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Abstract

We present a novel computer algorithm to automatically detect and segment pulmonary embolisms 

(PEs) on computed tomography pulmonary angiography (CTPA). This algorithm is based on 

deep learning but does not require manual outlines of the PE regions. Given a CTPA scan, both 

intra- and extra-pulmonary arteries were firstly segmented. The arteries were then partitioned 

into several parts based on size (radius). Adaptive thresholding and constrained morphological 

operations were used to identify suspicious PE regions within each part. The confidence of 

a suspicious region to be PE was scored based on its contrast in the arteries. This approach 

was applied to the publicly available RSNA Pulmonary Embolism CT Dataset (RSNA-PE) to 

identify three-dimensional (3-D) PE negative and positive image patches, which were used to 

train a 3-D Recurrent Residual U-Net (R2-Unet) to automatically segment PE. The feasibility of 

this computer algorithm was validated on an independent test set consisting of 91 CTPA scans 

acquired from a different medical institute, where the PE regions were manually located and 
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outlined by a thoracic radiologist (>18 years’ experience). An R2-Unet model was also trained and 

validated on the manual outlines using a 5-fold cross-validation method. The CNN model trained 

on the high-confident PE regions showed a Dice coefficient of 0.676±0.168 and a false positive 

rate of 1.86 per CT scan, while the CNN model trained on the manual outlines demonstrated a 

Dice coefficient of 0.647±0.192 and a false positive rate of 4.20 per CT scan. The former model 

performed significantly better than the latter model (p<0.01). The promising performance of the 

developed PE detection and segmentation algorithm suggests the feasibility of training a deep 

learning network without dedicating significant efforts to manual annotations of the PE regions on 

CTPA scans.
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I. INTRODUCTION

As the third most common cardiovascular condition, pulmonary embolism (PE) is caused 

by blood clots in the pulmonary arteries. The blood clots often travel from deep veins (e.g., 

legs) to the lungs and block the blood flow within the lungs. Presentation is heterogeneous 

and can range from asymptomatic to sudden death. Immediate diagnosis and treatment can 

reduce the mortality rate from 30% to 8% 1. In the United States (U.S.), approximately 

900,000 people are affected by PE, and 100,000 deaths are related to PE each year 1. One 

in four patients with PE dies suddenly without warning. Since the symptoms of PE (e.g., 

shortness of breath and chest pain) are nonspecific, it may often be misdiagnosed as other 

heart or lung disorders. Computed tomography pulmonary angiography (CTPA) is often 

used as the gold standard to diagnose PE 2. The utilization of iodinated contrast creates 

images that enhance the depiction of blood clots in the pulmonary vessels because the clots 

prevent the contrast agents from filling in the vessels (i.e., a filling defect). However, a 

CTPA scan is typically formed by hundreds of image slices, making it time-consuming to 

manually detect PEs 3. Also, it is not easy to accurately quantify the extent of the embolisms 

to support precision or personalized medicine. As a result, there has been investigative effort 

dedicated to developing computer algorithms to automate the detection and segmentation of 

PEs, by which the obstruction level of a PE region and its clot burden can be quantitatively 

assessed based on its location and extent, making it possible to develop precise and 

personalized treatment. The challenges for a computer algorithm to automatically detect 
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PEs are caused by the variations of the PE regions in density (i.e., Hounsfield Unit (HU)) 

and the progressive attenuation of the pulmonary vessels. It is difficult to identify an optimal 

threshold to reliably identify the PE regions across CTPA scans.

The available algorithms related to the detection and diagnosis of PE can be classified 

into three stages. From 1990 to 2000, the investigative effort primarily focused on 

the integration of clinical variables (e.g., symptoms) and/or findings from images (e.g., 

ventilation-perfusion lung scans) using a neural network to improve the PE assessment 4-6. 

From 2000 to 2015, the primary emphasis was on the computerized detection and diagnosis 

of PE based on CTPA scans. Traditional computer vision algorithms were widely used 

to extract PE-related image features for different PE from other regions 7-11. However, 

the sensitivity of the computer vision algorithms was unsatisfactory and associated with a 

relatively high false positive rate 7-12. Recently, the investigative effort has transitioned to 

deep learning technology, specifically the convolutional neural network (CNN), which does 

not use explicit handcrafted features. By feeding raw images (e.g., CTPA scans) into a CNN 

model, the CNN models automatically extract tens of millions of low-level features and 

abstract them progressively into higher-level features to approximate the predefined targets 

(e.g., manually segmented PEs). Studies have demonstrated the remarkable performance of 

CNN models in addressing various image analysis problems 13-17. However, CNN-based 

algorithms are data-hungry and require significant effort to manually annotate the images for 

training the CNN models. As a result, a large number of CNN-related studies only classify 

CTPA scans as simple negative or positive for PEs 18-23 because it is less challenging to 

assign categorical labels to a CT scan than to outline the boundaries of all PEs depicted on 

CTPA scans. For example, Ma et al. 23 developed a CNN model recently to classify a CTPA 

scan into several categories in terms of location (left, right, or central), condition (acute 

or chronic), and the right-to-left ventricle diameter (RV/LV) ratio. Although categorical 

classification can efficiently identify patients with PEs, it does not enable quantitative 

assessment of the extent of PE (e.g., volume and obstruction level). To our knowledge, only 

limited effort has been dedicated to the automated detection and segmentation of individual 

PE regions. Yang et al. 24 and Tajbakhsh et al. 25 described two-stage algorithms, which first 

detected the suspicious PE regions and then reduced the false positive detections based on a 

two-dimensional (2-D) CNN-based classifier. The former algorithm achieved a sensitivity of 

75.4% with two false positives per scan, and the latter demonstrated a sensitivity of around 

80% with two false positives per volume. It is unclear why Tajbakhsh et al. reported the 

false positive rate based on volume instead of per CT scan. Park et al. 26 described a method 

that required the manual specification of a PE location to segment the PE region using a 

region-growing operation. Liu et al. 27 described a 2-D CNN model called CAM-Wnet to 

segment the central embolisms located in the main pulmonary arteries on CTPA images. 

However, only segmenting the central embolisms limits the practical value of the tool 

because PE often occurs in the right and/or left lungs. As this study demonstrated, there are 

also many small PE regions, which definitely should not be ignored for early detection and 

diagnosis purposes.

We developed a novel algorithm to automatically detect and segment PE regions in a single 

pass. Our algorithm does not require manually outlined PE regions to train a CNN model. 

This algorithm uses computer vision methods to first automatically identify suspicious 
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PE regions and assigns a confidence rating. Next, a CNN-based segmentation model is 

trained using the 3-D image patches associated with these PE regions assigned with high 

confidence. The publicly available RSNA Pulmonary Embolism CT Dataset (RSNA-PE) 
28 was used to develop and test the CNN model. An independent dataset (n=91) with 

the manually outlined PE regions was used to evaluate the model’s performance. To 

our knowledge, this is the first study that attempted to automatically detect and segment 

suspicious PE regions without manual outlining of the PE regions for deep learning.

II. METHODS AND MATERIALS

A. CTPA datasets

Dataset I: The publicly available Radiological Society of North America (RSNA) CTPA 

dataset 28 was used to develop and test the CNN models. It includes 7,279 manually 

annotated CTPA scans with 2211 (30.4%) scans confirmed positive for PE. The manual 

annotation includes the image slices where the PEs are located, their locations in terms of 

right/left lung and central PE, acuteness, and quality assurance (QA). This dataset was used 

to create a pool of negative and positive image patches for training the segmentation model. 

Among these cases, 157 indeterminate or uncertain cases due to contrast or motion issues 

were excluded from the study. We split the remaining PE negative and positive cases into 

two sets at the patient level, namely training and internal validation sets, at a ratio of 9:1 for 

CNN modeling.

Dataset II: A second independent dataset consisting of 91 subjects who underwent CTPA 

scans at Dokuz Eylul University (Izmir, Turkey) with verified PE was also used in this study 

to validate the developed model. The CTPA scans were acquired using Toshiba Aquilion 

PRIME with radiopaque contrast with the participants in a supine position and holding their 

breath at the end inspiration. Images were reconstructed to encompass the entire lung field 

in a 512×512 pixel matrix. The in-plane pixel dimensions ranged from 0.592 to 0.831 mm, 

and the image slice thickness ranged from 0.5 to 3.0 mm. The tube voltage was consistently 

120 kV, the x-ray tube current ranged from 105 to 469 mA, and the reconstruction kernels 

included FC08 and FC52. A thoracic radiologist (NSG, >18 years’ experience) reviewed 

these CT scans and manually outlined the PEs on the series with the maximum number of 

images using our in-house software, which was designed to facilitate the 3-D outlining 

of regions of interest depicted on medical image 14. This outlining software supports 

various image analysis operations (e.g., region growing, thresholding, freehand sketching, 

and overlay interpolation). The study related to the second dataset was approved by the 

Ethics Committee of Dokuz Eylül University School of Medicine (IRB: 2022/14-01).

B. Algorithm overview

The computer algorithm consists of three stages (Fig. 1): (1) identify regions suspicious 

for PE and score their confidence level of being a PE based on computer vision methods, 

(2) randomly generate 3-D paired positive and negative PE image patches in the training 

and internal validation sets, and (3) train a CNN-based PE segmentation model using the 

paired image patches. In Stage 1, suspicious PE regions are identified based on whether: 

(1) PEs are located in the pulmonary arteries and (2) PEs have lower densities compared 
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to their surrounding artery. To increase the data diversity, Stage 2 is performed on the fly 

during the training of the CNN-based PE segmentation model. The PE negative patches are 

sampled from the CTPA scans without PE, while the PE positive patches are centered on 

high-confidence PE regions.

C. Detection of PE regions with high confidence

First, intra- and extra-pulmonary arteries on CTPA images are segmented using our recently 

developed algorithm (Fig. 2) 14. Compared with available approaches 29-41, this algorithm 

does not rely on anatomical knowledge of the lungs (e.g., the proximity of airways and 

arteries) and demonstrated promising performance to identify lung vessels and differentiate 

them into lung arteries and veins. Most importantly, this algorithm can identify extra-

pulmonary vessels because PE often occurs in the extrapulmonary (main) arteries.

Second, the signed distance field of the CT scan was computed with respect to pulmonary 

arteries using the fast marching method (FMM) 42. The distance field values are negative 

outside the arteries, positive inside the arteries, and zero on the boundaries between the 

artery and the surrounding regions. Mathematically, given a region denoted as G, its signed 

distance field can be described by the Eikonal equation (Eq. 1). The FMM provides an 

efficient solution to numerically solve the Eikonal equation based on a Cartesian grid. A 

unique characteristic of the FMM is the ability to accurately assess the distance field of 

small regions (e.g., small vessels).

∣ ∇f ∣ = ∂f
∂x

2
+ ∂f

∂y
2

+ ∂f
∂z

2
= 1 subject to f ∣ ∂G = πr2 (1)

Where f− denotes the signed distance from a voxel to the boundary ∂G formed by the grid 

points and ∇ denotes the gradient.

Third, the arteries were progressively partitioned into different levels in terms of the artery 

dimension based on the signed distance field (Fig. 2). In our implementation, the partition 

was based on four different diameter ranges (unit: mm), including [8, ∞), [5, 9), [3, 6), 

and (0, 3). This partitioning strategy was to minimize the variation of the artery density 

in each partition because the density of the arteries on CT images typically varies across 

their sizes. Overlap between neighboring partitions ensured that potential PEs across two 

partitions could be fully identified.

Fourth, the mean density of each partition was computed based on HU value and decreased 

by a specific HU value (e.g., 50 HU). The computed value is used as the threshold to 

binarize the corresponding partition region. Since the vessel density decreases towards the 

vessel boundary, this thresholding operation typically includes “noisy” regions near the 

walls along with the PEs (Fig.3). To address this issue, an opening morphological operation 

is performed with the consideration of the distance field. The erosion iteration is performed 

to remove the regions with small signed distance field values, which limits the erosion to the 

regions near the vessel wall. The objective of the constrained morphological operation is to 
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avoid the remove small PEs in the center of the vessels. After the opening operation, a series 

of regions with relatively low density are identified as PE candidates (Fig. 3).

Fifth, the contrast level between a suspicious PE region and its surrounding artery region 

was used to score the confidence of the suspicious region being PE. The arterial region 

surrounding a suspicious PE is obtained by dilating the PE region to a certain distance 

(e.g., 5 mm) within the vessel regions. Then, the difference between the mean density of 

the suspicious PE region and the dilated regions is computed as the contrast level. A higher 

contrast level indicates a higher confidence of a suspicious region being PE.

D. Generation of PE positive/negative image patches

To avoid the manual confirmation of the PE candidate regions, regions with high confidence 

for a PE were used to generate the image patches. Suspicious PE regions with a contrast 

level larger than a specific value (e.g., 75 HU) were treated as high confidence PEs. A 

unique strength of CT imaging is its ability to characterize various tissues in a standard 

way, namely Hounsfield Unit (HU). This characteristic makes it possible to use the specific 

threshold in HU to analyze the images. Given the relatively small dimensions of lung 

vessels, a threshold of 75 HU typically indicates a conservative contrast to differentiate 

PE from the surrounding vessels. Based on the voxels forming the high-confidence PE 

regions, volumetric image patches were sampled. Notably, the volumetric image patches 

should only contain the high-confidence PE regions; otherwise, the image patches were not 

used for machine learning. The scaling operation was used to maximize the use of the high-

confidence PEs. First, a predefined cubic box is placed on a voxel in the high-confidence 

PE region. If there are other non-high-confidence PE regions, the cubic box is scaled to 

a small size to avoid the inclusion of the non-high-confidence PE regions. Thereafter, the 

image patch based on the scaled cubic box is scaled back to the predefine size and used in 

the training procedure.

To facilitate unbiased machine learning, PE negative regions were also needed to train 

the CNN models. There are two ways to identify the PE negative regions. The first way 

is the simple use of PE negative cases. The limitation is the requirement for verified 

negative cases. The second way is the use of the regions that have no suspicious PE 

identifications regardless of their confidence level. The limitation is the potentially biased 

sampling because the suspicious regions are excluded from machine learning. Given the 

availability of a large number of PE negative cases in the RSNA-PE dataset, volumetric 

image patches were randomly sampled from the PE negative cases.

E. Training a CNN-based segmentation model

A state-of-the-art CNN model called R2-Unet 43 was trained to automatically detect and 

segment the PEs on CTPA images in a single pass. The R2-Unet model uses a residual 

and recurrent convolution block to replace the traditional consequent convolution block in 

the U-Net 44. The residual component allows the learning of the residual functions with 

reference to the layer inputs, while the recurrent component makes the learning more robust 

to the existence of noise. A four-stage U-Net architecture was used in our implementation. 

The initial number of the convolutional filters was set as 32 and multiplied by 2 in each of 
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the convolutional blocks of the encoder and decoder paths forming the U-Net. The output 

layer was activated by a sigmoid function to obtain the final predictions of the foreground 

and the background. The Adam optimizer was used. The Dice coefficient was used as the 

loss function.

The R2-Unet was trained using paired PE negative/positive volumetric image patches, which 

were randomly sampled on verified PE negative/positive cases in the RSNA-PE dataset. 

The size of the volumetric image patches was set at 96×96×96 voxels with an isotropic 

resolution of 0.8 mm. For the sake of efficiency, the CT images were reconstructed with an 

isotropic resolution of 0.8×0.8×0.8 mm3 before the sampling. The isotropic resolution was 

determined based on the in-plane resolution of the CT images and the size of the regions 

of interest. Various image augmentation operations (e.g., translation, rotation, scaling, noise 

addition, and blurring) were used during the training to increase the data diversity and thus 

the reliability of the CNN model 45. The initial learning rate was set as 0.001 and reduced 

by a factor of 0.5 if the validation performance did not increase in three continuous epochs. 

The training procedure was terminated when the validation loss did not decrease across ten 

continuous epochs.

F. Performance validation

The performance of the proposed algorithm, which trained the CNN model on the image 

patches obtained by the computer vision method, was evaluated on the manually outlined 

PEs in the independent dataset (Dataset II). The Dice coefficient was computed to assess 

the agreement between the computer segmentation results and the manual outlines. The 

detection-localization characteristics at the embolism level were estimated in terms of 

the true-positive fraction (TPF) or sensitivity, which is the proportion of “true” detected 

PE regions with respect to the total PE regions identified by the radiologist, and the 

false-positive rate (FPR), which is the average number of FP results per CT scan. A PE 

region detected by the algorithm was considered as a false positive (FP) if it did not 

overlap with the radiologist’s manually outlined regions; otherwise, it was considered a 

true positive (TP). These performance metrics were computed separately based on the 

location and size of the PEs to clarify the performance of the trained CNN models across 

different types or sizes of PEs. To facilitate a fair comparison, we trained a second R2Unet 

model exclusively on the manually annotated cases in the independent test set. We then 

compared its performance with the model trained on the paired image patches obtained 

by the computer vision method. Results were also assessed based on PE location as main 

arteries, right lung, and left lung. Due to the relatively small size of the manually outlined 

dataset, the 5-fold cross-validation method was used to validate the performance of the 

second model. We note that the k-fold cross-validation was only performed on the second 

model for comparison purposes and was not utilized in the development of the proposed 

algorithm. A paired samples t-test was used to assess the performance difference between 

the two CNN models. A p-value less than 0.05 was considered statistically significant.
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III. RESULTS

In the RSNA-PE dataset, 59.6% (1,317/2,211) of the PE positive cases contained PEs scored 

by the algorithm as high-confidence (Table 1). The number of cases with high-confidence 

PEs located in the main arteries, right lung, and left lung were 388, 1068, and 849, 

respectively. A total of 4,039 high-confident PEs were detected in 1,317 CTPA scans, with 

1,107, 1,579, and 1,353 PEs located in the main arteries, right lung, left lung, respectively 

(Table 2). In the RNA-PE dataset, the average number of PEs per case was 3.07 (±2.21) with 

a range from 1 to 9. Thirty-five percent (1,426/4,039) of the identified high-confidence PEs 

were less than 10mm long.

The thoracic radiologist identified and outlined 970 PEs in the independent dataset (n=91), 

among which 193 were located in the main arteries, 419 in the right lungs, and 358 in the 

left lungs. Their volume and length distributions were also summarized in Table 3 for a 

direct comparison with the high-confident PE regions in the RSNA-PE dataset. Forty-five 

percent of the PEs (435/970) were less than 20 mm long with 17.4% less than 5 mm 

long. The percentages of the small high-confident PE regions obtained from the RSNA-PE 

dataset were somewhat higher than those in the independent test set. Some examples of the 

manually identified small PE regions are shown in Fig. 4.

Table 4 summarizes the performance of the two CNN models when validated on the same 

test set. An example in Fig. 5 showed the performance of the trained CNN model in 

detecting PE regions. The CNN model trained on the high-confident PE regions (Model 

1) performed significantly better than the model trained on the manually outlined results 

(Model 2) in detecting and segmenting PE regions (p<0.01) (Table 3). Model 1 showed a 

false positive rate of 1.86 per CT scan, while Model 2 had a false positive rate of 4.20 

per CT scan. An example in Fig. 6 showed various false positive detections compared to 

the manual outlines. Performance was poor for detecting small PEs for both models. For 

the PEs between 10 to 20 mm, Model 1 had significantly higher sensitivity compared to 

model 2. For the PEs longer than 10 mm, Model 1 had significantly higher sensitivity 

compared to Model 2 (p<0.01). Both models had a sensitivity of around 0.9 for detecting 

PEs longer than 20 mm. The typically missed large PEs had a long length but a small radius, 

as demonstrated by the example in Fig. 7, where the central PE was missed by the CNN 

models. We made the prototype system based on the algorithm available online to allow 

anyone to test the system’s performance. The online system can be accessed at the link: 

http://47.93.0.75:9190/.

IV. DISCUSSION

We developed a new computer scheme to automatically detect and segment PEs on CTPA 

scans. One novelty lies in the strategy of training a CNN model without manually outlining 

the PE regions. It utilizes computer vision methods to automatically locate high-confidence 

PE regions and then trains a CNN model based on the image patches located on the 

identified PE regions. To our knowledge, only a few studies were dedicated to the automated 

detection and segmentation of PE regions 19, 24, 25. Wittenberg et al. 19 evaluated the 

performance of a software system, which was developed by Phillips Healthcare to detect PE, 
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on a dataset of 225 negative and 67 positive cases. At the embolism level, the system had 

an average 4.7 false positive detection per CT scan. Yang et al. 24 described a two-stage 

algorithm, which first detected the suspicious PE regions and then reduced the false positive 

detections based on 2-D CNN-based classifier. Their algorithm demonstrated a sensitivity of 

75.4% with two false positives per scan. Tajbakhsh et al.25 used a thresholding method to 

identify the PE candidate regions and then used 2-D CNN classification model to reduce the 

false positives. Their algorithm demonstrated a sensitivity of 33% with two false positives 

per scan. In contrast, our scheme had a sensitivity of 62% and an average 1.86 false positives 

per CT scan. Our performance is promising, given that a large number of small PEs were 

taken into account in our analyses.

Another unique characteristic of this study is the verification of whether the legacy of 

the traditional computer vision technology could be leveraged to facilitate CNN-based 

deep learning by avoiding the time-consuming manual outlining to generate the ground 

truth for machine learning. A large number of computer vision algorithms have been 

developed to detect and segment various diseases and anatomical structures based on 

medical images; however, their performance is unsatisfactory. The emergence of deep 

learning technology is rapidly transforming the landscape of medical image analysis, 

and the image processing methodology is quickly shifting from traditional computer 

vision technology to deep learning. This shift is primarily caused by the fact that CNN-

based deep learning consistently outperforms the traditional computer vision algorithms in 

medical image analysis. There are arguments about whether the traditional computer vision 

technique is dying or not. The primary advantage of traditional computer vision algorithms 

as compared to deep learning is no need for extensive manual outlining of the regions of 

interest. Although the number of radiological examinations performed in clinical practice 

is innumerable, the value of the examinations for deep learning is limited without manual 

annotations or ground truth available. It is extremely desirable to have an approach that can 

process radiological examinations without the need for extensive manual outlining efforts. 

Our study compared CNN models developed with and without manual annotation. Although 

outlines of the PE regions by a single radiologist are inherently associated with some level 

of bias, our study primarily focuses on the feasibility of the developed annotation-free deep 

learning strategy. To verify this feasibility, we conducted experiments on an independent 

dataset collected from a third institution. Our results demonstrate the developed scheme's 

generalizability to an unrelated population dataset, highlighting its potential applicability to 

similar problems.

We are aware that the RSNA dataset includes several categories of labels based on location 

(central, right, and left) and condition (normal, chronic, acute, and both). Previous studies 

have utilized this labeling system to classify patients or CTPA scans into these categories 
23, 46-48. However, in this study, our main focus is on detecting and segmenting PE regions 

at the voxel level rather than categorizing based on these label categories. We believe that, 

like many other voxel-level image segmentation tasks, segmenting PE regions is crucial 

for extracting interpretable image features and has significant clinical implications. For 

instance, accurate segmentation can help assess the obstruction level of a PE region, which 

can ultimately aid in developing precise and personalized treatment. Different sizes and/or 

locations of a PE region could be associated with different clot burdens. The size, shape, 
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location, and extent of a PE region may indicate different clot burdens, making accurate 

segmentation a crucial factor in clinical decision-making.

There have been a large number of CNN models developed for medical image segmentation, 

such as nnU-net 49. However, our emphasis in this study is not to develop a novel CNN 

model or to optimize the parameters of an available CNN model like nnU-net but to validate 

the feasibility of training a CNN model without manual outlines by utilizing traditional 

computer vision methods and the huge amount of image data in clinical practice to train 

a CNN-based deep learning model. Hence, we simply used the R2Unet to demonstrate 

the feasibility of the proposed idea. Based on our previous experiences 50, the strength 

of the R2Unet is its simple implementation and ability to handle relatively fuzzy and 

small regions of interest (e.g., intramuscular fat 50) due to its “recurrent” and “residual” 

characteristics. When training the CNN models, learning rate, batch size, 3-D image patch 

size, and image patch resolution can all affect the performance of the trained models. It 

is difficult to optimize all these parameters. However, we ensured that the CNN models 

were trained under the same configuration for a fair comparison. In our implementation, 

the computer vision component is responsible for extracting image patches, while the CNN 

model component is responsible for machine learning based on the obtained patches. By 

replacing the specific CNN architecture while retaining the overall framework, our method 

can be utilized with different CNN models. Therefore, despite the limitation that only a 

single CNN model (i.e., R2-Unet) was implemented to test the developed method, we 

anticipate that our method could be adapted to other CNN models.

Our approach used the fact that PEs are located in the arteries and appear as low-density 

regions. We applied a traditional computer vision method to 2,211 PE positive cases in 

the RSNA-PE dataset and detected 1,317 cases with high-confidence PEs. This suggests 

a relatively low sensitivity of the traditional computer vision method and demonstrates its 

inferior reliability compared to CNN-based deep learning. Although the computer vision 

algorithm missed a large portion of the PE regions, it still reliably detected a certain 

portion of high-confidence PE regions, which was used to train more reliable CNN models. 

To determine the confidence level, we used a threshold of 75 HU to distinguish PE 

from neighboring vessels. To verify the effectiveness of this threshold, we performed an 

experiment by evaluating the sensitivity and false positive rate (FPR) over a range of 

thresholds (10-80 HU) using our cohort with manually outlined PE (Fig. 8). FRP is defined 

as the ratio between false positive detections and all detections. When the threshold was 60 

HU, the FRP rate was around 0.1% (only two false positives). When the threshold was 70 

HU or larger, there were no false positives. Hence, as we expected, 75 HU is a relatively 

conservative threshold for our purpose.

As our experiments on an independent test set showed, the CNN model trained on the 

high-confidence PE regions demonstrated a significantly better overall performance (i.e., 

sensitivity, false positive rate per scan, and Dice coefficient) than the CNN model trained on 

the manual outlines (p<0.01) (Table 3). This could be attributed to the fact that the former 

CNN model was trained with 1,317 CT scans with 4,039 PE regions, while the latter CNN 

model was trained with 91 CT scans with 970 PE regions. Also, the PE-negative cases in the 

RSNA-PE dataset were also used to train the former CNN model. This advantage benefits 
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directly from utilizing the traditional computer vision method and a relatively large dataset 

(i.e., RSNA-PE) for identifying high-confident PE regions.

We noticed that the CNN models demonstrated a moderate performance in detecting PE 

regions located in the main pulmonary arteries. This was primarily caused by the existence 

of many small PE regions in our independent test dataset (Fig. 4). The dataset with manually 

annotated PEs contained 17.4% of PE regions with a length less than 5 mm and 27.4% 

less than 10 mm, indicating the high prevalence of small PEs. The low performance of the 

CNN models in detecting small PE regions was primarily caused by the challenge of their 

small size and fuzzy boundaries or low contrast compared to their background (Fig. 4). 

At this moment, we do not have an approach to effectively address the poor performance 

in detecting small PE regions. One possible solution is to increase the scale of the dataset 

to improve the learning of small PEs. Also, the PEs in the main pulmonary arteries only 

accounts for 19.9% of the PEs in the independent dataset. More PEs are located in the right 

lung than in the left lung. This fact suggests that only focusing on the PEs located in the 

central artery and those with large sizes can miss early detection.

While U-Net and its variants are primarily designed for image segmentation, we used a 

segmentation model (R2Unet) to detect and segment PE regions simultaneously. During 

the process, the CNN model assigns each voxel in the image a probability of belonging 

to a specific category or region of interest. However, for CNN-based segmentation 

tasks, the probability map of the segmentation results often has a value close to 1 for 

identified regions, and only the voxels near the boundary have low probability values. This 

“miscalibration” may be caused by the iterative training of the CNN models. Consequently, 

using the mean probability of a region to characterize the probabilities of identified regions 

is not reasonable. Therefore, the free-response receiver operating characteristic (FROC) 

analysis is not a suitable method here to evaluate the detection performance. To mitigate 

this limitation, we employed two evaluation metrics, namely the Dice coefficient for 

segmentation performance and a hit criterion, to assess the performance of our approach 

(Table 3). However, it is important to acknowledge that further research is needed to delve 

into the underlying reasons for the observed miscalibration. By investigating these causes, 

we can explore the possibility of incorporating additional performance evaluation methods, 

such as FROC analysis, to provide a comprehensive assessment of the effectiveness of our 

proposed algorithm.

The RSNA-PE data was collected from multiple medical institutes and acquired using a 

variety of imaging protocols. Such data heterogeneity caused by image quality does not 

affect CNN-based deep learning because various data augmentation operations (e.g., noise 

addition and image blurring) attenuate the impact of the heterogeneity in image quality. This 

was verified by the promising performance of the CNN model trained on the RSNA-PE 

dataset and validated on the independent test dataset. The CNN model proved to be robust to 

the data heterogeneity in terms of image acquisition protocol or image quality.
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V. CONCLUSIONS

We developed and validated a novel strategy to automatically detect and segment PEs 

depicted on CTPA scans. One unique characteristic is that the CNN-based deep learning 

model was trained without manually outlined PEs. The underlying idea is to first identify 

high-confidence PEs in CTPA images using traditional computer vision algorithms and 

then extract 3-D image patches based on these high-confidence PEs to train a CNN-based 

segmentation model. A secondary motivation for this study is to utilize the availability of a 

large image dataset without annotation. Our experiments showed a promising performance 

of the developed scheme and suggested the feasibility of the proposed idea, which may be 

applicable to other similar medical image analysis problems.
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Highlights

• A novel strategy to reuse available computed tomography pulmonary 

angiography (CTPA) scans to train a convolutional neural network for 

pulmonary embolism (PE) detection and segmentation

• The algorithm uses deep learning but does not require manual outlines of the 

PE regions.

• The CNN model trained on a large dataset without manual outlining 

demonstrated a better performance than the same CNN model trained on a 

small dataset with manual outlining.

• Traditional computer vision algorithms can be leveraged to identify high-

confident regions of interest for deep learning.

Pu et al. Page 16

Med Image Anal. Author manuscript; available in PMC 2024 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Algorithm overview
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Fig. 2: 
Lung artery and vein segmentation. (a) a CTPA scan where the arteries and veins are 

segmented and overlayed, (b) 3-D visualization of the segmented pulmonary arteries (red) 

and veins (green), (c) separate 3-D visualization of the pulmonary arteries, and (d)-(e) the 

partition of the arteries into four different levels in terms of radius.
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Fig. 3. 
Identification of suspicious PE regions based on the thresholding of the partitioned artery 

regions in a subject. (a)-(b) CT images at different window/level settings, (c) results after 

thresholding operation, (d) suspicious PE regions (green) after constrained morphological 

operations, and (e)-(l) local enlargement of the images as indicated by arrow A and B in 

(a)-(b) and the corresponding results.
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Fig. 4. 
Small PEs manually outlined by the radiologist in the independent test set. Top row: original 

CT images. Bottom row: manually outlined PE regions in blue.
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Fig. 5. 
Performance of the CNN model. Top row: manually outlined PEs. Bottom row: detection 

and segmentation by the CNN model trained on the high-confidence PE regions.
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Fig. 6. 
False positive detections. (a) and (e) original CT images at different window/level settings 

with false positive (red arrow) and true positive (yellow arrow), (b) overlay of the 

radiologist’s manual outline, (c) overlay of the detection and segmentation by the CNN 

model, (f) 3-D visualization of the manually outlined PEs, and (g) 3-D visualization of the 

PE regions detected by the CNN model.
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Fig. 7. 
A false negative detection of a PE region in the main artery. (a) original CTPA image, (b) 

automated detection and segmentation of the arteries (yellow) and PE regions (in green), 

(c) the local enlargement of the false positive detection in the main artery, and (d) 3-D 

visualization of the segmented arteries and PEs (red).
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Fig. 8. 
The impact of the contrast level (unit: HU) on the determination of false positive rate and 

sensitivity of PE regions.
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Table 1.

Performance of the computer algorithm to identify high-confidence PE regions in the RSNA-PE dataset 

(n=7,279).

Case Count Cases with high-confidence PEs (%)

PE Positive 2,211 1,317 (59.6%)

PE Negative 4,911 -

Indeterminate 157 -

Central PE 401 388 (96.8%)

Right PE 1,875 1,068 (57.0%)

Left PE 1,544 849 (55.0%)
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Table 2.

Characteristics of the manually outlined PE regions in the independent cohort and the high-confident PE 

regions in the RSNA-PE dataset

Independent test set (n=91) RSNA-PE (n=1,317)

Count: total, mean (SD), range 970, 10.66 (6.46), 1–30 4039, 3.07 (2.21), 1–9

Volume (ml): mean (SD) 0.74 (3.02) 1.08 (3.37)

Cross-section radius (mm)*: mean (SD) 1.82 (1.25) 2.06 (1.49)

Length (cm): mean (SD) 2.40 (3.50) 2.97 (3.84)

length (mm): count (%)

   (0, 5) 169 (17.4%) 606 (15.0%)

   [5, 10) 266 (27.4%) 820 (20.3%)

   [10, 20) 235 (24.2%) 1,321 (32.7%)

   [20, ∞) 300 (30.9%) 1,292 (32.0%)

Location: count (%)

   Central (main artery) PE 193 (19.9%) 1,107 (27.4%)

   right PE 419 (43.2%) 1,579 (39.1%)

   left PE 358 (36.9%) 1,353 (33.5%)

*
The cross-section radius is the largest distance value of a suspicious PE region.
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Table 3:

Performance of the CNN-based models on the independent test set (n=91) with 970 manually outlined PEs.

PE size or location
(Length: mm)

Metrics Model 11 Model 22

Length (mm) (0,5) Sensitivity3 0.30 (50/169) 0.32 (54/169)

False positive rate3 0.76 (69/91) 1.73 (157/91)

[5,10) Sensitivity 0.34 (91/266) 0.32 (86/266)

False positive rate 0.60 (55/91) 1.35 (123/91)

[10,20) Sensitivity 0.80 (187/235) 0.61 (143/235)

False positive rate 0.40 (36/91) 0.87 (79/91)

[20, ∞) Sensitivity 0.91 (272/300) 0.90 (269/300)

False positive rate 0.09 (8/91) 0.25 (23/91)

Location

Central (main artery) Sensitivity 0.72 (138/193) 0.67 (129/193)

False positive rate 0.21 (19/91) 0.47 (43/91)

Right
Sensitivity 0.62 (259/419) 0.55 (230/419)

False positive rate 0.96 (87/91) 2.18 (198/91)

Left
Sensitivity 0.57 (203/358) 0.54 (193/358)

False positive rate 0.68 (62/91) 1.55 (141/91)

All Dice coefficient4 0.676 (0.168) 0.647 (0.192)

Sensitivity 0.62 (600/970) 0.57 (552/970)

False positive rate 1.86 (168/91) 4.20 (382/91)

1
Model 1 was trained on the high-confident PE regions in the RSNA-PE dataset and validated on the manually annotated independent test set.

2
Model 2 was trained and validated on the manually annotated independent test set using 5-fold cross-validation.

3
Sensitivity and false positive rate (per scan) were computed at the PE level.

4
Dice coefficient was measured at the voxel level.
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