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Abstract: Dielectric characterization has significant potential in several medical applications, provid-
ing valuable insights into the electromagnetic properties of biological tissues for disease diagnosis,
treatment planning, and monitoring of therapeutic interventions. This work presents the use of a
custom-designed electromagnetic characterization system, based on an open-ended coaxial probe,
for discriminating between benign and malignant breast tissues in a clinical setting. The probe’s
development involved a well-balanced compromise between physical feasibility and its combined use
with a reconstruction algorithm known as the virtual transmission line model (VTLM). Immediately
following the biopsy procedure, the dielectric properties of the breast tissues were reconstructed,
enabling tissue discrimination based on a rule-of-thumb using the obtained dielectric parameters. A
comparative analysis was then performed by analyzing the outcomes of the dielectric investigation
with respect to conventional histological results. The experimental procedure took place at Complejo
Hospitalario Universitario de Toledo—Hospital Virgen de la Salud, Spain, where excised breast
tissues were collected and subsequently analyzed using the dielectric characterization system. A
comprehensive statistical evaluation of the probe’s performance was carried out, obtaining a sensi-
tivity, specificity, and accuracy of 81.6%, 61.5%, and 73.4%, respectively, compared to conventional
histological assessment, considered as the gold standard in this investigation.

Keywords: dielectric characterization; open-ended coaxial probe; breast biopsy; blinded pilot study;
virtual transmission line model (VTLM)

1. Introduction

Diagnosed in 2.3 million women and accounting for 685,000 deaths worldwide in
2020, breast cancer is the most common cancer in women worldwide and represents the
leading cause of death [1]. Breast cancer management involves a comprehensive approach
to diagnosing and treating this prevalent disease, in which early detection is crucial to
reduce mortality and typically achieved through regular screening [2–5].
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In the clinical management of breast cancer, a diagnostic approach is employed fol-
lowing tumor detection to confirm the presence of the disease. The gold standard for
confirming the disease involves histological assessment, augmented by immunohistochem-
istry analysis, which provides insights into the molecular type of cancer and assists in
guiding the therapeutic process [6,7]. Various biopsy sampling techniques are currently
utilized in hospitals and clinics to extract samples of the suspicious findings identified
through any imaging technique, including fine needle aspiration (FNA) biopsy, vacuum-
assisted biopsy (VAB), and percutaneous excisional biopsy [8]. These excisional tissue
sampling techniques are imaging-guided through ultrasound, mammography (stereotactic
guidance), or MRI [9]. Nevertheless, several limitations regarding these techniques have
been identified and discussed [9–12]. The literature highlights that the acquisition of biop-
sied tissues may be prone to errors or inaccuracies, associated to false negatives, due to the
inherent challenges associated with the biopsy technique. Moreover, the waiting times for
pathology results tend to be prolonged, particularly in hospital or diagnostic departments
that experience a heavy workload. In this regard, technologies utilizing tissue dielectric
behavior are being actively investigated for broader applications in breast cancer, including
real-time tissue classification and microwave imaging [13,14].

Several techniques for measuring dielectric properties have been reported in the
literature [15,16]. Among them, the open-ended coaxial probe stands out for its simplicity,
non-destructive nature, and suitability for both ex vivo and in vivo measurements [17].
However, existing commercial probes have several limitations [18], such as the need
for multiple probes to achieve broadband characterization, leading to high costs, and
the complexity of calibration phases with open/short/load systems. To address these
limitations, we previously designed and developed an optimized open-ended coaxial probe
that represents a successful compromise between mechanical feasibility and the utilization
of the virtual transmission line model (VTLM) reconstruction algorithm [19]. For instance,
the utilization of an open-ended coaxial probe for the classification of normal and malignant
tissues may provide valuable decision support in addition to traditional biopsy methods,
as it enables real-time tissue characterization. By measuring the frequency-dispersive
dielectric properties, it becomes feasible to delineate and characterize biological tissues,
allowing for the differentiation between healthy and cancerous tissue in a succinct manner.

Extensive literature supports the distinction between healthy and cancerous tissues
based on their dielectric properties, wherein cancerous tissues exhibit higher dielectric
properties primarily attributed to increased water content [20–23]. Additionally, some
research focused on the application of the open-ended coaxial probe for the dielectric
characterization of healthy and malignant breast tissues, including also in vivo measure-
ments in animal models [18,24,25]. Lazebnik et al. conducted a large-scale study of the
dielectric properties of the breast tissues obtained both from cancer surgeries and breast
reduction surgeries, utilizing a 0.5–20 GHz open-ended coaxial probe technique. They re-
ported notable disparities in the relative permittivity and conductivity between cancerous
and metastatic breast tissues compared to normal and healthy tissues [26–28]. Martel-
losio et al. presented a comprehensive analysis based on experimental measurements of
over 220 tissue samples obtained during surgery (ex vivo), with measurements conducted
within 3.5 h of tissue excision, to elucidate the differences between normal and tumorous
breast tissues [29]. Moreover, significant dielectric contrast between normal and tumor
breast tissue in vitro cell lines was observed in several studies [30–32]. Notably, all of these
investigations employed surgically excised breast tissue samples previously diagnosed
as malignant. Finally, the microwave characterization method using open-ended coaxial
probes has been employed for other applications such as hepatic malignancies identification
and skin lesions analysis, where machine learning has also been implemented [33–35].

In this work, a blinded pilot feasibility study is proposed for the clinical assessment of
our custom-designed open-ended coaxial probe in the clinical setting of a multidisciplinary
breast unit of a hospital. The primary objective is to investigate the potential clinical
application of our probe as a supportive tool for pre-classifying biopsy samples based
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on their dielectric properties. This approach aims to provide valuable information to
pathologists, enabling them to prioritize samples for further analysis through standard
histological assessment. The study involves the dielectric characterization of 64 biopsy
samples obtained from 15 patients at Complejo Hospitalario Universitario de Toledo,
Spain, in the framework of a multicentric study to evaluate a new microwave-based
imaging device, MammoWave (UBT Srl, Rivotorto, Perugia, Italy) [36,37]. By employing a
blind experimental methodology, where both pathologists and radiologists are unaware
of the dielectric characterization results, we can accurately assess the effectiveness of our
classification method in facilitating early breast cancer detection.

The remainder of this paper is organized as follows: Section 2 provides details on the
clinical investigation, the electromagnetic characterization set-up used for obtaining the
dielectric parameters, and the experimental procedures conducted in the pilot study. Then,
a section including all obtained results presents the findings of conventional histological
tissues’ assessment and their corresponding electromagnetic characterization, including
a comparison with existing literature data, and the outcomes of the presented rule-of-
thumb for classifying the same tissues based on their dielectric parameters. Additionally,
the statistical analysis, encompassing sensitivity, accuracy, and specificity, is provided to
evaluate the applicability of our method in comparison to histopathology outcomes. Finally,
a discussion and conclusions are presented.

Problem Statement

The primary objective of the study was to explore the potential clinical application
of our custom-designed open-ended coaxial probe as a supportive tool for pre-classifying
biopsy samples based on their dielectric properties. Histological assessment of biopsied
specimens is currently the standard procedure for diagnosing and classifying breast tissue
abnormalities. Nonetheless, this procedure may be time-consuming and subject to inter-
observer variation, resulting in potential delays in treatment decisions due to pathology
turnaround times and, sometimes, non-conclusive results.

To address these issues, we investigated the feasibility of using dielectric charac-
terization as an additional technique in supporting pathologists. Utilizing the different
electromagnetic properties of biological tissues, dielectric characterization has the potential
to provide valuable insights into tissue composition and distinguish benign from malig-
nant samples. The research process followed a blinded methodology, ensuring objective
and unbiased assessment. As depicted in Figure 1, biopsy samples were obtained from
a cohort of patients and subsequently characterized using the open-ended coaxial probe.
Measurements of the dielectric properties of breast tissues allowed for the reconstruction of
their electromagnetic characteristics. The results of conventional histological examination,
the gold standard for diagnosis, were then compared to these findings.
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Using this methodology, the study intended to demonstrate the probe’s potential as a
valuable instrument for real-time tissue classification. The ultimate goal is to support tradi-
tional biopsy methods by offering an objective and quantitative assessment of tissue properties,
aiding pathologists in making informed decisions and prioritizing samples for further analysis.
Properly using such a tool could improve the accuracy and efficiency of biopsy evaluations,
resulting in more timely and accurate diagnoses and better patient outcomes.

2. Materials and Methods
2.1. The Clinical Investigation

The study was carried out in accordance with the principles enunciated in the current
version of the Declaration of Helsinki, the guidelines of Good Clinical Practice (GCP)
issued by ICH, the European Directive on medical devices 93/42/EEC, the corresponding
ISO norms regarding clinical investigations of medical devices for human subjects and
the application of risk management to medical devices [38,39], the European Law, and
regulatory authorities’ requirements.

Clinical data used in this investigation were collected in the context of MammoWave
clinical trials (Clinical Investigation to Evaluate the Ability of MammoWave in Breast
Lesions Detection, ClinicalTrials.gov Identifier: NCT04253366), executed in Hospital Virgen
de la Salud (Complejo Hospitalario Universitario de Toledo), Toledo, Spain, and approved
by the corresponding Ethics Committee (id: 440); MammoWave informed consent was
obtained from all subjects and/or their legal guardian(s).

2.2. Dielectric Properties Acquisition Set-Up

The dielectric properties of the biopsy samples were measured using our custom-
designed open-ended coaxial probe (Figure 2a). This probe consists of a section of a
coaxial cable which is connected to a vector network analyzer (VNA) for the acquisition
of the reflection coefficients (S11). Through appropriate inversion algorithms based on an
equivalent analytical probe model, the tissues’ dielectric properties were reconstructed
in terms of complex permittivity. Our probe was meticulously designed using an opti-
mization procedure to minimize radiation losses and achieve a good compromise between
physical feasibility and compatibility with the employed virtual transmission line model
(VTLM) reconstruction algorithm [19]. This system allows for the accurate estimation of
permittivity of materials having dispersive characteristics over a wide frequency range
and is characterized by its speed and efficiency, utilizing only air and deionized water
as calibration media. Unlike current commercial probes, our custom-designed probe is
specifically tailored for broadband electromagnetic characterization (10 MHz–10 GHz),
eliminating the need for expensive probe kits and cumbersome calibration processes with
open/short/load-type systems. This makes our device highly feasible for clinical use and
accessible for healthcare professionals.
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The open-ended coaxial probe is composed of an inner dielectric, i.e., Teflon (PTFE),
with a relative permittivity (ε′) of 2.1. The external diameter of the probe has been de-
termined using the empirical criterion presented in [19] for selecting the radial aperture,
resulting in a diameter of 1.52 mm. The small size of the probe ensures high accuracy
in characterizing biological samples, making it suitable for detecting both healthy and
malignant tissues.

In this experimental investigation, the reflection coefficients were obtained using a
calibrated VNA (N9918A FieldFox, Keysight, Colorado Springs, CO, USA) within the
frequency range 0.5–9 GHz (Figure 2b). To ensure accurate measurements, the coaxial
probe was slightly pressed against the tissue samples, applying a controlled pressure
to eliminate any air gap between the probe tip and the tissue, since it may adversely
affect the measurements [18]. It has been observed in previous studies that the curvature
radius affects the coupling between the probe and the tip, leading to inaccuracies in the
reconstruction of the dielectric parameters [40–42]. However, by maintaining a minimal
insertion depth of 0.3 mm, it is possible to achieve high precision and accuracy in the
dielectric characterization of both healthy and malignant breast tissue using the presented
probe. Consequently, the characterization data obtained from a 4 mm diameter excised
tissue sample can be considered relevant and reliable for our study.

2.3. Experimental Procedure

The experimental procedure followed the illustrated steps in Figure 3. The first step
involved calibrating the coaxial probe using air and deionized water [19]. This calibration
was fundamental to ensure accurate measurements of the reflection coefficient. By calibrat-
ing the probe in relation to the aperture plane, phase variation associated with its length
was taken into account, resulting in a correction (de-embedding) process [43].
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Once the acquisition set-up was prepared and the probe functionality was confirmed,
the subsequent steps of the experiment were carried out in collaboration with the medical
staff. The aim was to optimize the integration of electromagnetic measurements into routine
clinical practice and minimize the time between tissue excision, dielectric measurement,
and final handling of the samples for pathology analysis.

In the presented pilot investigation, mammographic exams using Digital Breast To-
mosynthesis (Selenia Dimensions, Hologic, Marlborough, MA, USA) were carried out
on study volunteers; subsequently, the corresponding radiologist read the images and
assigned a BI-RADS score to each suspicious lesion using the Breast Imaging Reporting
and Data System (BI-RADS) guidelines [44]. If deemed appropriate by the clinical patholo-
gist responsible, further tests, including other imaging modalities and biopsy procedures,
were performed for pertinent diagnosis. Then, according to clinical guidelines, tissue
samples were obtained by a radiologist using US-guided core needle biopsy or stereo-
tactic (mammography-guided) vacuum-assisted biopsy and placed on laboratory slides.
Typically, 5–6 tissue samples are obtained through core needle biopsy, which involves the
excision of small cylindrical, individual samples. On the other hand, vacuum-assisted
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biopsy is used to extract a cluster of various samples that encompass the entire breast lesion.
To prevent dehydration and tissue degradation, the time between sample excision and
dielectric analysis was kept around 2–3 min. Initially, serum was used for tissue cleaning
following standard practice. However, this practice was deemed invalid, as the serum on
the tissue’s surface altered the reconstructed dielectric properties. Instead of measuring the
tissue’s dielectric parameters, those of the serum were unintentionally captured. The size
of the sample varied, as shown in Figure 4a. Nonetheless, their width and thickness were
at least 4 and 20 mm, respectively, to ensure optimal coupling between the probe tip and
the tissue under test.
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For instance, immediately after tissue excision, electromagnetic characterization of
the fresh samples was performed. Each sample was subjected to one or more dielectric
measurements. If the sample size was small (below 5 mm), only one measurement was
performed. However, if the sample was large enough, 2 or 3 measurements were obtained
from different points. To maintain a systematic approach, the specimens were evaluated
in a sequential order from the bottom-up of the laboratory slide and from right to left,
as depicted in Figure 4c. After handling each tissue sample, the probe tip was carefully
cleaned to prevent contamination.

Once the acquisitions were completed, the dielectric parameters (permittivity and
conductivity) were reconstructed in real-time with our inversion algorithm. The obtained
dielectric characterization results were then compared to existing dispersive models found
in the literature [45,46]. To differentiate between healthy and tumor tissues, a percentage
error formula was implemented as follows:

% Error =
∣∣∣∣VCalculated −VTheoretical

VTheoretical

∣∣∣∣× 100 (1)

where VTheoretical represents a quantity that has been proven or is widely accepted as true;
specifically in our case, it refers to the theoretical literature dispersive dielectric properties
of breast tissues. On the other hand, VCalculated represents a quantity derived numerically or
experimentally, which in our work represents the dielectric properties of the breast tissues
extracted using our dielectric characterization method. The percentage error measures the
difference between the estimated value and the actual value, expressed as a percentage.
This approach allows us to assess the magnitude of the error relative to the true value. Thus,
in this study, we compare the dielectric parameters obtained from our open-ended coaxial
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probe with the theoretical literature values for the dielectric parameters of the breast tissues
across the entire frequency range of interest.

To achieve optimal classification, a threshold of less than 20% (both for permittivity
and conductivity) for the percentage error was set. This threshold was used to determine
whether the tissue sample was healthy or malignant. The percentage error was calculated
across the entire frequency range (0.5–9 GHz) between the dielectric properties extracted
by our characterization method and literature data of healthy (adipose and fibroglandular)
or tumor tissues. If the error value for either permittivity or conductivity with respect to
the used dispersive models was below the 20% threshold, the tissue sample was classified
as healthy or tumor accordingly. Specifically, based on the following criteria, a positive (P)
or negative (N) score was assigned: If the presence of cancer for each sample is equal or
greater than 50%, considering all analyzed points, the sample was classified as malignant
or positive (P) and stored in container A. Otherwise, samples were stored in container B as
benign tissues. If consistent results were obtained for multiple samples taken from the same
patient (indicating either healthy or tumor tissue), they were placed in a single container
(A or B). Tissue samples were immersed in formalin for preservation before pathology
analysis (Figure 4b).

The choice of a 20% threshold was based on several considerations. Firstly, the
threshold was set conservatively to ensure high precision and reliability in the classification.
By allowing a significant margin of error, consistent and robust results were required to
exceed this threshold. This approach minimizes the risk of misclassification of tissues and
reduces the likelihood of diagnostic errors. Secondly, the threshold accounts for the inherent
variability in the dielectric properties of tissues. Even within the same category (healthy
or malignant), the dielectric parameters can vary due to individual patient differences,
intra-tumoral heterogeneity, or limitations of the measurement techniques [47]. By allowing
a wider threshold, the classification process accommodates this variability and ensures a
more reliable and robust classification.

Once the electromagnetic characterization was completed and samples were labelled
in the specific containers, they were sent to the pathology anatomy laboratory for conven-
tional histological assessment. It is important to note that this study was conducted blindly,
meaning the pathologist was unaware of the dielectric properties’ characterization results
beforehand; the containers’ labelling (A or B) was kept unknown to the receiving patholo-
gist responsible for the conventional histological assessment. The pathologist examined the
contents of the labeled containers and produced a report in which his conventional histo-
logical outcomes were shown for each container. Finally, dielectric, and histopathological
assessments were compared. Each step of the experimental procedures was carried out
within the regular medical routine, and no additional biopsy procedures were conducted
due to this experimentation.

3. Results and Discussion
3.1. Experimental Results

All dielectric measurements were conducted at the Breast Imaging Department of the
University Hospital of Toledo (formerly named Hospital Virgen De La Salud)—Complejo
Hospitalario Universitario de Toledo, Spain. More precisely, biopsy specimens were mea-
sured immediately after excision, assuming their temperature was close to body tempera-
ture, while the measurement equipment (VNA and probe for open coaxial cable) had been
set up in a temperature-controlled room (22 ◦C) to ensure the stability of the system heating
and high measurement accuracy. Specifically, the dielectric parameters of excised breast
tissues were derived by using a custom-designed open-ended coaxial probe connected to
a VNA. The reflection coefficients were recorded with 1001 frequency points on a linear
scale across the microwave frequency range of 0.5–9 GHz. Prior to conducting the elec-
tromagnetic characterization and analyzing the dielectric parameters, the probe system
underwent calibration, as described earlier. Then, samples were dielectrically character-
ized via the open-ended coaxial probe, as depicted in Figure 5a. The collected data were
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then processed using our dedicated in-house algorithm and compared to the dispersive
literature models. In total, 162 points from 64 excised breast tissue samples collected from
15 different volunteers were dielectrically characterized and included in the study. Tissues
representing different breast lesions and radiological conditions, including both normal,
healthy, and cancerous breast tissues, were gathered and analyzed.
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Table 1 provides a summary of collected data and results of the study, including
the following information for each subject: study identifier, the number of excised sam-
ples collected, the number of points dielectrically characterized per sample, the output
from mammography radiological assessment, the output based on our proposed rule-of-
thumb using dielectric characterization, and the gold standard output representing the
histological outcome.

As shown in Table 1, in most cases, the results of our classification obtained through
open-ended coaxial probe are in good agreement with the corresponding pathology analysis.
A notable example is the analysis of samples from subject 10, which demonstrates the
successful functionality of the device (Figure 6). The dielectric characterization enables the
differentiation between malignant and benign lesions, and the results are consistent with
the literature data for the respective malignant lesion and adipose tissue.
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sive model [45].
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Table 1. Subjects’ details, dielectric characterization, and histopathology outcomes.

Subject ID
Number of

Excised Tissue
Samples

Number of Points
Analyzed

Mammographic
Lesion’s BI-RADS

Score

Probe
Rule-of-Thumb

Output
Histological Outcomes

1 2 3 4A Both samples
positive (P)

No evidence of neoplasia
(Benign)

2 6 11 4B 3 positive (P) and 3
negative (N) samples

Invasive ductal
carcinoma, luminal
(Malignant) in all
analyzed samples

3a (Left breast, inner
quadrant) 4 10 4B 1 positive (P) and 3

negative (N) samples
Fibrosis (Benign) in all

analyzed samples
3b (Left breast, outer

quadrant) 4 6 4B 2 positive (P) and 2
negative (N) samples

Fibrosis (Benign) in all
analyzed samples

4 5 11 5 All samples positive
(P)

Invasive ductal
carcinoma (with in situ

component) grade II,
Her2-

5 3 7 5 All samples positive
(P)

Invasive ductal
carcinoma grade II,

luminal

6 3 10 5 All samples positive
(P)

Invasive ductal
carcinoma (with in situ

component) grade II,
Her2+

7 2 16 3 All samples negative
(N)

Stromal collagenization
compatible with stromal

hyperplasia

8 3 6 3 All samples negative
(N)

Benign fibroepithelial
lesion in all analyzed

samples

9 5 13 5 All samples positive
(P)

Invasive ductal
carcinoma (with in situ

component) grade II

10 3 8 5
2 positive (P) and

1 negative (N)
samples

Invasive ductal
carcinoma grade II in (A),

adipose tissue in (B)

11 5 12 5 All samples positive
(P)

Invasive ductal
carcinoma grade II,

intermediate luminal

12a (Right Breast) 3 8 5
1 positive (P) and

2 negative (N)
samples

Microinvasive carcinoma
grade I, luminal A

12b (Left Breast) 3 6 5
2 positive (P) and

1 negative (N)
samples

Microinvasive carcinoma
grade I, luminal A

13 7 20 4B
2 positive (P) and

5 negative (N)
samples

Adenosis and
mastopathy in all
analyzed samples

14 3 7 4B
2 positive (P) and

1 negative (N)
samples

Invasive ductal
carcinoma grade II,

luminal A in all analyzed
samples

15 3 8 5 3 positive (P) samples Fibroadenoma in all
analyzed samples

However, there were instances where false positives occurred, meaning samples were
classified as malignant lesions but were ultimately determined to be benign. Some authors
have highlighted the substantial variation in the frequency response of cancerous tissue
samples due to the non-homogeneity of breast tissue [27,48]. Different pieces of tissue
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may contain varying proportions of adipose, fibroconnective, and glandular tissues. The
complex permittivity has an average variation between high water content healthy and
cancerous tissue of only about 10% [27,48]. Consequently, distinguishing between them
becomes challenging.

According to Sugitani et al., adipose tissues have a dielectric constant approximately
four times lower than that of cancerous tissues [45]. As a result, they can be effectively
distinguished, as demonstrated in the previous case shown in Figure 6. On the other
hand, the differences between cancer and fibroglandular tissues are not significant. In
fact, the dielectric constant of cancerous tissue (ranging from approximately 35 to 65) are
very similar to those of fibroglandular tissues (ranging from 15 to 50). This similarity may
elucidate why fibrosis or fibroadenoma was misidentified as carcinoma through dielectric
characterization, as observed in subjects 3 and 16, for example.

Furthermore, we verified that most of the malignant samples that were ultimately
identified as false positives were soaked in blood, as illustrated in Figure 7. Notably, the
results obtained from subjects 3 and 15, depicted in Figures 8 and 9, respectively, are
noteworthy. We compared these findings with the dielectric properties of blood and found
them to be quite similar to those of cancerous samples [46]. Consequently, distinguishing
between the two becomes challenging.
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Figure 7. Excised breast tissue samples extracted using VAB placed on laboratory slides: subject
3b (a) and subject 15 (b).
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Figure 8. Dielectric properties: dielectric constant (a) and conductivity (b) extracted from excised
tissues’ electromagnetic characterization of subject 3b and compared with Sugitani’s and Gabriel’s
dispersive models [45,46].
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Figure 9. Dielectric properties: dielectric constant (a) and conductivity (b) extracted from excised
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dispersive models [45,46].

3.2. Statistical Analysis

The sensitivity and specificity of a decision criterion can be used to describe its diag-
nostic performance. Sensitivity, also referred to as the true positive (TP) rate, indicates the
percentage of breast cancer cases accurately diagnosed with the disease. A false negative
(FN) occurs when a patient with a malignant lesion (in our case, breast cancer) receives a
negative diagnosis. Specificity, also known as the true negative (TN) rate, represents the
percentage of healthy cases correctly identified as not having breast cancer. Finally, a false
positive (FP) is defined when the test indicates the presence of the disease, but the patient
does not actually have it. For instance, sensitivity, specificity, and accuracy are related to
the TP, FP, TN, and FN values [49,50]:

Sensitivity =
TP

TP + FN
(2)

Specificity =
TN

TN + FP
(3)

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

This statistical analysis enabled us to evaluate the effectiveness of our proposed
method in detecting the presence or absence of breast cancer in tissues samples. Specifically,
we conducted a sensitivity and specificity analysis by comparing the outcomes of the
presented rule-of-thumb with those of the pathologists, as histological assessment is con-
sidered the gold standard in diagnosing breast cancer. The collected data were processed
using MatLab and Excel spreadsheets.

As depicted in Table 2, the confusion matrix was computed, which indicates the num-
ber of cases correctly or incorrectly classified. The calculated results for our characterization
system compared to the gold standard are as follows: sensitivity of 81.6%, specificity of
61.5%, and accuracy of 73.4%. In a study conducted by Martellosio et al., the real part of
the dielectric permittivity was utilized to discriminate between normal and tumor tissues
by selecting specific cut-off values at two frequencies (1 and 50 GHz). At 1 GHz, the
achieved sensitivity was 92.6%, and specificity was 72.7%. On the other hand, at 50 GHz,
the obtained sensitivity and specificity were 71.4% and 66.8%, respectively [29].

As aforementioned, our gold standard was the conventional histological assessment.
The performance of the presented open-ended coaxial probe system exhibits high sensitivity
and moderate specificity. The high sensitivity can likely be attributed to two factors: the
small diameter of the probe and its optimal design in terms of length. In fact, the probe was
specifically designed to reduce radiation losses. As a result, the occurrence of the fringing
field effect in air can be avoided, allowing for optimal electric field confinement [41]. Con-
sequently, the measurement of the reflection coefficient becomes more accurate, leading to
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improved reconstruction of the dielectric properties. Instead, the moderate specificity could
be probably related to the similarity between blood and cancer dielectric properties [27].

Table 2. Confusion matrix used in our breast biopsy tissue classification method.

Status of Patient According to “Gold Standard
(Histological Assessment)”

Presence of
Malignant Lesions

Absence of
Malignant Lesions

Presented
Rule-of-Thumb

Output

Positive TP
31

FN
7

Negative FP
10

TN
16

3.3. Limitations

This investigation has some limitations. Specifically, using a threshold (predetermined
cut-off) in rule-of-thumb approaches for diagnosis may lead to the following: (1) a lack of
individual variability, as individual subjects may have unique characteristics and variations
in their tissues’ dielectric parameters, (2) overgeneralization as cancer types, age groups, or
demographic factors can influence the optimal threshold for diagnosis, making it challeng-
ing to apply a single rule-of-thumb across diverse populations, (3) limited specificity to
differentiate between similar conditions due to false positives, and, summarizing, a lack of
personalized approach as rule-of-thumb thresholds are inherently standardized and may
not consider individual patient characteristics, comorbidities, or personalized factors that
influence disease diagnosis.

Future developments will be devoted to improving the performance of the system
and developing strategies to approach personalized medicine, tailoring breast tissues’
classification to individual patients. As an example, IoT could enable us to gather real-time
data from connected medical devices and the adaptation of diagnostic thresholds in a more
personalized manner [51].

4. Conclusions

This feasibility study assessed the initial use of a functional open-ended coaxial probe
to discriminate between healthy and malignant breast tissues. These methods may have a
wide range of clinical applications in different fields and settings as they are simple to use,
do not require dedicated calibrations or specific sample manipulation, and provide rapid
and inexpensive tissue pre-classification when quick characterization results are required.

Achieving optimum accuracy in tissue classification may offer probe-based systems
interesting applications in clinical settings that should be investigated in prospective,
dedicated trials. Specifically, this kind of device may aid in prioritizing histological and
immunohistochemical assessments of samples with high chances of being malignant accord-
ing to their dielectric parameters. Furthermore, dielectric characterization may facilitate the
evaluation of benign lesions, thereby reducing patients’ stress and unnecessary expenses
associated with additional examinations. Lastly, real-time applications in tissue discrimi-
nation may be relevant in surgery, especially for determining optimum margins for tissue
excision, allowing conservative surgeries and health tissue preservation.
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