Skip to main content
. Author manuscript; available in PMC: 2023 Sep 27.
Published in final edited form as: J Biomed Inform. 2023 Jun 1;143:104405. doi: 10.1016/j.jbi.2023.104405

Table 6:

Word Classification: the best model for word classification for each approach: (1) ALL CATEGORIES BINARY: binary classification ignorance or not, (2) AN ENSEMBLE OF BINARY CLASSIFIERS: binary classification for each class (reported) combined to create the ensemble, and (3) ALL CATEGORIES COMBINED: one multi-classifier to all categories.

Ignorance Category Model testing F1 score testing support
ALL CATEGORIES BINARY BioBERT 0.89 7601
answered question BioBERT 0.89 320
unknown/novel CRF 0.98 155
explicit inquiry BioBERT 0.97 43
incompletely understood BioBERT 0.93 2809
indefinite relationship BioBERT 0.97 1205
largely understood BioBERT 0.94 618
anomalous/curious BioBERT 0.96 399
alternative/controversy BioBERT 0.91 598
difficult CRF 0.93 128
problem/complication BioBERT 0.9 238
future work BioBERT 0.89 391
future prediction BioBERT 0.94 100
important consideration BioBERT 0.93 608
ALL CATEGORIES COMBINED* BioBERT 0.82 6239
*

Reporting the average F1 score of all the categories for one multi-classifier.