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Abstract: Liver cancer is a significant contributor to the cancer burden, and its incidence rates have
recently increased in almost all countries. Hepatocellular carcinoma (HCC) is the most common type
of primary liver cancer and is the second leading cause of cancer-related deaths worldwide. Because
of the late diagnosis and lack of efficient therapeutic modality for advanced stages of HCC, the death
rate continues to increase by ~2–3% per year. Circulating tumor cells (CTCs) are promising tools for
early diagnosis, precise prognosis, and follow-up of therapeutic responses. They can be considered to
be an innovative biomarker for the early detection of tumors and targeted molecular therapy. In this
review, we briefly discuss the novel materials and technologies applied for the practical isolation and
detection of CTCs in HCC. Also, the clinical value of CTC detection in HCC is highlighted.

Keywords: circulating tumor cells; hepatocellular carcinoma; early diagnosis; HCC biomarker

1. Introduction

Cancer is a group of disorders in which abnormal cell proliferation and irreversible
changes in cellular phenotype result in uncontrolled cell mass growth. Malignancies are
the second leading cause of death worldwide [1]. More than 100 types of cancers are
known, and they were responsible for an estimated 10.0 million deaths in 2020 [2,3]. Liver
cancer is the fourth leading cause of death worldwide and has a high rate of mortality in
Asia and Africa. Epidemiological data show that HCC is the fifth most common cancer in
men and the seventh in women. Due to the variable prevalence of etiologies, the global
incidence of HCC is different, from 72% in Asia to 5% in North America [4]. Currently,
therapeutic strategies such as surgery, chemotherapy, radiotherapy, and ignoring inter- and
intra-patient heterogeneity are used to treat HCC patients [5–7]. Due to the small size and
lack of symptoms of the primary tumors, early diagnosis in most types of cancer remains
challenging [8]. Therefore, precision oncology using fluid-phase biopsy is indispensable.
Liquid biopsy, or fluid-phase biopsy, has promising potential for analyzing the genome
basis of cancerous patients, treatment responses, minimal residual disease, and noninvasive
therapy resistance [9]. Liquid biopsy is a noninvasive and real-time method used to
analyze circulating components such as cell-free DNA (cfDNA) [10], cell-free tumor DNA
(ctDNA) [11], extracellular vesicles (EVs) [12], tumor-educated blood platelets (TEPs) [13],
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and circulating tumor cells (CTCs) [14]. Because of the noninvasive nature of the method,
its real-time capability, and molecular heterogeneity, CTCs play a vital role in precision
oncology [6]. In spite of their very low concentration in blood and other body fluids, CTCs
are promising cell informatics for the diagnosis, prognosis, and follow-up of therapeutic
responses [15]. Therefore, CTCs can be considered as biomarkers for the early detection
of tumors, targeted molecular therapies for cancer patients, and for determining CTC
phenotypes in preclinical models [15–17]. In the clinic, it was shown that CTC-based
micro-devices could be an ideal modality for point-of-care testing. However, due to their
heterogeneity, reliable detection of CTCs in body fluids is still a major limitation. Indeed,
CTCs derived from different tissues have various characteristics, such as different sizes,
markers, and immune-phenotyping profiles, which make their detection more challenging.
Furthermore, several other limiting factors such as damage and fragmentation, both in vivo
or in vitro during the isolation process, hamper their clinical application [18]. In this
review, we briefly discuss the novel materials and technologies for their isolation and early
detection. Also, the clinical value of their detection in cancers is highlighted.

2. Biology of Circulating Tumor Cells

CTCs were described for the first time by Ashworth in 1869 as cells in the blood
of metastatic cancer patients with similar properties to the primary tumors [19]. CTCs
represent a small fraction of the cells in the blood and are defined as cancer cells that
have departed from a solid tumor lesion and entered the bloodstream [20]. CTCs are
found in the bloodstream of patients as isolated CTCs (iCTCs) or as circulating tumor
microemboli (CTMs) [21]. Some experiments have supported that tumor cells can spread
even during the early stages of evolution [22,23]. Despite their origin, CTCs are distinct
from primary tumor cells [24]. CTCs gain the epithelial-to-mesenchymal transition (EMT)
potential that helps them dissociate from the primary tumor and facilitates their entry into
the bloodstream. CTCs can disseminate from the cell clusters and exhibit stemness features
that increase their metastatic potential [24,25]. It is worth mentioning that most CTCs are
eliminated in the circulation, and only a few of them survive and reach the other organs [25].
The molecular characteristics of CTCs in the early stages of tumor evolution could be a
promising tool for early diagnosis and the prevention of metastasis. A panel of CTCs’
molecular markers can be used to track these cells in the circulation. The vast majority of
such markers are those related to epithelial markers, such as the epithelial cell adhesion
molecule (EpCAM) [26]. EMT-related molecules can also be used. During the EMT process,
the expression of epithelial markers such as E-cadherin, ZO-1, claudins, and occludins
decreases, while the expression of mesenchymal markers, including vimentin, N-cadherin,
fibroblast-specific protein 1, and fibronectin, increases [27]. EMT-related transcription
factors such as SNAIL and the zinc finger E-box-binding homeobox (ZEB) families can be
used as a marker, but because of their cytoplasmic or nuclear origin, they are not currently
available for CTC detection [27]. EMT-related proteins such as E-cadherin, vimentin, and
TWIST are accessible markers, and thus were analyzed using flow cytometry sorting,
immunostaining, and fluorescence in situ hybridization (FISH) staining technologies to
track the CTCs. Nevertheless, single-cell CTC sequencing technologies can be used at the
RNA level to cover all the EMT-related markers discussed [28]. Based on different cancer
types, other CTC biomarkers, including estrogen receptor [29], folate receptor [30], human
epidermal growth factor receptor-2 (HER2) [31], prostate-specific membrane antigen [32],
and survivin [33], have been used in the clinic [25]. Due to the clonal selection of CTCs or
clonal acquisition, there is relative discordance in the expression of some markers between
the primary tumor and the CTCs [25].

CTC Entry into the Circulation and Metastasis

To establish the metastasis process, cancer cells must move from the primary tumor
into the bloodstream, access the target tissue, colonize, and ultimately grow in the secondary
tissue. Indeed, CTCs are an intermediate stage of metastasis, and can actively or passively
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access the bloodstream. CTCs can circulate in the bloodstream as single cells or clusters.
The cluster cells have an increased metastatic potential, while the single cells have a longer
half-life [34]. Due to physical and oxidative stress, a lack of growth factors and cytokines,
as well as anoikis, most CTCs in the bloodstream cannot survive, but a few remain alive,
actively extravasate into the target tissue, and begin to divide and colonize [22]. EMT
is the main hypothesis for the intravasation process of tumor cells [35]. In the primary
tumor, EMT facilitates intravasation into the bloodstream and increases the migration
potential of cancer cells. Moreover, when the cancer cells are covered with platelets in the
bloodstream, the EMT phenomenon may occur [36]. The reverse process, mesenchymal
to epithelial transition (MET), takes place when the CTC cells extravasate and continue
to proliferate in the secondary organ [35]. Current knowledge about the mechanisms
of CTC generation and their intravasation, circulation, extravasation, proliferation, and
colonization are summarized in Figure 1.
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Figure 1. Schematic representation of CTC generation, intravasation, circulation, extravasation,
proliferation, and colonization. In the invasion process, cancer cells actively break down the basement
membrane, migrate through the extracellular matrix, and enter the circulation. CTCs detach from
primary tumors in the form of both single cells and cell clusters. Once the CTCs enter blood
circulation, they are covered with platelets, and this coating induces the EMT phenotype in the CTCs.
In secondary sites, CTCs extravasate and colonize in the tissues, where MET is induced.

3. Novel Strategies for CTCs’ Isolation in HCC

CTCs have undoubtedly a great clinical significance and can reflect valuable informa-
tion in the diagnosis, prognosis, and response to treatment of cancer patients. However,
their extraordinary rarity in the bloodstream has created an important challenge in their
study and the evaluation of their yield [37]. In HCC patients, only a range of 0–86 CTCs
were detected in 5 mL of blood [38]. Therefore, technologies with high specificity and
sensitivity are required to capture CTCs for downstream analysis. In recent years, sev-
eral technologies have been employed; these are generally classified into two categories,
label-dependent and label-independent methods, which are discussed below.
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3.1. Label-Dependent Strategies

Label-dependent methods are among the most commonly used techniques to isolate
CTCs, and rely on the interaction of affinitive agents (e.g., antibodies or aptamers) tethered
on device surfaces or magnetic beads with cell membrane markers [39]. Positive and
negative enrichments are two main subcategories of label-dependent techniques. Positive
enrichment methods are based on the use of antibodies against tumor-specific antigens that
are present on the membrane of the CTCs. Therefore, these techniques can directly isolate
CTCs. Inversely, the negative enrichment methods use antibodies that bind to antigens on
the surface of blood cells (e.g., CD45), leading to the removal of nonspecific cells and the
enrichment of the CTCs indirectly [40].

To date, various specific tumor markers, including HER2, PSA, EGFR (epidermal
growth factor receptor), EpCAM, and MUC1 (mucin-1) have been used to isolate CTCs;
among these, EpCAM has been extensively used [41,42]. This marker is often expressed
in cells with epithelial origins and is not present in blood cells. Therefore, it can be used
to isolate CTCs originating from epithelial tumors (e.g., HCC) [43]. Racila et al. reported
that cancer cells could be detected in the circulation by using immunomagnetic and flow
cytometry techniques [44]. They detected CTCs based on their expression of EpCAM and
non-expression of CD45. These markers would become the basis for the initial definition of
CTCs and were used to develop some CTC detection methods like the CellSearch® System
(Figure 2) [45]. CellSearch® is an example of an EpCAM-affinity-based platform for CTCs’
enrichment. This system is the only FDA-approved method for capturing CTCs that utilizes
ferrofluid nanoparticles conjugated with anti-EpCAM antibodies to capture CTCs in 7.5 mL
blood samples. Isolated CTCs are then fixed and stained with DAPI and a cocktail of
fluorescence-tagged antibodies against epithelial cytokeratins (CKs) and CD45 (leukocyte-
specific marker) markers. DAPI+/EpCAM+/CK+/CD45− cells are considered to be CTCs,
while DAPI+/CD45+ cells are considered to be leukocytes [45]. In 2015, Kelley et al. used
the CellSearch System to isolate EpCAM-positive CTCs in metastatic HCC samples [46].
In another study conducted by Sun et al., the prognostic value of CTCs isolated with the
CellSearch® System in HCC patients undergoing curative resection was investigated, and
EpCAM-positive CTCs were detected in 66.67% of patients prior to resection [47]. The
conjugation of EpCAM-affinitive agents to magnetic beads, and then the collection of the
captured CTCs through a magnetic field, is another popular method that has been used to
enrich CTCs from the blood of patients [39]. In 2015, Pilapong et al. developed magnetic
nanoparticles conjugated to anti-EpCAM DNA-based aptamers to isolate CTCs related to
HCC [48]. However, the lower sensitivity and recovery rate of CTCs significantly limited
its wide clinical application [24].

Although many studies highlighted EpCAM as a suitable marker to be used for
isolating CTCs in HCC, only 35% of all HCC cases were positive for this marker, which
can significantly reduce the sensitivity of this method [49]. Moreover, during the EMT
process in the metastatic cascade, the expression of EpCAM is considerably inhibited,
leading to the escape of CTCs with highly metastatic properties from the EpCAM-based
isolation systems [26,50]. Due to the limitations of the epithelial marker EpCAM, the
application of positive selection strategies that target mesenchymal (e.g., vimentin or N-
cadherin), stem cell (e.g., CD133), or tumor-specific markers can be beneficial [40]. The
asialoglycoprotein receptor (ASGPR) is a transmembrane protein commonly found on
the surface of hepatocytes and HCC cells. Xu et al. developed a system that isolates
CTCs of the HCC that is based on the interaction of ASGPR with its ligand [51]. In
this system, the cells were first bound to the biotinylated ligand of ASGPR and then
were magnetically separated through anti-biotin antibody-conjugated magnetic beads. In
another study, researchers developed anti-ASGPR antibody-coated magnetic beads that
could detect CTCs with high sensitivity and specificity in HCC [52]. Compared with the
previous system based on receptor–ligand interaction, this system had a higher capturing
efficiency. Although this approach is a better strategy to overcome the low sensitivity of
EpCAM-based systems, capturing CTCs with a single marker is almost ineffective due
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to the heterogeneous nature of HCC; therefore, a combination of markers is needed. In
2018, a novel subtraction enrichment immunostaining-fluorescence in situ hybridization
(SE-iFISH) strategy was developed to detect the HCC-CTCs. This technique was based
on the comprehensive detection of in situ phenotypic and karyotypic characterization of
hepatocellular CTCs (CD45−/CD31−) in patients subjected to surgical resection [53,54].
In addition, a microgravity array (MCA) system was also used to detect CTCs and their
mRNA expression in HCC patients [55].
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for the isolation and identification of CTCs.

Apart from magnetic nanoparticles, other functionalized nanostructured materials
have also been used for the isolation and detection of CTCs. In 2016, Wang et al. de-
signed a chip (CTC−BioTChip (to isolate CTCs from HCC [53]. In this chip, a hydroxyap-
atite/chitosan nanofilm that has a good cell-preferred nanoscale topography and is coated
with cell-surface carbohydrate sialyl Lewis X was used to improve the capturing of CTCs.
In another study in 2019, Wu et al. created a reduced graphene oxide film for CTC detection
that was modified with an anti-EpCAM antibody and galactose-rhodamine-polyacrylamide
nanoparticles. The fluorescence was quenched with a reduced graphene oxide film [54]. In
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this system, CTCs were first captured with anti-EpCAM antibodies, and then galactose-
rhodamine-polyacrylamide nanoparticles were endocytosed into CTCs by the ASGPRs
present on their surface, resulting in high fluorescence recovery. This platform could detect
as few as five CTCs in 1 mL of the spiked blood sample. The volume of blood needed for
CTC analysis using CTC−BioTChip depends on factors such as the device design, channel di-
mensions, and the specific application. Typically, the recommended sample volume ranges
from a few microliters to milliliters, depending on the specific experimental requirements.

Microfluidic systems have also been successfully used to isolate CTCs from HCC
based on a positive selection strategy [55]. Zhang et al. developed a microfluidic chip that
provided the isolation of viable CTCs. The channels of this system had small dimensions
that facilitated the local topographic interactions. Furthermore, because the channels were
coated with an ASGPR ligand, asialofetuin, efficient capturing (>85%) of CTCs related
to HCC was achieved [56]. In 2018, Court et al. used a microfluidic chip, NanoVelcro,
coated with a cocktail of antibodies targeting surface markers including ASGPR, glypican-3,
and EpCAM (Figure 2) [57]. This microfluidic system provided enhanced topographic
interactions while coated antibodies enabled the efficient capturing of CTCs. This platform
could detect CTCs in 97% of patients. The required sample volume for CTC analysis in
microfluidic systems ranges from microliters to milliliters. The exact volume depends on
various factors such as the device design, channel dimensions, and sensitivity. Smaller
microfluidic devices may require lower sample volumes, while larger devices or high-
throughput systems may handle larger volumes [58].

Although the positive selection strategy is an effective approach for the isolation of
CTCs, due to the heterogeneity of the tumor, even a combination of antibodies targeting
different cell surface antigens may not be a suitable approach. Negative selection strategies
can solve this issue by depleting background blood cells using an anti-CD45 antibody [40].
Therefore, this method is suitable for downstream analyses such as genetic assays, CTC
culture, and xenografts [59,60]. Currently, this approach has been successfully applied in
several studies to isolate HCC-CTCs. Liu et al. utilized magnetic beads coated with anti-
CD45 antibodies to extract leukocytes and enrich CTCs [61]. Compared with the ASGPR
positive-selection strategy, this method could achieve a higher recovery of spiked HCC
cells. Despite the higher sensitivity of the negative selection strategies than the positive
enrichment techniques, these methods still suffer from much lower purity [40].

3.2. Label-Independent Methods

Unlike label-dependent techniques, which rely on surface markers to capture CTCs,
label-independent methods use the differences in the physical properties of CTCs and
blood cells (e.g., size, density, etc.), thus preventing the escape of CTCs that do not express a
specific marker [37,42]. Furthermore, because isolated CTCs are not bound to any antibody,
they are easier to process for downstream applications [42].

3.2.1. Size and Deformability

One of the most popular methods for isolating CTCs is the size-based technique.
These methods typically benefit from the size differences between CTCs and normal
hematological cells because most CTCs are larger than normal hematological cells [62].
So far, different types of filters with different materials have been developed to capture
CTCs. Isolation by size of tumor cells (ISET®) is a filtration-based technology developed in
2000 by Paterlini-Bréchot and her colleagues to isolate CTCs (Figure 2) [63]. This system
has been successfully used for the enrichment of CTCs from blood samples in liver cancer
patients [64]. In 2014, Morris et al. compared the ability of CellSearch® and ISET® to
detect CTCs from HCC [65]. Using the ISET® system, CTCs were identified in 100% of
HCC patients, while CellSearch® identified CTCs in only 28% of cases. The ISET® system
generally requires a volume of blood ranging from 5 to 10 mL for CTC analysis. This
volume is processed using specialized ISET® filtration devices and following associated
protocols [66]. Although filtration allows the rapid and convenient isolation of CTCs, it
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still faces challenges. CTCs are highly heterogeneous; whereas some CTCs are bigger
than blood cells, others are the same size as or even smaller than circulating leukocytes.
Therefore, this technique is able to isolate only CTCs larger than blood cells and is often
unable to enrich smaller CTCs [42]. Another challenge is the regular application of tumor
cell lines in the initial validation process. Because CTCs from clinical samples of cancer
patients are significantly smaller than cancer cell lines, results are irrelevant when cells
from tumor cell lines are used for validation [67]. Furthermore, filtration systems face
clogging, and their intense tension can affect the viability of the CTCs [40].

Deformability is another physical characteristic that has been used for CTC isolation.
Bagnall et al. compared the deformability of CTCs and normal hematological cells [68].
They showed that CTCs and WBCs have different deformability. The advantages of this
approach are simplicity and low cost. Parsortix™ is a microfluidic-based system that traps
CTCs based on their size and deformability. In this technology, whole blood passes through
the filtration cassettes, and CTCs are trapped in the cassettes based on their different size
and deformability compared with other blood components [69]. This system can isolate
viable CTCs usable for downstream analysis (Figure 2). The Parsortix™ system typically
requires a volume of blood ranging from 5 to 20 mL for CTC analysis [69].

3.2.2. Density

Density gradient centrifugation is the early technique reported to isolate CTCs. Indeed,
a sample with different cell populations is subjected to centrifugation, the different types
of cells pass through the density gradient, and each is suspended at the point where its
density equals the surrounding medium. Therefore, following blood density gradient
centrifugation, CTCs can be separated from the denser cells [70]. In 1950, Fawcett et al.
used albumin density centrifugation to isolate tumor cells from other cells in peritoneal
fluid [71]. However, using albumin as a flotation medium was expensive and difficult to
prepare. In 1959, Seal et al. used silicon blending oil as a biologically inert and inexpensive
floating medium to isolate CTCs from blood samples [72]. Various density gradient media
like Percoll and Ficoll have also been developed, each of which has its own strengths
and weaknesses. OncoQuick® is one of the novel density gradient centrifugation-based
technologies designed for CTC isolation (Figure 2) [73]. In this system, a porous membrane
is placed in the 50 mL polypropylene centrifugation tube, which prevents mixing of
the sample with the separation medium located in the lower compartment. Following
centrifugation, cells are separated based on their buoyant density. Accordingly, denser
cells (e.g., red blood cells (RBCs) and granulocytes) pass through the membrane and enter
the lower compartment. At the same time, CTCs remain in the interphase layer formed
between the plasma and the separation medium in the upper compartment. RosetteSep™
CTC enrichment cocktail, STEMCELL Technologies Inc., Vancouver, BC, Canada, is another
density gradient centrifugation-based platform that enriches CTCs by combining this
method with antibodies to eliminate unwanted cells [37]. OncoQuick® typically requires
a blood sample volume ranging from 1 to 10 mL for CTC analysis [37]. This strategy has
been successfully applied to capture CTCs from HCC (Figure 2) [74].

Although density gradient centrifugation is one of the most widely used strategies to
isolate CTCs, due to its low sensitivity and the risk of contamination with other cells, this
method is usually used in combination with other applications to increase the purity of the
recovered CTCs [39]. For example, Guo et al. used Ficoll density gradient centrifugation
followed by sequential incubation of the peripheral mononuclear blood cells with anti-
CD45 and anti-Ber-Ep4 antibody-coated magnetic beads for further enrichment [75]. In
another study in 2019, Hamaoka et al. used density gradient centrifugation along with an
immunogenetic positive enrichment method to capture glypican-3 (GPC3)-positive CTCs
in the HCC blood samples [76].
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4. Molecular Analysis of CTCs

Due to the vast degree of heterogeneity, variability in isolation technologies, potential
biases during downstream molecular processing, and lack of reproducibility from one
study to another, CTC clinical utilities remain relatively limited. Abundant molecular data
derived from genomic, transcriptomic, proteomic, and metabolomic levels could help in
developing specific CTC-based biomarker panels and, therefore, in disease monitoring [77].
Nevertheless, in bulk tumors, only average profiles of different sub-clones have been
reflected. The heterogeneity landscape of HCC cells at single-cell resolution remains also
largely unknown. Deep sequencing of somatic mutations to enumerate copy number
variation at the level of single cancer cells has led to an increased recognition of intra-
tumor heterogeneity (ITH) during cancer progression. The results of a study using the
CanPatrolTM technique provided evidence for the CTC-WBC cluster as a potential predictor
of disease-free survival (DFS), overall survival (OS), and poor prognosis of HCC [78].
Although various molecular markers have been used to detect CTCs in HCC, with the
aim to improve prognosis and treatment selection, accurate biomarker identification is a
critical “unmet need” [40]. In this regard, a novel multi-marker CTC enrichment assay with
high efficiency and accuracy has been developed [79]. To enhance the capture efficiency, a
synergistic chip with a deterministic lateral displacement (DLD)-patterned microfluidic
design is employed, which effectively combines the complementary effects of anti-ASGPR
and anti-EpCAM antibodies. This strategic alignment of the antibodies on the chip aims
to maximize the efficiency of capturing the target cells. The CTC-capture optimizing was
100% (45 out of 45) in HCC patients, with 97.8% and 100% sensitivity and specificity,
respectively [80]. Over the last decade, advances in molecular methods have generated
a range of successful strategies for the analysis of single CTCs [81]. The application of
cell-free DNAs (cfDNAs) as molecular targets can be used for the detection of HCC-CTCs.
cfDNA-based technologies have several advantages, such as real-time monitoring of the
genetic landscape of the tumor, high sensitivity and specificity, and being a noninvasive
biopsy procedure. However, the application of this technology has faced some challenges,
including ensuring the purity of cfDNA samples, the genetic heterogeneity of tumors,
and the development of standardized protocols for the analysis of cfDNA data [82]. In
Table 1, the methods for single-cell analysis at the molecular level and their advantages
and disadvantages are briefly described.
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Table 1. Summary of single-cell analysis methods used for CTCs.

Method Application Advantages Disadvantages

Genomic

Pure PCR-based amplification Amplifying specific sites in the genome Better uniformity of amplification

Uneven amplification,
low coverage,

amplification errors,
allele dropout

MDA-based methods in HCC Point mutations amplifying to analyze the genome of
patient-derived CTCs Higher fidelity than PCR-based methods Amplification bias,

allele dropout

MALBAC combines MDA and
PCR-based methods Analysis of single-nucleotide variants (SNVs) Intermediate coverage and uniformity Allele dropout

LIANTI Amplifies T7 promoter-tagged DNA fragments into thousands
of RNA copies.

Covers 97% of the genome with a reduced
false-negative rate.

GenomPlex and Ampli1 Copy-number variation (CNV) profiling

Maintains representation of the entire genome
through subsequent reamplifications.

Preserves precious source material by amplifying
nanogram amounts of starting genomic DNA.

Significantly higher
genomic coverage

Transcriptomic

STRT-seq An established approach to profile entire transcriptomes of
individual cells from different cell types High specificity 5′-only end base

Smart-seq and Smart-seq2
Single-cell gene expression analyses hold promise for

characterizing
cellular heterogeneity.

Good coverage of the transcriptome with rarer
transcripts being detectable

Independent of cell size

High cost,
low specificity,

low number of cells

CEL-seq Single-cell RNA-Seq using multiplexed
linear amplification Sensitive, accurate, and reproducible 3′-only end base,

low number of cells

InDrop and Drop-seq Sequence thousands of single cells in parallel Cost benefit,
high specificity 3′-only end base

Mars-seq
Analysis to explore cellular heterogeneity by assembling an

automated experimental platform that enables RNA profiling of
cells

Long-term storage,
cost benefit,

high specificity
3′-only end base

10x Genomics Chromium A droplet-based scRNA-seq technology allowing genome-wide
expression profiling for thousands of cells at once

Cost benefit,
high sensitivity and precision Must process immediately

Epigenomic
sci-ATAC-seq

Generation of sequencing library molecules is selective toward
regions of open chromatin on the hyperactive derivative of the

cut-and-paste Tn5 transposase

High throughput,
independent of antibody Low coverage per cell

scChIP-seq Enabled in-depth characterization of protein-DNA interactions
of histone marks at single-cell resolution High throughput Low coverage per cell,

dependence on antibody

Pure PCR-based amplification (DOP-PCR), multiple displacement amplification [70], degenerate oligonucleotide-primed polymerase chain reaction, multiple annealing- and looping-
based amplification cycles (MALBAC), or linear amplification via transposon insertion (LIANTI).
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4.1. Genomic Level

Cancer cells in the tumor may be from the euploid, pseudoeuploid, or aneuploid
subpopulations. Using the next-generation sequencing (NGS) and single-cell sequencing
(SCS) technologies, it is now possible to decipher the complete genomes of CTCs [83]. The
whole-genome amplification (WGA) method yields accurate genomic analysis of CTCs
(Table 2). WGS, whole-exome sequencing, or targeted sequencing, which are examples
of improved WGA methods, could further decrease sequencing requirements and enable
more cost-effective interrogation of all genomic variations in single cells, including single
nucleotide variants (SNVs) and structural variants that reside in noncoding regions [77].
Novel WGA methods, primary template-directed amplification (PTA), and multiplexed
end-tagging amplification of complementary strands (META-CS) have been developed
to decrease false positives and increase the accuracy of SNV indications. In addition,
droplet digital PCR (ddPCR) has been proposed as a novel method to achieve amplification
throughout the genome. By partitioning the DNA sample into numerous individual
droplets and performing PCR amplification in each droplet separately, ddPCR enables
more precise quantification of target DNA sequences. This approach reduces amplification
bias and provides more uniform representation of the entire genome, resulting in more
accurate and reliable results. Recently, a novel filtering-based microfluidic technology at
the single-cell level in a chip was developed to minimize cell loss and potential cellular
cross-contamination [84].

Table 2. Whole-genome amplification (WGA) methods used for CTC analysis.

Method Application Advantage (s)

Pure PCR-based amplification Amplifying specific sites in the genome Better uniformity of amplification

MDA-based methods Point mutations amplification to analyze the
genome of patient-derived CTCs Higher fidelity than PCR-based methods

MALBAC combining MDA and
PCR-based methods Analysis of single-nucleotide variants (SNVs) Intermediate

coverage and uniformity

LIANTI Amplifies T7-promoter-tagged DNA
fragments into thousands of RNA copies

Covers 97% of the genome
with a reduced false-negative rate

GenomPlex and Ampli1 Copy-number variation (CNV) profiling Significantly higher genomic coverage

Pure PCR-based amplification (DOP-PCR), multiple displacement amplification [70], degenerate oligonucleotide-
primed polymerase chain reaction, multiple annealing- and looping-based amplification cycles (MALBAC), or
linear amplification via transposon insertion (LIANTI).

In 2011, the American Anderson Cancer Research Center and Cold Spring Harbor Lab-
oratory developed single-cell sequencing analysis technology. To date, some technologies
including NGS, Sanger sequencing, array comparative genomic hybridization (aCGH) plat-
forms, single-nucleotide polymorphism (SNP), and conventional PCR technologies were
developed to analyze somatic SNVs, structural variations (SVs), copy number variations
(CNVs), and chromosomal breakpoints and rearrangements for the whole exome/genome
or selected cancer-associated genes [85]. Single-cell DNA sequencing (scDNA-seq) was
performed on cells isolated from 10 patients with HCC, and ploidy-resolved scDNA se-
quencing was performed on the cancer cells of one additional patient. The results of the
scDNA-seq analysis revealed that the copy number alterations in HCC are followed by
dual-phase copy number evolution. In fact, patients with prolonged gradual phases have
higher intra-tumor heterogeneity. This study’s results also showed that the CAD gene
involved in pyrimidine synthesis has an important role in tumorigenesis. The results of
ploidy-resolved scDNA sequencing demonstrated that the doubling of diploid tumor cells
is a common way of generating polyploid tumor cells in HCC [86]. In an experiment, a
10-gene CTC signature was used to evaluate the therapeutic efficacy on HCC patients. The
results showed that this method can be useful for the early detection of HCC in a high-risk
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population [77]. Branched-chain amino acid transaminase 1 (BCAT1), as the identified
biomarker gene in the HCC, was shown to be significantly upregulated or knocked down in
HepG2, Hep3B, and Huh-7 cells, leading to a reduction in cell proliferation, migration, and
invasion or apoptosis. It was shown that the increase in EpCAM and E-cadherin expression
and the reduction in vimentin and TWIST expression suggest that BCAT1 may trigger the
EMT process. BCAT1 overexpression may induce CTC release by triggering EMT and may
be an important biomarker of HCC metastasis (ST) [84]. The top mutated genes in stage I of
HCC are TP53, CTNNB1, TTN, MUC16, and ALB, and their co-mutations or mutually exclu-
sive mutations were identified in HCC. Currently, 29 genes are identified with significant
roles in prognosis, including highly mutated LRP1B, ARID1A, and PTPRQ genes. It was
shown that for the patients with wild-type genes, overall survival rates are significantly
better than those with mutant ones. Patients in the top 10% of the tumor mutational burden
(TMB) exhibited significantly worse prognoses than the other 90% (ST) [55].

Recently, Yi et al. introduced a specific technique for the enrichment of HCC-CTCs
using glypican-3 immuno-liposomes (GPC3-IML). The results of this study showed that
GPC-3 could be used as a more reliable CTC isolation biomarker than EpCAM and vimentin.
Positive correlation was observed between the count of CTCs (≥5 PV-CTC per 7.5 mL
blood) and BCLC stage (p = 0.055). The result of the CTC-NGS was consistent with that of
tissue-NGS in 60% of the cases, revealing that KMT2C is a common, frequently mutated
gene [87]. Currently, some challenges in the genomic analysis of CTCs remain to be solved,
including high genome coverage, low allele dropout, and low amplification errors [88].
However, despite all of these limitations, single-CTC genomic analysis could be a powerful
noninvasive diagnostic tool to investigate the changes in the gene expression profiles of
cancer patients with localized, metastatic, and recurrent diseases.

4.2. Transcriptomic Level

Recently, scientists developed some highly sensitive and specific molecular CTC assays
using microfluidic enrichment of CTCs coupled with digital-droplet PCR (ddPCR)-based
profiling technologies [89]. Over the past four years, some liver scRNA-seq studies showed
that a combination strategy of scRNA-seq and smRNA-FISH could be used to obtain spatial
information. These experiments showed that following bioinformatic protocols and specific
sequencing strategies can integrate each cell’s RNA data with spatial information [90]. In
2014, a refined platform based on mRNA isolation and cDNA synthesis methods in compar-
ison with CellSearch® was designed. This prospective study, which included 299 patients
with HCC, was completed and indicated the qRT-PCR-based CTC detection method was
significantly preferable in regard to sensitivity, specificity, reproducibility, and the small
sample size required. This system was proposed for adjuvant diagnosis, assessment of
therapeutic response, and prompt decision-making to adopt the most effective antitumor
strategies [74].

During the last decade, a CanPatrolTM CTC-enrichment technique based on RNA in
situ hybridization (RNA-ISH) has been reported. It uses both epithelial and mesenchymal
markers such as EpCAM, CK8/18/19, E-cadherin, vimentin, and TWIST for the charac-
terization and classification of CTCs into all three CTC subpopulations in different types
of cancer [91]. EpCAM, CK8/18/19, TWIST, and vimentin are common EMT markers
and were evaluated using FISH through the CanPatrolTM enrichment platform in many
HCC-related studies [92]. Using CanPatrolTM and an in situ hybridization technique,
Qi et al. demonstrated that the suppression of BCAT1 reduced HCC cell proliferation,
migration, and invasion and promoted apoptosis, probably by inhibiting EMT. Addition-
ally, 67 differentially expressed cancer-related genes (DEGs) involved in cancer-related
biological pathways were identified [93].

High expression of CAD, a gene involved in pyrimidine synthesis, is correlated with
rapid tumorigenesis and reduced survival in HCC patients. The results integrating bulk
RNA-seq of 17 HCC patients, published datasets of 1196 liver tumors, and immuno-
histochemical staining of 202 HCC tumors confirmed these results [86]. Furthermore, it
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was shown that in stage I of HCC, some parameters, including cell skeleton proteins, ion
channels, cell cycle, etc., are dramatically changed. Some independent risk factors related to
HCC such as MMRN1, OXT, and COX6A2 transcription; sex; race; etc. are used to predict
the prognosis of the disease [94], while mutational and transcriptional alterations and
clinicopathological factors could predict the prognosis of stage I HCC. Analyzing the whole-
exome somatic mutation data, whole mRNA transcription data, along with demographic
and clinical information from the TCGA database, could also be helpful [94]. Yao et al.
used single-cell RNA sequencing technology and showed that some phosphorylation-
related genes such as POLR2G, PPP2R1A, POLR2L, PRC1, ITBG1BP1, MARCKSL1, EZH2,
DTYMK, and AURKA are highly expressed in HCC [95]. In these experiments, ingenuity
pathway analysis revealed two hub genes, AURKA and EZH2, with high expression in HCC
malignancy, which suggests that an AURKA inhibitor (alisertib) and an EZH2 inhibitor
(gambogenic) could be used for the inhibition of HCC cell proliferation, migration, and
invasion [95]. Table 3 summarizes all these technological approaches developed for the
detection and the isolation of HCC-CTCs.

4.3. Proteomic Level

The ability to perform multiplexed protein analysis targeting CTCs offers a unique
and valuable opportunity to gain additional insights into CTC biology. This approach
enables researchers to perform simultaneous analysis of multiple proteins and achieve a
more comprehensive understanding of the characteristics and behavior of individual CTCs.
By providing specific and precise information, this method contributes to expanding our
knowledge of CTC biology and assessing its clinical significance. Currently, the EPithelial
ImmunoSPOT (EPISPOT) assay, also called EPISPOT in a DROP (EPIDROP), has been
used to analyze the proteome and secretome data of viable CTCs simultaneously [85].
The content and expression level of the TWIST and vimentin proteins in CTCs could be
used as biomarkers for evaluating metastasis in HCC. ASGPR, which can be stained using
immunofluorescence techniques, is another protein marker to be used for the detection
of CTCs. Li et al. used the triple-immunofluorescence staining method to detect the
expression of TWIST and vimentin in the CTCs obtained from 39 (84.8%) and 37 (80.4%) of
the 46 analyzed patients, respectively. Also, co-expression of these two proteins could be
detected in 32 (69.6%) of the 46 patients [96]. Using the NanoVelcro CTC assay, an antibody
cocktail targeting the cell-surface markers such as ASGPR, glypican-3, and epithelial cell
adhesion molecule has been optimized to capture the CTCs of HCC [57]. C-X-C chemokine
receptor type 4 (CXCR4) and matrix metallopeptidase 26 (MMP26+)-positive CTCs were
also considered as markers for detecting CTCs in liver cancer [97].

4.4. Epigenomic Level

Epigenetic changes are the leading cause of tumor cell transformation and progression
of cancer. Histone modifications, DNA methylations, and miRNA-mediated processes
are major epigenetic changes that are critically associated with various mechanisms of
proliferation and metastasis in several types of cancer [81]. DNA methylation is the major
epigenetic change in cancer cells and could be used as a biomarker for the detection of
CTCs. It was confirmed that the methylation patterns during tumorigenesis are not ran-
domly organized [86]. DNA methylation remodeling as an important epigenetic change
has been widely observed in several genes involved in EMT, tumor cell dissemination,
and the acquisition of stem cell properties that are crucial for CTCs [4,95]. Methylation
and epigenetic changes in genes encoding E-cadherin (CDH1), TWIST, vimentin (VIM),
N-cadherin (CDH2), and the miR-200 family of miRNAs have also been confirmed by
further analyses [96]. Hypermethylated genes found in HCC, such as CDKN2A, RASSF1,
APC, and SMAD6, are among the good markers for the detection of CTCs in these kinds
of cancers [83]. Eleven methyltransferases and demethylases, including enhancer of zeste
homolog 2 (EZH2), euchromatic histone-lysine N-methyltransferase 2 (EHMT2), SET do-
main bifurcate 1 (SETDB1), and SET domain 2 (SETD2), were found that play a role in
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the clinical stages of HCC, which confirms the fundamental role of histone methylation
regulation in HCC progression [88].

Table 3. Different platforms for the detection and isolation of CTCs and their markers.

Platform Analyses Marker(s)/Parameter References

CellSearch®
Anti-EpCAM antibody
Immunohistochemistry
(IHC)-based approach

EpCAM [44,98]

NanoVelcro Microfluidic chip coated with
a cocktail of antibodies

Surface markers including
ASGPR, glypican-3,

and EpCAM
[99]

CTC−BioTChip Hydroxyapatite/chitosan
nanofilm EpCAM [53]

Refined
CTC−BioTChip

Anti-EpCAM antibody and
galactose-rhodamine-

polyacrylamide
nanoparticles were

endocytosed into the CTCs
through ASGPRs present on

the surface of the CTCs.

EpCAM and ASGPR [53]

ISET® Filtration-based technology Cytokeratin (CK) [100]

Parsortix Microfluidic-based system Size and deformability [69]

RosetteSep
Density gradient

centrifugation-based
platform

Cocktail antibody [101]

OncoQuick
Density gradient

centrifugation-based
technologies

Buoyant density [73]

CanPatrolTM Microfiltration and various
EMT markers

EpCAM, CK8/9/19, vimentin,
and TWIST [78]

EP@MNPs Novel peptide-based
magnetic nanoparticle

EpCAM recognition peptide
followed by CD profiling to
distinguish epithelial and
mesenchymal subgroups

[102]

NP@MNPs Novel peptide-based
magnetic nanoparticle

N-cadherin recognition peptide
followed CDRNA profiling to

distinguish epithelial and
mesenchymal subgroups

[103]

CytoSorter® and
CytoSorter™ CTC PD-L1 Kit PD-L1 antibody [104]

Optimized
CanPatrol

CTC-enrichment

Combining nanotechnology
filters and mRNA ISH array

EpCAM, CK8, CD18, CD45,
Vimentin, TWIST, CK19,

and NANOG
[105]

EPIDROP
Single-cell proteomic and

secretomic analyses of
viable CTCs

EpCAM and other IHC markers [85]

RT-LAMP
Reverse transcription

loop-mediated isothermal
amplification

EpCAM, CK19, CD133,
and CD90 [106]

RareCyte
High-definition single-cell

analysis
(HD-SCA)

EpCAM, CK, and other
IHC markers [107]

DEPArray™ Sub-sequential high-quality
genomic profiling

A combination of
dielectrophoresis (DEP) and

image-based selection methods
and some IHC markers

[108]

NanoVelcro Triple-immunofluorescence
staining method

ASGPR, glypican-3, and
epithelial cell adhesion molecule [57]
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5. Clinical Value of CTC Detection in HCC

Currently, CTCs can be used as alternative biomarkers for the early detection of HCC.
Some studies have investigated the potential applications of CTCs in early detection of
HCC, but no clinical guidelines are currently included in routine clinical use [25]. CTCs
play a crucial role in the initiation of metastasis and therefore were suggested as biomarkers
for the early detection of HCC; EMT-related markers are useful for the early diagnosis
and staging of those cancer cells. In a study, the results showed that 30.5% (18/59) of
HCC patients have EpCAM+ CTCs, while this marker was found in only 5.3% (1/19)
of individuals in the control group of patients with cirrhosis or benign hepatic tumor
(Table 4). EpCAM+ CTCs were also used for staging the HCC, as significant differences
in CTC detection rates were observed in different Barcelona Clinic Liver Cancer (BCLC)
stages [109]. Qi et al. showed that 101 out of 112 patients diagnosed with HCC had positive
detection of CTCs. Remarkably, the presence of CTCs was observed not only in advanced
stages but also in the early stages of the disease [93]. The number of peripheral blood
mesenchymal CTCs was high in late-stage HCC patients, for example in the B–C stages of
BCLC; therefore, mesenchymal CTCs are the cut-off value for the diagnosis of BCLC stage
in HCC patients [110]. Indeed, Li et al. showed that the EMT biomarkers such as TWIST
and vimentin could serve as promising targets for evaluating metastasis and prognosis in
HCC patients [96].

HCC-specific markers could be efficiently used for the early and specific detection of
HCC-CTCs in the clinic. ASGPR is exclusively expressed in the human hepatoma cell line,
normal hepatocytes, and HCC cells. Anti-ASGPR antibodies could efficiently detect the
circulating HCC cells. Also, the antibody cocktail against carbamoyl phosphate synthetase
1 (CPS1) and pan-cytokeratin (P-CK) has been demonstrated to detect CTCs in HCC [52].

Currently, there is no approved data supporting the usefulness of CTCs as an early-
stage HCC diagnostic tool. Nevertheless, many investigations have suggested that CTCs
can be helpful in predicting the therapeutic outcome and monitoring the disease progres-
sion, particularly after resection. Furthermore, the diagnostic value of different phenotypes
of CTCs in HCC has been evaluated. CanPatrol™ technology using the microfiltration
system was developed for the isolation and characterization of the different CTC types,
including epithelial (EpCAM and CK8/9/19), mesenchymal (vimentin and TWIST), mixed,
and total CTCs [40]. In a study, the CanPatrol™ CTC-enrichment technology was employed
in a cohort study of 112 HCC patients. Analysis of the collected data uncovered that CTCs
were detected in more than 16 patients. Furthermore, they showed that the proportion of
mesenchymal CTCs exceeded 2% in them (Table 4) [93].

Liquid biopsy to detect prognostic and predictive biomarkers can be a potential avenue
for improving early diagnosis and more efficient treatment for HCC. Specifically, various
genetic alterations and molecular changes have been investigated in CTCs for their utility
in diagnosing and managing HCC. These include copy number variations; gene integrity;
mutations in RAS, TERT, CTNNB1, and TP53 genes; as well as DNA methylation changes
in DBX2, THY1, and TGR5. Furthermore, the signaling pathways associated with certain
biological functions, such as the MAPK/RAS pathway, p53 signaling pathway, and Wnt-β
catenin pathway, have been explored and emphasized in the context of HCC diagnosis
and management. Employing these approaches can provide valuable insights into HCC
progression, allowing for early detection and the optimization of treatment strategies. By
monitoring these molecular alterations in CTCs, liquid biopsy holds great promise as a
noninvasive tool for precise prognosis and guiding personalized treatment decisions for
HCC patients.
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Table 4. Clinical applications of some platforms used for the detection of HCC-CTCs.

Platform Study Group CTC Positive Detection Rate Ref.

Cell Search

123 HCC patients; 5 control patients;
10 healthy volunteers

66.67% in patients prior to resection,
28.15% 1 month after resection [47]

59 HCC patients; 19 control patients 30.5% in HCC patients [109]

20 HCC; 10 control patients 35% in HCC patients [46]

21 HCC patients 4.7% in HCC patients [111]

57 HCC patients undergoing resection 15% in HCC patients [112]

89 HCC patients treated with
chemoembolization 56% in HCC patients [113]

144 HCC patients 56.9% in patients prior to resection,
30.6% 1 month after resection [114]

26 HCC patients 27% in HCC patients [115]

CanPatrolTM

195 HCC patients 95% in HCC patients [38]

112 HCC patients; 12 HBV patients;
20 healthy volunteers

90.18% in HCC patients,
16.67% in HBV patients [93]

165 HCC patients

70.9%
High CTC count was correlated with BCLC
stages, multiple tumors, and high levels of

alpha-fetoprotein

[116]

113 HCC patients 78.8% [117]

99 HCC patients 89.9% [118]

160 HCC patients undergoing resection 90% [119]

56 HCC patients 92.86% before liver transplantation surgery [120]

ISET

7 HCC patients undergoing tumor resection;
8 chronic cirrhosis patients;

8 healthy volunteers
52% in HCC patients [63]

44 HCC patients; 30 chronic hepatitis
patients; 39 liver cirrhosis patients;

38 healthy volunteers
52% in HCC patients [64]

RosetteSep

109 HCC patients 92.7% in patients with advanced HCC and
candidates for sorafenib treatment [121]

32 HCC patients; 17 other types of cancer;
3 acute hepatitis A patients; 6 chronic

hepatitis B patients; 4 chronic hepatitis C
patients; 15 cirrhosis patients; 12 patients

with benign intrahepatic
space-occupying lesions

91% [61]

NanoVelcro 61 HCC patients; 8 healthy control patients 96.7% in HCC patients and 25% in healthy
control patients [57]

CTC−BioTChip 42 HCC patients 59.5% [53]

OncoQuick 17 HCC patients; 13 healthy volunteers 76.5% in HCC patients [122]

CytoSorter™
47 HCC patients received PD-1 inhibitor

combined with intensity-modulated
radiotherapy and anti-angiogenic therapy

95.7% [123]

BCLC, Barcelona clinic liver cancer; HBV, hepatitis B virus; HCC, hepatocellular carcinoma.
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6. Conclusions

CTCs and related technologies are promising tools for both diagnostic and prognostic
applications of the early stages of HCC. Currently, many advanced technologies are used
for the detection of CTCs in the clinic, but still, there are significant challenges that need
to be addressed. These technologies, along with added values from bioinformatics and
annotated databases, could be optimized to efficiently track and detect CTCs in the blood
and to perform risk assessment in this regard as a novel diagnostic approach. Moreover, the
combination of detection methods using CTCs and cfDNAs can be a promising approach for
early diagnosis. It was shown that the sensitivity and specificity of current CTC biomarker
panels require substantial improvements. Indeed, novel ultra-high-throughput quantifica-
tion strategies are needed to analyze simultaneous profiles of multi-marker panels and to
provide comprehensive coverage of the highly heterogeneous cancer cell subpopulations.
These shortcomings necessitate the adoption of a comprehensive interdisciplinary approach
and precise devices for analyzing large datasets. Hopefully, machine learning can facilitate
CTC-related assessments and validate perspective results.
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