcomes is the variable quality of cryosection 

images. Previous pathology studies12 usually focused on permanent slides because they are 

less likely to contain poor-quality imaging regions, such as tissues of unequal thickness or 

fragmented tissues. Nevertheless, processing permanent section slides takes days, and thus 

it is not applicable for intra-operative pathology evaluation that guides surgical operations. 

Other studies have employed T2-weighted MR images to predict glioma subtypes45,46. 

However, MRI-based approaches require more time to acquire and process the images, 

do not achieve better performance compared with our methods, and cannot provide 

morphological understanding and visualization at the cell level. Another recent study 

employed stimulated Raman histology images to predict the molecular subtypes of glioma24. 

Our methods achieved similar prediction performance and do not require special microscopy 

techniques.
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In summary, our CHARM platform successfully identified glioma cells, classified histologic 

grade, and predicted clinically important molecular profiles using hematoxylin and eosin 

(H&E)-stained cryosection images, which enables fast intra-operative diagnoses. Our 

visualization framework further empowers pathologists to identify the morphological 

patterns associated with molecular profiles and clinical outcomes. Taken together, CHARM 

demonstrated the possibility of extracting untapped biomedical signals from cryosection 

slides and facilitated the development of real-time precision oncology.

Limitations of Study

As treatment modalities evolve, novel molecular and treatment response-based disease 

features and new disease classifications are expected to arise. With new revisions of glioma 

classifications in the future, we will need to adjust or retrain our data-driven models 

to accommodate the new classification systems. Because our informatics approaches are 

fully automated, fast and objective re-analyses can be tailored to the evolving diagnostic 

guidelines within hours. In addition, our study cohorts were based in North America 

and may not represent all populations worldwide. Furthermore, our current approach 

does not reduce the time needed for preparing digital images of cryosections. Recent 

developments in rapid molecular diagnosis may complement the standard cryosection-based 

tissue evaluation48,49. Future studies can extend our machine learning framework to images 

generated by faster digitizing methods and incorporate molecular profiling results from rapid 

diagnostics.

STAR METHODS

Resource Availability

Lead Contact: Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contact, Kun-Hsing Yu, Kun-

Hsing_Yu@hms.harvard.edu.

Materials Availability: This study did not generate new unique reagents.

Data and Code Availability:

• This paper analyzes TCGA data, which is available at https://

portal.gdc.cancer.gov/

• All original code has been deposited at https://github.com/hms-dbmi/charm and 

is publicly available as of the date of publication.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

Experimental Model and Subject Details

Human Subjects—We obtained 2,334 cryosection whole slide images from 1,524 patients 

from three independent study sites. The Cancer Genome Atlas (TCGA) contains 1,121 

patients from 46 hospitals nationwide, and the slides were scanned using Aperio scanners 

at 40x magnification, with molecular profiles obtained from whole-exome sequencing. In 
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addition, we built independent institutional cohorts by collecting data from 213 patients 

from Brigham and Women’s Hospital (BWH) and 190 patients from the University of 

Pennsylvania (UPenn). Cryosection slides from BWH and UPenn were scanned using 

a Hamamatsu S210 scanner at 40x magnification, and patients’ molecular profiles were 

obtained from targeted sequencing. No patient overlaps were found between these cohorts. 

Written informed consent was obtained from the patients at the time of enrollment.

In the BWH and the UPenn cohorts, patients’ clinical information was based on clinician-

reported data. The clinical information of TCGA cohort was obtained from the National 

Cancer Institute Genomic Data Commons. 71.4% of the patients in the TCGA cohort have 

race information. Among them, 91.9% were White, 6.6% were Black or African American, 

and 1.4% were Asian. We do not have racial information for other patients who participated 

in this study. Socioeconomic status was not available for all patients.

Method Details

Overview of Machine Learning Approaches in CHARM—We employed a 

hierarchical vision transformer43 to build the backbone of CHARM. For each task, we 

selected patients (the development cohort) from one of the three cohorts to develop models. 

We randomly split patients in the development cohort into one of the training, validation, or 

hold-out test sets using a 70%−15%−15% ratio. During the training process, class-balanced 

batch sampling and class-balanced loss function were implemented to alleviate instance 

imbalance of the datasets. In the prediction phase, each tile received a separate prediction 

from the model. The median value of all available tiles of a patient was employed as the 

prediction for this patient. This aggregation approach requires less parameterization, making 

it more robust and generalizable for deep learning models43.

After the models were finalized, we first evaluated the models’ internal validity using the 

hold-out test set of the development cohort (internal test set). To further demonstrate the 

generalizability of our models, we evaluated our models in the independent test cohort that 

did not participate in the model development process. We repeated the random splitting 

of the development cohort, training, and external testing five times and calculated the 

corresponding mean and standard deviation for all performance metrics for each task. We 

compared CHARM with EfficientNet-B5, a stateof-the-art CNN with high performance in 

analyzing digital pathology43. Figure 1 summarizes our machine learning approach, and 

Data S1 is our method checklist.

Cancer Identification using Cryosection Images—We first trained our CHARM 

model for identifying glioma using cryosection slides from BWH because TCGA and 

UPenn did not have sufficient benign samples for training (TCGA has only five benign WSIs 

while UPenn did not collect pathology slides of adjacent benign tissue). We reported the 

areas under the receiver operating characteristics curves (AUROCs) of CHARM and the 

baseline EfficientNet-B551 CNN models. Furthermore, we evaluated the generalizability of 

the trained models using patients in TCGA and visualized the performance of our models. 

Models derived from the BWH dataset were directly applied to all images from TCGA, and 

AUROCs with standard deviations were computed.
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Histologic Grade Prediction using Cryosection Images—Given its sample 

diversity, we employed the TCGA cohort to develop prediction models for the histologic 

grading of glioma tissues using cryosection images. We classified the samples into two 

groups: histologic grade 4 versus lower-histologic grade (grades 2 and 3) groups due to 

their treatment implications. We first assessed the models on the hold-out test set in TCGA. 

Furthermore, samples from BWH and UPenn were combined as an independent test cohort 

because both datasets were digitized by the same scanner and scanning parameters. To 

develop a domain adaptable model, we partitioned the independent cohort into 70%−15%

−15% fine-tuning, validation, and independent test sets.

IDH Mutation Status Prediction using Cryosection Images—We employed similar 

machine learning approaches to identify the associations between histopathology image 

patterns and IDH mutation status. Considering the known association between histologic 

grades and IDH mutation status, we stratified patients into “high” and “low” histologic grade 

groups and trained separate models for these two groups. This stratified approach eliminated 

the confounding from histologic grades in predicting IDH status. We trained our models 

with TCGA cohort and first reported the model performance in the hold-out test set. We next 

evaluated the model generalizability on BWH and UPenn using the same procedure as that 

of the histological classification task.

Molecular Classification of Glioma Using Cryosection Images—To enable glioma 

diagnoses based on the updated WHO Classification, we evaluated the performance of 

our approaches in classifying the three major molecular types of gliomas defined in the 

2021 WHO Classification of Tumors of the Central Nervous System: (1) gliomas with 

IDH mutation and 1p/19q codeletion (oligodendroglioma), (2) gliomas with IDH mutation 

but without 1p/19q codeletion (astrocytoma), and (3) IDH-wildtype (glioblastoma). We 

developed models in the TCGA cohort given their complete molecular profiles. Due to 

the significant role played by CDKN2A/2B homozygous deletion (HD) in astrocytoma, 

we further employed CHARM to classify low-grade gliomas into three finer groups: (1) 

oligodendroglioma with IDH mutation and 1p/19q codeletion, (2) astrocytoma with IDH 

mutation but without CDKN2A/2B HD, (3) IDH-mutant astrocytoma with grade 4 histology 

and/or CDKN2A/2B homozygous deletion. After developing CHARM for these three 

categories, we investigated the imaging feature space of these diagnostic groups and that 

of astrocytoma histology, IDH mutation, and CDKN2A/2B HD (category 4).

Finally, we employed CHARM to identify cryosection samples with key genomic 

biomarkers involved with the 2021 WHO Classification of Tumors of the Central Nervous 
System. These include ATRX, TP53, CIC mutations, CDKN2A/B homozygous deletion, 

1p/19q codeletion, EGFR amplification, and chromosome 7/10 alteration.

Interpretation and Visualization of the Machine Learning Models—To better 

interpret the morphological patterns employed by our data-driven models, we (1) visualized 

the model-learned latent feature space by projecting it into a two-dimensional embedding 

space and (2) devised heatmaps based on model output to characterize model predictions at 

the slide level.
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In the molecular classification task, we used CHARM to extract 1024-dimensional latent 

feature vectors to represent tile images and characterize the similarities and differences 

between the three major types of gliomas. We applied Uniform Manifold Approximation 

and Projection (UMAP)52 to project these latent vectors to a two-dimensional space for 

visualization, given its capability of balancing local and global distances.

We further visualized the model predictions in heatmaps with a standard colormap, where 

regions with high predicted probabilities of the positive class (e.g., high-grade glioma, 

and mutations in IDH, ATRX, and CIC genes) were in red and those with low predicted 

probabilities were in blue. We applied a Gaussian kernel to average and smooth the 

color weights. Neuropathologists with more than 40 years of combined practice experience 

(M.P.N. and J.A.G.) independently evaluated the heatmaps to connect pathology descriptions 

of the tumor microenvironment with computer-generated model visualization.

Quantification and Statistical Analyses—We calculated AUROCs and the Spearman 

correlation coefficients using scikit-learn 0.23.2. We employed the Wilcoxon rank-sum test 

to identify the most informative features that contributed to distinguishing IDH mutated 

glioma with or without 1p/19q codeletion from IDH-wildtype gliomas.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We established the Cryosection Histopathology Assessment and Review 

Machine (CHARM).

• CHARM predicted IDH mutation and 2021 WHO Classification of glioma 

using cryosections.

• CHARM provided quantitative evidence supporting the reclassification of 

astrocytoma.

• CHARM facilitated real-time cryosection diagnoses and can be extended to 

other cancers.
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Context and significance

Real-time pathology diagnosis of tissue samples is crucial for the optimal treatment of 

brain cancers. Nonetheless, samples prepared for real-time evaluation (i.e., cryosection 

samples) are of variable quality and difficult to evaluate even for specialized doctors. In 

addition, the new WHO guidelines for brain cancer diagnosis include genetic information 

in addition to the known pathology patterns described in the medical literature. To 

address this challenge, Nasrallah et al. developed the Cryosection Histopathology 

Assessment and Review Machine (CHARM), a context-aware artificial intelligence (AI) 

system for brain cancer diagnosis. CHARM successfully identified cancer cells, predicted 

genetic mutation status, and classified WHO-defined cancer subtypes using cryosection 

samples. This advanced AI method could facilitate real-time cancer diagnoses during 

surgery.
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Figure 1. Overview of the Cryosection Histopathology Assessment and Review Machine 
(CHARM).
(A) We tiled each gigapixel whole slide cryosection image into patches with 1000 by 1000 

pixels and 50 percent overlap between the adjacent patches. (B) We labeled each tile by 

its histologic grade or molecular profile. For genomic prediction tasks, we trained separate 

models for patients with different histologic grades (low vs. high) to eliminate the impact of 

the associations between histologic grades and genomic mutation status. (C) To evaluate the 

robustness of our models, we first randomly partitioned the dataset for each task in the ratio 

of 70–15-15 and repeated the random partition process to obtain the standard deviation of 

our performance metrics. (D) We trained hierarchical vision transformer-based CHARM to 

predict the molecular and histologic labels and compared the results. (E) After obtaining the 

tile-level prediction for each patch, we aggregated all tiles from the same slide by adaptive 

median pooling and generated a slide-level prediction. We further evaluated the models’ 

performance in the independent test sets and assessed their generalizability in independent 

patient cohorts.

Nasrallah et al. Page 19

Med. Author manuscript; available in PMC 2024 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. CHARM successfully identified cryosections with malignant tissues and classified the 
histologic grade of glioma.
(A) CHARM outperformed convolutional neural network (CNN)-based models in 

identifying cryosections with malignant tissues, with an AUROC of 0.94 in the hold-out 

test set. CNN only attained an AUROC of 0.80 in the same task. (B) CHARM successfully 

classified gliomas with low and high histologic grades in the hold-out test set with an 

AUROC of 0.96. (C) CHARM demonstrated good generalizability to the independent test 

cohorts from BWH and UPenn for histologic grade prediction. AUROCs of CHARM and 

CNN models are 0.84 ± 0.08 and 0.86 ± 0.06, respectively. (D) Visualization of the model’s 

predictions on glioma tissues. Red indicates predicted malignant regions and blue indicates 

benign regions. Our prediction models output high probabilities of glioma for regions 

occupied by malignant cells. (E) Regions of adjacent benign cryosection tissue received low 
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predictive probabilities for neoplasm. (F) Visualization of the model’s predictions on high 

and low histologic grades. Red indicates predicted high-grade regions and blue indicates 

predicted low-grade regions. Model predictions of a glioma sample with high histologic 

grade. Regions with dense glioma and necrosis are predictive of high histologic grade. (G) 
Model predictions of a glioma sample with low histologic grade.
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Figure 3. CHARM predicted IDH mutational status using cryosection images.
To address confounding by histologic grade, we stratified patients in our datasets into 

high-and low-histologic-grade groups and developed IDH mutation prediction models for 

each group. This figure highlights results in the low-grade histology group. (A) CHARM 

predicted IDH mutation status, with AUROCs of 0.80 and 0.79 on the hold-out test set. (B) 
Our approaches generalize well to the independent validation sets from BWH and UPenn 

(AUROCs of CHARM and CNN are 0.82 and 0.77, respectively). (C) UMAP visualizes our 

model’s learned feature space of histopathology manifestations. IDH-mutant samples from 

the hold-out test set are shown as blue dots, and those with IDH-wildtype are shown in 

red. (D) Tile-stitched visualization mapped representative tiles corresponding to the dots in 

the UMAP plot. The green border circumscribes tiles from IDH-mutant tumors, a majority 

of which show highly edematous specimens with lower cellularity and fine vessels, and 

the yellow border circumscribes tiles from IDH-wildtype patients, which lack the coarse 

edema seen in the IDH-mutant cases, and show greater cellularity and atypia, despite both 

sets of gliomas having been classified as low-grade within the TCGA set. (E) Heatmaps 

of model-generated predictions of IDH mutational status. Red indicates regions with high 

predicted probabilities of being IDH-mutant (top). The adjacent non-neoplastic brain tissue 

in the sample from an IDH-mutant tumor was correctly ignored by the model. Regions 

occupied by solid tumors and edematous changes received high attention from the model.
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Figure 4. CHARM classified major types of gliomas defined by the 2021 WHO Classification of 
Tumors of the Central Nervous System.
(A) Both CHARM and CNN-based models successfully classified glioma subtypes based on 

the 2021 WHO Classification. Here we focused on the three most prevalent types of adult 

gliomas: molecular oligodendroglioma with IDH mutation and 1p/19q codeletion (CHARM 

AUROC = 0.88 ± 0.03; CNN = 0.86 ± 0.02), molecular astrocytoma with IDH mutation but 

without 1p/19q codeletion (CHARM: 0.90 ± 0.02; CNN: 0.87 ± 0.03), and IDH-wildtype 

glioblastoma (CHARM: 0.93 ± 0.02; CNN: 0.92 ± 0.02). (B) Visualization of the regions 

of interest identified by our models for distinguishing the three molecular types. The color 

value “1” in red indicates the regions most relevant to the corresponding glioma types. The 

red areas on the heatmap for oligodendrogliomas with IDH mutation and 1p/19q codeletion 

highlight edema and foci of the most clearly seen tumor nuclei. (C) The astrocytoma tissue 

with an IDH mutation exhibits homogeneous and atypical but relatively lower cellularity in 

contrast to glioblastoma. CHARM’s consistent use of these morphological features leads to 

a predominance of redness in the tissue. (D) Regions receiving high attention from CHARM 

for IDH wild-type prediction (highlighted in red) align with hypercellular and atypical 

morphologies presented in the glioblastoma tissue. The regions in blue, where CHARM pays 

less attention, favor the histological artifacts. (E) Summarized feature spaces extracted by 

our machine learning models. IDH-wildtype gliomas (orange dots) cluster in a space distinct 

from IDH-mutant samples. While IDH mutant gliomas with and without 1p/19q co-deletion 

occupy neighboring regions in this feature space, aggregations among samples from the 

same groups are observed.
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Figure 5. CHARM predicts key genomic markers of low-grade gliomas employed by the 2021 
WHO Classification of Tumors of the Central Nervous System.
(A) CHARM successfully predicted clinically important genomic markers, including ATRX, 

TP53, CIC mutations, CDKN 2A/2B homozygous deletion, and 1p19q codeletion. (B) The 

model visualization heatmap shows that classic histopathology features, including round 

nuclei, intermediate cellularity, and edema receive high attention in predicting 1p/19q 

codeletion. (C) The ATRX heatmap shows greater attention was paid to areas of cortical 

infiltration by the tumor, in parts of the tissue least affected by freezing artifact. (D) The 

high-attention regions of a CIC mutated tissue show a homogeneous infiltrating glioma with 

edema and minimal atypia. (E) In glioma tissues with CDKN2A/2B homozygous deletion, 

regions receiving high attention show greater atypia and cellularity, relative to the ATRX 

mutant tissue.
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Table 1.

Patient characteristics of our study cohorts.

Number of patients TCGA (n=1,121) Brigham and Women’s Hospital 
(n=213)

University of Pennsylvania (n=190)

Age 49.0 ± 15.7 48.8 ± 23.4 53.6 ± 15.7

Sex

 Not available 295 (26.7%) 23 (10.8%) 0 (0%)

 Male 460 (41.6%) 108 (50.7%) 112 (58.9%)

 Female 351 (31.7%) 82 (38.5%) 78 (41.1%)

Histologic grades

 Benign* 5 (0.4%) 68 (31.9%) 0 (0%)

 Grade 2 250 (22.3%) 65 (30.5%) 34 (17.9%)

 Grade 3 265 (23.6%) 14 (6.6%) 22 (11.6%)

 Grade 4 601 (53.6%) 66 (30.9%) 134 (70.5%)

Molecular Types of Gliomas

 IDH-mutation, 1p/19q codeletion 168 (15.0%)

 IDH-mutation, 1p/19q intact 272 (24.3%)

 IDH-wildtype 657 (58.6%)

MGMT

 MGMT (+) 625 (56.5%) 45 (21.1%) 59 (31.1%)

 MGMT (−) 295 (26.7%) 18 (8.5%) 51 (26.8%)

 Not Specified 186 (16.8%) 150 (70.4%) 80 (42.1%)

de novo cancers with histologic grade 2–3

 IDH-wildtype 98 (19.1%) 17 (32.7%) 0 (0%)

 IDH-mutant 415 (80.9%) 35 (67.3%) 41 (100%)

de novo cancers with histologic grade 4

 IDH-wildtype 559 (95.7%) 46 (95.8%) 78 (90.7%)

 IDH-mutant 25 (4.3%) 2 (4.2%) 8 (9.3%)

*
Adjacent benign tissues of brain cancer patients
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Key Resources Table

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

The Cancer Genome Atlas National Cancer Institute Genomic Data Commons https://portal.gdc.cancer.gov/

Software and algorithms

CHARM Nasrallah et al. DOI: 10.5281/zenodo.7972059

PyTorch Meta AI https://pytorch.org/

Tensorflow Google https://www.tensorflow.org/

scikit-learn David Cournapeau https://github.com/scikit-learn/scikit-learn

timm Ross Wightman https://github.com/huggingface/pytorch-image-models
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