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SUMMARY

RNA splicing factors are recurrently mutated in clonal blood disorders, but the impact of 

dysregulated splicing in hematopoiesis remains unclear. To overcome technical limitations, 

we integrated Genotyping of Transcriptomes (GoT) with long-read single-cell transcriptome 

profiling and proteogenomics for single-cell profiling of transcriptomes, surface proteins, somatic 

mutations, and RNA splicing (GoT-Splice). We applied GoT-Splice to hematopoietic progenitors 

from myelodysplastic syndrome (MDS) patients with mutations in the core splicing factor 

SF3B1. SF3B1mut cells were enriched in the megakaryocytic-erythroid lineage, with expansion of 
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SF3B1mut erythroid progenitor cells. We uncovered distinct cryptic 3’ splice site usage in different 

progenitor populations and stage-specific aberrant splicing during erythroid differentiation. 

Profiling SF3B1-mutated clonal hematopoiesis samples revealed that erythroid bias and cell-type 

specific cryptic 3’ splice site usage in SF3B1mut cells precede overt MDS. Collectively, GoT-

Splice defines the cell-type specific impact of somatic mutations on RNA splicing, from early 

clonal outgrowths to overt neoplasia, directly in human samples.

Graphical Abstract

eTOC

Cortés-López and colleagues develop GoT-Splice for the concurrent profiling of gene expression, 

surface proteins, somatic mutations, and RNA splicing in individual cells. By utilizing this 

method, they investigate the effects of SF3B1 mutations in patients with myelodysplastic 

syndrome and clonal hematopoiesis, unveiling splicing abnormalities that lead to lineage-specific 

clonal expansions.
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INTRODUCTION

Genetic diversity in the form of clonal outgrowths has been ubiquitously observed across 

normal and malignant human tissues1–13. Likewise, single-cell RNA sequencing (scRNA-

seq) has revealed phenotypic diversity as a hallmark of both normal and malignant human 

tissues14–20. These two axes of cellular diversity likely exhibit complex interplay, as cell 

state may affect the phenotypic impact of somatic mutations21. Recent advances in single-
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cell multi-omics sequencing have allowed us to link genetic variation and transcriptional cell 

state diversity in somatic evolution of human tissues15,22,23. For example, using Genotyping 

of Transcriptomes (GoT)15 technology, which enables genotyping of somatic mutations 

together with high-throughput droplet-based scRNA-seq, we demonstrated that the effects of 

somatic mutations on cellular fitness in myeloproliferative disorders vary as a function of 

progenitor cell identity15.

Mutations in genes encoding RNA splicing factors demonstrate the challenge of linking 

genotype to phenotype in complex human tissues. Somatic change-of-function mutations 

in RNA splicing factors are recurrent in hematologic malignancies24–26, highlighting 

the importance of dysregulated RNA splicing in human hematopoietic disorders. SF3B1 
(splicing factor 3b subunit 1), a core component of the spliceosome complex, is a commonly 

mutated splicing factor across hematologic malignancies and solid tumors, and is implicated 

in the pathogenesis of myelodysplastic syndromes (MDS)27,28. SF3B1 mutations also 

increase the risk of myeloid neoplasms in individuals with clonal hematopoiesis (CH), 

compared to other CH driver mutations1,2. SF3B1 mutations result in incorrect branch 

point recognition during RNA splicing, often leading to an increased usage of aberrant 

(or cryptic) intron-proximal 3’ splice sites in hundreds of genes29. Such aberrant 3’ splice 

site recognition typically results in the inclusion of short intronic fragments in spliced 

mRNA, commonly causing frameshifts that render the transcript a substrate for nonsense 

mediated mRNA decay (NMD)30. Through mis-splicing, SF3B1 mutations have been 

shown to affect cell metabolism31 and ribosomal biogenesis32, leading to the aberrant 

hematopoietic differentiation typical of MDS. However, the mechanisms through which 

mis-splicing disrupts hematopoietic differentiation in humans remain elusive.

To date, cellular and murine models have been critical for elucidating the role of splicing 

factor mutations in disordered hematopoiesis. Nonetheless, these methods may not fully 

recapitulate MDS development in humans. For example, alternatively spliced genes from 

murine models of SF3B1mut MDS, which phenotypically resemble human MDS, show 

limited overlap with those identified in humans33. Analysis of splice-altering mutations 

in humans has been further hampered by three main limitations. Firstly, normal wildtype 

(WT) and aberrant mutated (MUT) cells are often admixed, limiting identification of 

signals specifically linked to the SF3B1mut genotype. This challenge is amplified in the 

context of CH, where MUT cells are typically a minority of the hematopoietic progenitor 

population. Secondly, the hematopoietic differentiation process yields significant complexity 

of cell progenitor types that further hinders the ability to link mutated genotypes with 

distinct cellular phenotypes. SF3B1mut MDS is indeed associated with a specific clinico-

morphological phenotype of refractory anemia and accumulation of ringed sideroblasts28,34, 

strongly suggesting that the interplay between cell identity and SF3B1 mutations is 

fundamental in driving disrupted hematopoietic differentiation. Finally, scRNA-seq by 3’ 

or 5’ biased short-read sequencing provides an incomplete picture of the consequences of 

splicing factor mutations on the transcriptome and their downstream effects.

To overcome these limitations and identify cell-identity-dependent mis-splicing mediated 

by SF3B1 mutations, we developed GoT-Splice by integrating GoT15 with long-read 

single-cell transcriptome profiling (with Oxford Nanopore Technologies [ONT]) as 
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well as proteogenomics (with CITE-seq)35. This enabled the simultaneous profiling 

of gene expression, cell surface protein markers, somatic mutation genotyping, and 

RNA splicing within the same single cell. The application of GoT-Splice to bone 

marrow progenitor samples from individuals with SF3B1mut MDS and CH revealed 

that, while SF3B1 mutations arise in uncommitted hematopoietic stem progenitor cells 

(HSPCs), their enrichment increases along the differentiation trajectory into committed 

erythroid progenitors (EPs), in line with the SF3B1mut-driven dyserythropoiesis phenotype. 

Importantly, the integration of GoT with full-length isoform mapping via long-read 

sequencing demonstrated that SF3B1 mutations exert cell-type specific mis-splicing, already 

apparent in CH.

RESULTS

GoT integrated with proteogenomics reveals enrichment of SF3B1mut cells in the erythroid 
lineage linked to overexpression of cell-cycle and mRNA translation genes

As the impact of somatic mutations on the transcriptome varies as a function of underlying 

cell identity in myeloproliferative neoplasms15, we hypothesized that an interplay between 

cell identity and SF3B1 mutations may drive disrupted hematopoietic differentiation in 

MDS. To test this, we applied GoT15 (Figure 1a) to CD34+ bone marrow progenitor 

cells from three untreated MDS patients with SF3B1 K700E mutations (discovery cohort, 

MDS01-03) and a separate cohort of MDS patients undergoing treatment (validation cohort, 

MDS04-06) with erythropoietin (EPO) and/or granulocyte colony-stimulating factor (G-

CSF; Figure 1b; Table S1). As normal hematopoietic development has been extensively 

studied using flow cytometry cell surface markers, we further integrated GoT with single-

cell proteogenomics (CITE-seq35,36; Figure 1a). After sequencing and quality control 

filtering, we obtained 24,315 cells across the six MDS samples (Figure S1a–b; MDS02 

was sequenced in two technical replicates). To chart the differentiation map of the CD34+ 

progenitor cells, we integrated the data across the six MDS samples and clustered based 

on transcriptomic data alone, agnostic to the genotyping and protein information (Figure 

1c; Figure S1c–d). Using previously annotated RNA identity markers for human CD34+ 

progenitor cells37, validated via Antibody-Derived Tag (ADT) markers in the CITE-seq 

panel (Table S1, 2), we identified the expected progenitor subtypes in the primary MDS 

cohort, along with a population of mature monocytic cells characterized by CD14 expression 

and lack of CD34 expression, which is often observed in CD34+ sorting of human bone 

marrow38,39, and was not completely removed with monocyte-specific blocking reagents39 

(Figure 1c; Figure S1e–g). Cell clustering was further validated using RNA and ADT 

multimodal integration (Figure S1h). The expected progenitor subtypes were similarly 

identified in the MDS validation cohort (MDS04-06; Figure S1i–k).

Genotyping data were available for 15,650 MDS cells (64.4% across MDS01-06) through 

GoT (Figure 1b; Figure S2a–d). The per-patient mutant cell fractions obtained through GoT 

were highly correlated with the variant allele frequencies (VAFs) obtained through bulk 

sequencing of matched unsorted peripheral blood mononuclear cells (Pearson’s r = 0.81, P-

value = 0.008; Figure S2a). Projection of the genotyping information onto the differentiation 

map showed co-mingling of MUT and WT cells throughout the differentiation topology, 
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highlighting the need for single-cell multi-omics to link genotypes with cellular phenotypes 

in SF3B1mut MDS. Although MUT cells were found across CD34+ progenitor cells, 

we observed an accumulation of MUT cells along the erythroid trajectory (Figure 1d), 

suggesting that SF3B1 mutant cell frequency (MCF) varies as a function of the progenitor 

subtype. To confirm this, we evaluated the MCF across the different prevalent progenitor 

cell types (limited to progenitor subsets with > 300 cells). Across samples, we observed a 

significant increase in MCF in the megakaryocyte-erythroid lineage, with the highest MCF 

in EPs compared to HSPCs (P-value < 10−16; Figure 1e; Figure S2d), consistent with the 

erythroid lineage-specific impact of mutated SF3B140,41.

The ability to layer protein measurements on top of GoT data further allowed us to 

identify differentially expressed proteins between MUT and WT cells within each progenitor 

subset. After quality control filtering for ADT markers with adequate expression in at 

least two major progenitor subtypes (see Methods), protein expression was highest in the 

expected cell types, and correlated with mRNA expression at the cell and cell-type level, 

comparable to previous data35 (Figure S2e–f). We directly compared protein expression 

between MUT and WT cells, accounting for sample-to-sample variability in mutated cells 

through downsampling (see Methods), and observed differential expression of CD38, CD99, 

CD36 and CD71 in at least one progenitor cell-type (Figure 1f; Table S2). CD38 is a 

known marker for the transition of primitive CD34+ stem and progenitor cells into more 

committed precursor cells37,42–44. Its overexpression in SF3B1mut is consistent with the 

observed higher MCF in committed progenitor subsets. CD99, over-expressed in MUT 

immature myeloid progenitor cells (IMP) cells, was previously noted to be overexpressed 

in both AML and MDS stem cells, serving as a potential therapeutic target of malignant 

stem cells45,46. Finally, CD36 and CD71, erythroid lineage markers, were found to be 

over-expressed in MUT EPs when compared to WT EPs, consistent with the SF3B1mut-

driven dyserythropoiesis phenotype. We further leveraged these erythroid maturation cell 

surface protein markers to validate pseudo-temporal (pseudotime) ordering of the continuous 

process of erythroid maturation47 (Figure S2g). This analysis revealed an increase in MCF 

along erythroid lineage maturation (Figure 1g), confirming enrichment of SF3B1 mutated 

cells along the differentiation trajectory into committed EPs.

To further explore SF3B1 driven transcriptional dysregulation in committed EPs, we 

performed differential gene expression analysis between SF3B1mut and SF3B1wt cells. 

Mutated EPs upregulated genes encoding important translation and ribosome biogenesis 

factors (Figure 1h; Table S3), including several eukaryotic initiation factors (e.g., EIF3A 
[FDR adjusted P-value = 0.007], EIF5A [FDR adjusted P-value = 0.011]), DEAD-box 

helicases (e.g., DDX5 [FDR adjusted P-value = 0.016]), and ribosome subunits (e.g., RPS29 
[FDR adjusted P-value = 0.1]). While we did not directly assess translational defects, 

this dysregulation of translation factor expression is evocative of studies showing that 

translational regulation is critical during hematopoiesis48–51, and may lead to cell- and tissue 

type–restricted activation of TP53 signaling pathway in myeloid disease52–57. Specifically, 

cells that require high levels of protein synthesis, such as erythroid progenitors, may be 

more sensitive to even subtle changes in translational regulation58. In line with this notion, 

TP53 gene target upregulation in SF3B1mut cells was more prominent in the megakaryocyte-

erythroid lineage, with no increased expression of TP53-related genes in earlier progenitors 
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(HSPCs) or in neutrophil progenitors (NPs) compared to WT cells (Figure 1i). Our results 

therefore establish a molecular phenotype for the SF3B1 mutation in human bone marrow 

progenitors, implicating changes in translation pathway genes.

Mutated EPs also upregulated genes related to the cell cycle (FDR adjusted P-value = 0.08; 

Figure 1h, j; Table S3). For example, we observed an increase in the expression of CCNE1, 

a positive regulator of the G1/S transition of the cell cycle59, and MDM4, which works 

together with TP53 during the G1/S checkpoint to determine the fate of cells by regulating 

pathways involved in DNA repair, apoptosis, and senescence60,61. Increased expression of 

MDM4 can attenuate TP53 activation induced by ribosomal stress62,63, thereby reducing the 

functional impact of p53, thus promoting cell survival and accumulation. Taken together, 

these factors contribute to the enrichment of SF3B1 mutations in the erythroid lineage.

GoT-Splice links somatic mutations, alternative splicing, and cellular phenotype at single-
cell resolution

Given the pivotal role of SF3B1 in mRNA splicing, we next explored how mis-splicing 

may link genotypes and cellular phenotypes. Indeed, SF3B1 mutations promote recognition 

of alternative branch points, most often leading to increased usage of aberrant 3’ splice 

sites29. However, previous studies in primary human samples have been performed on bulk 

samples admixing MUT and WT cells as well as progenitor subtypes30,32,64,65. Conversely, 

short-read scRNA-seq does not adequately cover splice junctions. Recent advances suggest 

that long-read integration into scRNA-seq may overcome these limitations66–70. We 

therefore integrated GoT with full-length ONT long-read sequencing, allowing for high-

throughput, single-cell integration of genotype, cell surface proteome, gene expression, and 

mRNA splicing information (GoT-Splice; Figure 1a). Single-cell cDNA sequencing with 

ONT presents unique challenges, as cDNA amplification artifacts are still productively 

sequenced when using standard ONT ligation chemistry, leading to a high fraction of 

uninformative reads in the highly amplified single-cell libraries. To enhance ONT efficiency, 

we incorporated a biotin enrichment step using on-bead PCR to selectively amplify full-

length reads containing intact cell barcodes and unique molecular identifiers67 (UMIs; 

Figure 2a), increasing the yield of full-length reads from 50.4% +/− 2.7 to 77.6% +/− 2.0 

(mean +/− s.e.m.) of sequenced reads. Thus, GoT-Splice delivers high-resolution single-cell 

full-length transcriptional profiles comparable with short-read sequencing (Figure 2b–c). 

However, full-length ONT sequencing alone is insufficient to support efficient genotyping of 

the SF3B1mut locus, as analysis of ONT-alone data revealed that only 3% of cells have at 

least 1 UMI covering the SF3B1mut locus vs. 56% of cells with GoT (average across MDS 

samples; Figure S2b), demonstrating the power of our integrated approach.

To accurately identify splice junctions using single-cell long-read sequencing, we developed 

an analytical pipeline that leverages the SiCeLoRe pipeline67 (Figure S3a). To reduce 

alignment noise, we generated a splice junction reference identified in single-cell SMART-

seq2 data from human CD34+ cells without SF3B1 mutation (Methods). Next, we 

performed intron-centric junction calling for the independent measurement of splicing at 

both the 5’ and 3’ ends of each intron. This allows for unbiased assessment of junctions and 

greater accuracy in measuring the degree of transcript mis-splicing compared to exon-centric 
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quantification approaches71, which are typically used for cassette exon usage profiling and 

rely on potentially inaccurate or incomplete72,73predefined transcript models or splicing 

events. As anticipated, when comparing short-read and long-read sequencing, we found 

a 12.3-fold increase in the number of junctions detected using long-read sequencing, 

with the majority of junctions (~90%) unique to long-read data (Figure 2d; Figure S3b). 

Notably, at the single-cell level, despite lower absolute number of UMI/cell, we observed a 

5.5-fold increase in detected junctions with long-read sequencing (Figure S3c). Additionally, 

GoT-Splice afforded greater coverage uniformity across the entire transcript, compared 

to 3’-biased coverage in short-read sequencing, enabling the detection of splicing events 

further from the 3’ transcript end (Figure 2e). To further highlight the discovery power 

of long-read sequencing, we compared short- and long-read capture of cryptic 3’ splicing 

events in relation to distance from the 3’ transcript end (Methods), showing that long-read 

sequencing identifies substantially greater numbers of cryptic events both along the length of 

the transcript and overall compared to short-read (Figure S3d), with the majority of cryptic 

3’ splicing events detected in short-reads also captured in long-reads (Figure S3d, pie-chart 
inset).

The most common mis-splicing events (57%) observed in MDS SF3B1mut cells involved 

alternative 3’ splice sites(Figure 2f), consistent with prior reports29,74. Notably, such 

alternative 3’ splice site usage was not observed in a SF3B1 WT CD34+ sample (Figure 

S3e). Among the differentially mis-spliced cryptic 3’ splice sites (0–100bp from canonical 

splice site) between SF3B1mut and SF3B1wt cells, 87% were used more highly in SF3B1mut 

cells (Figure 2f, inset), aligning with known characteristics of SF3B1 mutations. ONT 

long-read sequencing also allowed quantification of different splicing events within the 

same mRNA transcript. While only one aberrant 3’ splice site event was observed for most 

mRNA transcripts, we identified 428 genes (21.4% of total genes with at least one cryptic 

3’ splice site) with more than one aberrant 3’ splice site event. These cryptic 3’ splicing 

events frequently appeared in different copies of the transcript (Figure S3f). Consistent with 

previous MDS bulk sequencing data29,75, we observed a relative enrichment of purines 

upstream of the aberrant 3’ splice site when compared to the canonical 3’ splice site (Figure 

S3g).

To assess how our method compares with available isoform detection tools, we compared 

the recovery and quantification of novel splicing junctions to full-length isoform 

quantification methods FLAMES68 and IsoQuant76. While isoform junction annotation was 

largely comparable across all three methods (Figure S4a), detection of cryptic 3’ events was 

increased using our approach, compared with FLAMES and IsoQuant, which are designed 

to annotate and quantify full-length isoforms. For these cryptic 3’ events, we observed 

more variation on local splicing event assignment, with little agreement between the three 

methods (Figure S4a, right). Additionally, many 3’ cryptic events detected by our method 

were not identified by FLAMES and IsoQuant (Figure S4a, right). We also observed a high 

correlation between GoT-Splice delta PSI (dPSI; percent spliced in) measurements obtained 

by comparing SF3B1mut and SF3B1wt cells and dPSI derived from bulk RNA-sequencing 

of CD34+ cells from SF3B1mut vs. SF3B1wt MDS samples32 for shared cryptic 3’ splice 

sites (Figure 2g). This correlation with dPSI derived from bulk data of SF3B1mut MDS 
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samples32 was not statistically significant in IsoQuant; in contrast, FLAMES preserved 

the positive correlation observed when using GoT-Splice (Figure 2g) although with a 

smaller Spearman’s correlation coefficient value compared to GoT-Splice (Figure S4b). 

Furthermore, in line with previous work in MDS, the majority of the cryptic 3’ splice sites 

identified by GoT-Splice were ~15–20 bps upstream of the canonical 3’ site29 (Figure 3a–b; 

Figure S4c–f). The dPSI for the differentially spliced cryptic 3’ splice site events obtained 

by comparing SF3B1mut and SF3B1wt cells were highly correlated across MDS samples 

(average Pearson’s r of 0.55; P-value < 0.001), highlighting the ability of our differential 

splicing analysis pipeline to identify statistically robust recurrent mis-splicing events (Figure 

3a–b; Figure S4c–f; Table S4). Unlike GoT-Splice, which identified a far larger number of 

mis-splicing events validated with manual review, full-length isoform quantification methods 

did not demonstrate the expected increased usage of cryptic 3’ splice sites in MUT vs. 

WT cells (Figure 3a–b and Figure S4g), with equal number of statistically significant mis-

splicing events, further suggesting lower performance in identifying 3’ cryptic mis-splicing. 

This is potentially due to the applied correction of splice sites in these full-length isoform 

algorithms, which may hinder cryptic mis-splicing detection, particularly for cryptic splice 

sites found within 10 bp of the canonical site (Figure S4h).

To assess how the SF3B1mut MDS alternative splicing profiles compare to another 

hematologic malignancy, we compared cryptic 3’ events detected from SF3B1mut MDS cells 

(positive dPSI, FDR adjusted P-value < 0.2) to those detected using previously published 

bulk RNA sequencing data from SF3B1mut chronic lymphocytic leukemia (CLL) samples77. 

We detected more cryptic 3’ events in our MDS dataset, with 10 events overlapping between 

MDS and CLL (Figure S4i, Table S4). This low overlap is likely driven by expression 

differences between MDS and CLL cells, as genes with shared events had higher expression 

levels in MDS cells compared to CLL-only events (Figure S4j).

To demonstrate GoT-Splice’s generalizability for profiling somatic mutations, we analyzed 

a DNMT3Amut clonal hematopoiesis (CH) sample (R882C; VAF of 0.09). Recent work 

has implicated DNMT3A in splicing regulation in hematopoiesis, independent of DNA 

methylation78. We quantified the distribution of alternative splicing patterns and found 

that exon skipping was the most common event (Figure S5a), as previously reported79. 

Comparison between DNMT3Amut and DNMT3Awt cells revealed genotype-specific events 

including the SRSF3 exon 4 skipping event80, exclusive to DNMT3Amut cells (Figure S5b–

c). SRSF3 exon 4 harbors a premature termination codon that causes NMD. Thus, the 

lack of exon 4 usage in DNMT3Amut cells can lead to the overexpression of SRSF3, a 

known oncogenic splicing factor81. We further applied GoT-Splice to CD34+ cells from 

an acute myeloid leukemia (AML) patient with a mutation in the splicing factor U2AF1 
(S34F; VAF of 0.16). Despite challenges associated with low expression of U2AF1 in this 

sample, genotyping data were available for 1,662 AML cells (12.8% of all cells) through 

GoT-Splice (Figure S5d). Alternative splicing events between U2AF1mut and U2AF1wt cells 

were enriched for exon skipping events82 (Figure S5e). Through our differential splicing 

analysis pipeline, we further identified 103 significant differentially spliced events between 

U2AF1mut and U2AF1wt cells (Figure S5f), two of which were exon skipping events in 

KIN and DAP3 that were more prevalent in U2AF1mut cells (Figure S5g), as previously 

reported82. These findings demonstrate the generalizability of our method beyond SF3B1 
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mutation detection and reveal how DNMT3A and U2AF1 mutations result in different 

splicing changes compared to SF3B1 mutations (exon skipping vs. alternative 3’ splice sites, 

respectively).

Altogether, GoT-Splice enables to link somatic mutations to transcriptional and cell surface 

protein marker phenotypes, and single-cell splicing changes.

GoT-Splice shows progenitor-specific patterns in SF3B1mut- mis-splicing

An important advantage of GoT-Splice is the ability to detect splicing changes at single-

cell resolution, allowing the comparison of alternative splicing aberrations between MUT 

and WT cells in specific cell subsets (Figure 3c, Table S4). We identified both shared 

and unique SF3B1mut cryptic 3’ splice site events across progenitor subtypes in MDS, 

with the highest usage of cryptic 3’ splice sites occurring in the megakaryocyte-erythroid 

lineage. SF3B1mut MEPs and EPs accounted for most of the cell-type specific cryptic 3’ 

splice site events, highlighting the specific impact of SF3B1 mutations on the erythroid 

lineage. These progenitor-specific patterns in SF3B1mut mis-splicing were confirmed in the 

validation cohort (MDS04–06; Figure S5h–j). In both MDS cohorts, progenitor-specific 

cryptic 3’ splice sites involved genes related to cell cycle (e.g., CENPT)83, RNA processing 

(e.g., CHTOP, SF3B184, SRSF11, PRPF38A), oxygen homeostasis (e.g., HIF1A), erythroid 

differentiation (e.g., CD36, FOXRED1, GATA134,85,86), and heme metabolism (e.g., UROD, 
PPOX, CIAO1) (Figure 3c; Figure S5h–i; Table S4). Notably, long-read sequencing was 

advantageous in detecting cryptic splicing events in functionally important genes (PPOX, 
UROD) with poor short-read coverage due to substantial drop-off in the 10x short-reads 

across the transcript (Figure S5j). Although some genes and pathways identified in the 

analysis of cryptic 3’ splice sites across cohorts have previously been reported to be 

disrupted by alternative splicing in bulk studies of SF3B1mut MDS samples32, their cell-

type specificity was unknown. For instance, while the alternative splicing event in SF3B1 
itself has been suggested before as being neoplasm-specific, here we resolved its erythroid-

specific pattern. This isoform – SF3B1ins – is predicted to affect splicing by impairing 

U2 snRNP assembly84, likely contributing to enhanced mis-splicing dysregulation in the 

megakaryocyte-erythroid lineage. In addition, cell cycle plays a critical role in terminal 

differentiation of hematopoietic stem cells87 and RNA processing, erythroid differentiation, 

and heme metabolism pathways are directly linked to the regulation of erythropoiesis88–90. 

Furthermore, we observed significant overlap of megakaryocyte-erythroid lineage-specific 

aberrantly spliced genes between discovery and validation MDS cohorts (P-value = 0.00029, 

Fisher’s exact test, with 46.8% of the cryptically spliced genes in MDS also aberrantly 

spliced in the MDS validation cohort; Figure S5i), indicating cell-type and differentiation-

stage dependency of SF3B1mut-induced alternative splicing27,91–93.

Notably, erythropoiesis occupies a continuum of cell states and is dependent on 

transcriptional changes that occur along the differentiation trajectory47. Analyzing SF3B1mut 

mis-splicing along this continuum (Figure 4a) revealed that some erythroid differentiation, 

oxygen homeostasis and heme metabolism genes can be mis-spliced more frequently at 

the earliest stages of EP maturation (e.g., UROD, HIF1A, FOXRED194), while others 

display increased mis-splicing in more differentiated EPs (e.g., GYPA and PPOX). UROD 
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is part of the heme biosynthesis pathway; heme is an important structural component of 

erythroid cells and plays a regulatory role in the differentiation of erythroid precursors95. 

PPOX encodes an enzyme involved in mitochondrial heme biosynthesis and, as such, its 

degradation leads to ineffective erythropoiesis and mitochondrial iron accumulation typical 

of MDS with ring sideroblast clinical phenotype96. These results provide evidence that 

pathogenic SF3B1mut-driven mis-splicing impacts key mediators of hemoglobin synthesis 

and erythroid differentiation at all stages of erythroid maturation97,98.

In some cases, the degree of mis-splicing of a particular transcript (measured by PSI) 

positively correlated with its expression across the erythroid differentiation trajectory. In 

others, mis-splicing was negatively correlated with gene expression, often in cryptic 3’ 

splice site events predicted to lead to transcript degradation by NMD (Figure 4b for 

examples). Cryptic 3’ splice sites result in the inclusion of short intronic fragments in 

mRNA and often introduce a premature termination codon (PTC)99–101. mRNAs harboring 

an NMD-inducing PTC located ≥50 bps upstream of the last exon–exon junction are 

predicted to undergo NMD, which prevents production of potentially aberrant proteins. 

In contrast, mRNAs harboring an NMD-neutral PTC, generally located ≤50 bps upstream 

of the last exon–exon junction or in the last exon, fail to trigger NMD and produce 

dysfunctional proteins102,103. We classified cryptic 3’ splice sites detected in the MDS 

samples into two major groups: (i) NMD-inducing events (due to the introduction of a 

PTC) and (ii) NMD-neutral events (Table S4). In accordance with previous reports74, of 

the 421 cryptic 3’ splice sites significantly associated with SF3B1mut cells, 228 (54%) were 

classified as NMD-inducing events while the remaining 193 (46%) harbored NMD-neutral 

events. Despite the somewhat equal identification of NMD-inducing and NMD neutral 

events, we observed an overall decrease in the expression of genes with NMD-inducing 

event in the MUT cells that harbored these mis-spliced transcripts when compared to 

NMD-neutral events (P-value = 0.017, Mann Whitney U test; Figure 4c).

NMD-inducing events affected key genes in erythroid development, such as UROD, GYPA, 

FOXRED1 and PPOX. Transcript loss via NMD104,105 may thus contribute to disrupted 

terminal differentiation of EPs. Notable among NMD-neutral affected genes, we identified 

BAX, a member of the Bcl-2 gene family and transcriptional target of TP53. BAX plays a 

vital role in the apoptotic cascade, balancing survival, differentiation, and proliferation of 

EPs during later stages of erythropoiesis106 (Figure 4a). The identified BAX cryptic 3’ splice 

site, though NMD-neutral, causes a frameshift in the last exon, disrupting the C-terminus of 

the protein. This BAX isoform, known as BAX-ω (Figure 4d), has been shown to protect 

cells from apoptotic cell death107,108.

To functionally evaluate the significance of SF3B1mut-specific alternatively spliced BAX 
isoforms, we generated BAX and BAK1 double knockout (DKO) human TF-1 erythroid 

leukemia cells and re-expressed FLAG-tagged BAX-α, BAX-β, and BAX-ω isoforms under 

a doxycycline-inducible promoter (Figure 4e). BAX and BAK1 have functionally redundant 

proapoptotic roles109 and DKO cell lines have previously been utilized in similar functional 

validation experiments of BAX variants110,111. TF-1 cells are an established immature cell 

line of erythroid origin and are dependent on growth factors for proliferation and survival112. 

We tested the ability of different BAX isoforms to induce apoptosis under cytokine-depleted 
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conditions. As expected, TF-1 DKO inducible GFP control cells had no increase in apoptosis 

while induction of BAX-α and BAX-β expression led to a significant increase in apoptotic 

cells at 48 and 72 hours, consistent with their established roles as inducers of apoptosis113. 

Importantly, expression of BAX-ω showed no change in apoptosis under cytokine-depleted 

conditions, supporting an anti-apoptotic role for BAX-ω expression in immature erythroid 

cells (Figure 4f–g). Collectively, our data highlight SF3B1mut-specific mis-splicing in the 

induction of NMD in erythroid differentiation genes and alternative splicing of apoptosis 

mediators as important events in the pathogenesis of SF3B1mut MDS cells.

Accumulation of SF3B1mut cells in the erythroid progenitor population and extensive mis-
splicing in clonal hematopoiesis

While SF3B1 mutations are the most common genetic alterations in MDS patients, they 

are also associated with a high-risk of malignant transformation in clonal hematopoiesis 

(CH)4–8,114,115. However, the study of SF3B1 mutations directly in primary human samples 

has been largely limited to MDS, where confounding co-occurrence of other genetic 

alterations is common. Additionally, it remains unclear exactly how splicing mutations 

impact cellular phenotypes in CH. For example, while SF3B1 mutations have been proposed 

to be drivers of CH116, enhancing likelihood of progression to myeloid neoplasia, these 

mutations often occur as early genetic events in CH cases, with gradually increasing 

VAF over time. In contrast, mutations in U2AF1 and SRSF2 appear later in life, with 

rapidly increasing VAF117. Thus, CH presents a unique setting to interrogate the molecular 

consequences of SF3B1 mutations in non-malignant human hematopoiesis.

We therefore isolated viable CD34+ cells from two CH samples with SF3B1 mutations 

(VAFs: 0.15 and 0.22, from CD34+ autologous grafts collected from patients with multiple 

myeloma in remission) and performed GoT-Splice. A total of 9,007 cells across both 

samples passed quality filters (Figure S6a) and were integrated and clustered based on 

transcriptome data alone, agnostic to genotyping information (Figure 5a; Figure S6b). 

Consistent with clinical data indicating normal hematopoietic production, we identified 

the expected progenitor subtypes using previously annotated progenitor identity markers 

(Figure 5a; Figure S6c–d). Genotyping data were available for 3,642 cells (40.4%) through 

GoT (Figure S6e), and copy number analysis with scRNA-seq data confirmed the expected 

absence of chromosomal gains or losses (Figure S6f).

Projection of the genotyping information onto the differentiation map (Figure 5b), showed 

no novel cell identities formed by the SF3B1 mutations, consistent with the fact that patients 

with CH exhibit no overt peripheral blood count or morphological abnormalities. However, 

a differentiation pseudotime ordering analysis revealed enrichment of SF3B1mut cells at later 

pseudotime points compared to SF3B1wt cells (Figure 5c; Figure S6g). As in MDS, mutated 

cells were enriched in more differentiated EPs compared to the earlier HSPCs (P-value < 

0.001, linear mixed model, Figure 5d; Figure S6h), showing that SF3B1mut CH cells already 

demonstrate an erythroid lineage bias.

To further identify transcriptional dysregulation in SF3B1mut CH cells, we performed 

differential gene expression analysis between mutated and wildtype cells. We observed 

an up-regulation of genes involved in mRNA translation in the SF3B1mut HSPCs (where 
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spliceosome mutations originate from the most primitive multipotent compartment116,118) 

in CH (FDR adjusted P-value = 0.005; Figure 5e–f; Table S5), a pathway also observed to 

be upregulated in the MDS analysis (Figure 1h). In CH, upregulation of mRNA translation 

pathway genes was observed across multiple cell subtypes along erythroid differentiation, 

while absent in NPs (Figure 5g). Thus, although no overt blood count abnormalities are 

observed with SF3B1 mutation in CH individuals, both the erythroid differentiation bias and 

aberrant transcriptional profiles are already apparent at this early pre-disease stage.

The analysis of differentially used alternative 3’ splice sites between SF3B1mut and SF3B1wt 

CH cells revealed a marked increase in cryptic 3’ splice site usage in SF3B1mut cells, as 

observed in MDS (Figure 6a). These mutant-specific cryptic 3’ splice sites affected genes 

including UROD, OXAIL, SERBP1, MED6, and ERGIC3, which were also detected to be 

cryptically spliced in the SF3B1mut MDS cells. Importantly, the lower VAF associated with 

pre-malignant CH samples highlights the necessity for GoT-Splice to increase the detection 

of mis-splicing events occurring at low frequencies, and that may otherwise be missed in 

bulk sequencing studies (Figure 6b; Figure S6i). To validate these results, we analyzed 

CD34+ cells from a CH sample collected from an individual without myeloma history 

(CH03, Methods) and observed high correlation of shared splice junctions with our previous 

samples (Spearman’s rho = 0.96, P-value = 2.03x10−12; Figure S6j). We also recapitulated 

3’ cryptic splice site and exon inclusion events in key genes (e.g., SERBP1 and HNRNPA1; 

Figure S6k).

To compare mis-spliced transcripts between CH and MDS, we compared cryptic 3’ splice 

sites with a P-value < 0.05 and dPSI of >= 2 in at least one cell-type along the erythroid 

differentiation trajectory (HSPC, IMP, MEP, or EP) in both CH and MDS cohorts (Table 

S6). While the overall number of significant cryptic 3’ splice sites in CH was lower than in 

MDS, we observed a significant overlap in shared cryptic events (P-value < 10−16, Fisher’s 

exact test; Figure 6c). Similarly to MDS, we identified stage-specific mis-splicing events 

in erythroid maturation, the majority of which overlapped with MDS cryptic 3’ splice sites 

(Figure 6d). Notably, CH and MDS showed similar mis-splicing dynamics (i.e., increased 

PSI of BAX-ω in SF3B1mut cells) in the BAX transcript along the erythroid differentiation 

trajectory (Figure 6e; Table S6). Collectively, these data demonstrate that the aberrant 

splicing phenotype is already apparent in CH, impacting genes that are also observed in 

MDS SF3B1mut induced mis-splicing.

DISCUSSION

Here, we present GoT-Splice, a single-cell multi-omics integration that enables joint 

profiling of genotype, gene expression, protein, and aberrant splicing all within the same 

cell. GoT15, allows for the comparison between somatically mutated and wildtype cells 

within the same sample for genotype-to-phenotype inferences. By further optimization 

of long-read sequencing of scRNA-seq libraries67, we could simultaneously capture both 

short and long-read data within the same cell, making it possible to analyze the impact 

of somatic mutations on transcriptional and splicing phenotypes. This stands in contrast to 

other methods that provide single-cell genotyping capture but either lack mRNA capture119 

or have lower throughput without full length isoform data22,120,121.
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To date, few tools are available to process and analyze single-cell long-read data, especially 

for the purpose of alternative splicing. To address existing analytic gaps, we developed a 

long-read splicing analysis pipeline that detects and quantifies alternative splicing events 

within single cells and highlights differential junction usage across cell subpopulations. For 

processing the long-read data we opted for an intron-centric approach followed by split 

5’ and 3’ PSI measurements. Calculating the rate of splicing at the 5’ and 3’ ends of the 

intron improves the detection of the true splicing rate of each individual intron, compared 

to exon-centric approaches71. In addition, our pipeline detected differential splicing patterns 

between MUT and WT cells, both across entire samples and within individual cell types, 

with sample-aware permutation testing to integrate across samples. Finally, we provide 

information regarding the translational consequences of the alternatively spliced junctions. 

Altogether, our pipeline offers a comprehensive toolkit to process and analyze differential 

splicing events in scRNA-seq long-read data.

By applying GoT-Splice to the most common splice-altering mutation (SF3B1), we 

interrogated differentiation biases, differential gene expression, protein expression and 

splicing patterns, comparing SF3B1mut vs. SF3B1wt cells co-existing within the same bone 

marrow. Importantly, while GoT revealed that SF3B1mut cells arise early on in uncommitted 

HSPCs, we observed a differentiation bias of SF3B1mut cells toward the erythroid progenitor 

fate. This finding is of particular interest given the clinical association between SF3B1 
mutations and dysplastic erythropoiesis. Notably, an increase in cell cycle and checkpoint 

gene expression (MDM4 and CCNE1) as well as the over-expression of erythroid lineage 

markers, CD36 and CD71, specifically in SF3B1mut EPs, support the enrichment of SF3B1 
mutations along the erythroid lineage.

CH samples likewise showed erythroid biased differentiation with higher mutated cell 

frequency in committed erythroid progenitors compared with HSPCs. SF3B1mut CH cells 

showed upregulation of genes in pathways involved in translation and mRNA processing, 

similar to SF3B1mut cells in MDS. This finding suggests that the pervasive mis-splicing 

observed with SF3B1 mutations may disrupt translation, which may also contribute to 

dyserythropoiesis122,123. Thus, in addition to the shared erythroid differentiation bias in 

MDS and CH, aberrant transcriptional profiles linked to the dyserythropoiesis phenotype are 

also already apparent at the pre-disease CH stage.

Leveraging the single-cell resolution of GoT-Splice and differential splicing analysis 

between SF3B1mut and SF3B1wt cells revealed cell-type specific effects of SF3B1 mutations 

on mis-splicing. Key genes involved in pathways important for terminal differentiation 

of hematopoietic stem cells as well as the regulation of erythropoiesis (namely RNA 

processing, erythroid differentiation, cell cycle and heme metabolism) were cryptically 

spliced across distinct SF3B1mut progenitor cell types, many of which were previously 

reported to be affected in bulk studies of SF3B1mut MDS29,56,75. While some cryptic 

events were neutral, many key genes important for erythroid differentiation were NMD-

inducing (e.g., UROD, GYPA, PPOX) or caused a frameshift event that may affect protein 

structure and function in both the primary and validation MDS cohorts, such as key 

apoptosis mediators (e.g., BAX). Indeed, our functional data support an anti-apoptotic role 

for BAX-ω in SF3B1mut cells. These data are consistent with the recent discovery of 
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C-terminal BAX mutations in myeloid clones that arise in chronic lymphocytic leukemia 

patients upon prolonged exposure to venetoclax, demonstrating a role for BAX C-terminal 

alterations in conferring a survival advantage to myeloid cells with this pro-apoptotic 

treatment110. Of note, early clinical observations reported lower response to venetoclax in 

SF3B1mut AML124,125, consistent with a potential anti-apoptotic effect of BAX-ω. Together, 

these findings suggest a potential mechanism underlying the observed erythroid-dysplasia 

phenotype in SF3B1mut MDS. Despite the injury to translational machinery (Figure 1h–i), 

SF3B1mut EPs may gain some degree of protection against cell death due to the disruption of 

protein function of pro-apoptotic genes in the TP53 pathway126,127 resulting from aberrant 

splicing, as exemplified by the BAX-ω isoform. Overall, mis-splicing of genes involved in 

erythroid differentiation and apoptosis regulation may therefore lead to the accumulation of 

SF3B1mut EPs erythroid progenitor cells that fail to reach terminal differentiation106, leading 

to the dyserythropoiesis clinical phenotype.

Collectively, this work advances our ability to connect somatic genotypes with complex 

phenotypes in human samples. Splicing changes have a critical role in cancer biology128,129, 

also evidenced by the prevalence of splice factor mutations across blood and solid tumor 

malignancies130,131. The ability to layer genotyping together with rich splicing annotation 

can thus enable the investigation of aberrant splicing in cancer evolution. Notably, somatic 

evolution not only affects cancer, but has been recently shown to ubiquitously impact 

non-malignant human tissues in the form of somatic mosaicism132,133. However, in somatic 

mosaicism, the challenge of connecting genotypes to cellular phenotypes is magnified given 

the admixture of mutated and wildtype cells, and thus studies to-date in humans have 

been largely limited to genotyping. Overcoming this challenge requires advances in single-

cell multi-omics for genotype-phenotype mapping in human somatic mosaicism21,134. This 

context highlights the importance of this work as one of the first phenotypic studies of clonal 

mosaicism in human samples, leading to the observation that the somatic mutation-related 

phenotype aligns with the more advanced MDS cellular phenotype. We speculate that this 

observation and other recent data134 suggest that clonal mosaicisms and neoplastic disorders 

may, at times, lie across a continuum, whereby clinical phenotypes appear as a result of 

increasing frequency of mutated cells rather than a qualitative phenotypic change.

Limitations of the Study

Although GoT-Splice offers a powerful approach to simultaneously assess multiple single-

cell modalities, including genotype and splicing isoforms, we note some limitations. The 

percentage of cells successfully genotyped can vary due to factors like gene expression 

levels or the efficiency of the 10x Genomics capture. For instance, in the SF3B1 analysis 

conducted in this study, the percentage of genotyped cells ranged from approximately 20% 

to nearly 90% across individuals. Additionally, due to potential incomplete capture of the 

heterozygously-mutated allele, mutated cells may be mis-classified as wildtype when the 

wildtype allele is captured but the mutant allele is missed. We note that this confounding 

factor is expected to diminish true signals in mutated vs. wildtype comparisons, rather than 

leading to erroneous signals. To address this, we have implemented mitigating strategies 

such as genotyping wildtype cells with two or more genotyping amplicon UMIs and down-

sampling to determine mutant cell frequency (see Methods for more details). Finally, larger 
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cohort sizes and further functional characterizations are needed to validate our biological 

findings and examine the impact of isoform BAX-ω on SF3B1mut cells in MDS and CH.

STAR METHODS

Resource availability

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contact, Dan A. Landau 

(dlandau@nygenome.org).

Materials availability—This study did not generate new unique reagents.

Data and code availability

• The processed single cell RNA-Seq data are available through the NCBI 

Gene Expression Omnibus (GEO) and are publicly available as of the date 

of publication. Accession numbers are listed in the key resources table. De-

identified patient FASTQ files have been deposited at the European Genome–

phenome Archive (EGA) and accession numbers are listed in the key resources 

table. They are available upon request if access is granted.

• All original code has been deposited at GitHub and Zenodo and is publicly 

available as of the date of publication. DOIs are listed in the Key Resources 

Table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

Experimental model and subject details

Human subjects—The study was approved by the local ethics committee and by the 

Institutional Review Board (IRB) of Weill Cornell Medicine, University of Manchester, 

and Dana Farber Cancer Institute, conducted in accordance with the Declaration of 

Helsinki protocol. Cryopreserved mononuclear cells isolated from bone marrow biopsies 

from myelodysplastic syndrome patients with SF3B1 mutations were retrieved from 

Memorial Sloan Kettering and University of Manchester. Additionally, cryopreserved G-

CSF mobilized stem cell grafts (without additional mobilizing agents such as plerixafor or 

cyclophosphamide) from CH patients with SF3B1 mutations were retrieved from the Dana 

Farber Cancer Institute and the Weizmann Institute of Science (Table S1). To confirm the 

absence of additional genetic mutations, CH samples were sequenced using a previously 

described panel135 that includes myeloma driver mutations as well as CH-specific mutations. 

All samples underwent ultra-low pass whole genome sequencing, rejecting the presence of 

tumor contamination. Cryopreserved mononuclear cells and grafts were thawed and stained 

using standard procedures. Cells were first incubated with Human FcX blocking solution 

(Biolegend, #422302) and then incubated with the surface antibody CD34-PE-Vio770 (clone 

AC136, lot #5180718070, dilution 1:50, Miltenyi Biotec) and DAPI (Sigma-Aldrich) for 10 

minutes at 4°C. Cells were then sorted for DAPI-negative, CD34+ cells using BD Influx at 

the Weill Cornell Medicine flow cytometry core.
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Cell lines and tissue culture—TF-1 human erythroleukemia cell line was purchased 

from ATCC. All TF-1 generated cell lines were maintained in RPMI + 10% FCS or RPMI + 

tetracycline-free FCS (TaKaRa #631106) with 2ng/mL recombinant human GM-CSF (R&D 

Systems; 215-GM) unless otherwise noted. All cell lines were cultured at 37°C and 5% 

CO2 in the presence of penicillin (100 U/mL) and streptomycin (100 μg/mL). All cell lines 

were Mycoplasma-free and routinely tested by Antibody and Bioresource Core at MSKCC 

(MycoAlert Mycoplasma Detection Kit, Lonza, LT07–701; MycoAlert Assay Control Set, 

Lonza, LT07–518).

Generation of cell lines, virus packaging, and transduction—TF-1 Cas9 stably 

expressing cells were generated utilizing a lentiviral expression vector from Addgene 

(#108100) after puromycin mammalian antibiotic selection marker was exchanged 

for blasticidin. 3 sgRNAs targeting human BAX and 3 sgRNAs targeting human 

BAK1 were cloned into a dsRED lentiviral expression vector (Addgene #128055) or 

neomycin lentiviral expression vector (#139449), respectively. Each sgRNA was tested 

individually and in combination to identify TF-1 Cas9 cells with the best knockout 

of human BAX and BAK1. TF-1 Cas9 BAX and BAK DKO cells were generated 

by transducing TF-1 Cas9 cells with dsRED lentiviral expression vector with sgRNA 

CGAGTGTCTCAAGCGCATCG targeting human BAX and neomycin lentiviral expression 

vector with sgRNA CATGAAGTCGACCACGAAGC targeting human BAK1. Cells were 

selected by flow sorting for dsRED or by mammalian antibiotic selection with neomycin 

(2mg/mL). 3xFLAG tagged BAX isoforms alpha (NM_138761.4) beta (NM_004324.4) and 

omega (also known as transcript 1, NM_001291428.2), were cloned into a tetracycline 

inducible lentiviral expression vector (Addgene #162823) and selected with puromycin 

(10μg/mL). For cloning, vectors were PCR amplified and inserts were generated by gBlock 

(IDT) followed by Gibson Assembly. Lentiviral supernatants were produced by transfecting 

HEK293T cells with lentiviral constructs and packaging plasmids pVSVG and psPAX2 

using PEI. Virus supernatants were collected and used for transduction in the presence of 

polybrene (4μg/mL).

Cytokine depletion assay—TF-1 Cas9 DKO BAX isoform cells were washed twice 

with RPMI 10% FCS without GM-CSF. Cells were then plated in triplicate in a 24 well 

plate in the presence or absence of doxycycline (1ug/ml). Cells were stained with annexin 

V (BioLegend 640920)/DAPI (Sigma Aldrich D9542) and assessed for apoptosis by flow 

cytometry.

Western blots—For western blot analysis, cells were lysed with RIPA buffer (Cell 

Signaling Technology) containing protease/phosphatase inhibitor cocktail (Sigma Aldrich). 

Protein concentration was measured using the BCA Protein Assay Kit (Pierce). Equivalent 

amounts of each sample were loaded on 4–12% Bis-Tris gels (Invitrogen), transferred to 

0.2μm PVDF membrane, and blotted with Intercept Blocking Buffer (Li-Cor). The following 

antibodies were used for western blot analysis: BAX (Santa Cruz Biotechnology sc-7480), 

BAK1 (ThermoFisher, MA5-36225), GFP (Cell Signaling Technology, 2555S), GAPDH 

1:5000 (Cell Signaling Technology 5174S), FLAG 1:100 (Sigma Aldrich, F1804). All 
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primary antibodies were diluted to final concentration of 1:1,000 in Intercept Blocking 

Buffer (Li-Cor) unless otherwise noted.

Method details

GoT-Splice with CITE-seq—GoT-Splice with CITE-seq integrates Genotyping of 

Transcriptomes (GoT) with both long-read single-cell transcriptome profiling (with Oxford 

Nanopore Technologies [ONT]) and proteogenomics (with CITE-seq). GoT was performed 

as previously described15. For samples without CITE-seq, CD34+ cells were sorted, and 

RNA was prepared for sequencing following the standard 10x Genomics Chromium 

3’ (v.3.1 chemistry) protocol and according to manufacturer’s recommendations for 

the generation of scRNA-seq libraries (Figure 1a). For GoT-Splice samples that were 

processed with CITE-seq, prior to sorting, cells were blocked with FcX block for 15 

minutes prior to being stained with Total-SeqA antibodies for 30 minutes on ice (see 

Table S2 for list of antibodies used). The standard 10x Genomics Chromium 3’ (v.3.1 

chemistry) and CITE-seq protocols35,36 were carried out according to manufacturer’s 

recommendations for the generation of scRNA-seq and ADT libraries (Figure 1a). At the 

cDNA amplification step in the 10x Genomics protocol, 1 μL of 1 μM spike-in primer 

(5’-GATCCTCGTCCTCATTGAACCGC-3’) was added to increase the yield of SF3B1 
cDNA and 1 μL of 0.2 μM ADT PCR additive primer (5’ – CCTTGGCACCCGAGAATTCC 

– 3’) was added to amplify ADT. After cDNA amplification and a double-sided cleanup 

with SPRI beads to separate cDNA and ADT fractions, the ADT fraction was amplified 

for 10 cycles with SI-PCR oligo (10x Genomics) and TruSeq Small RNA RPI-x (Illumina) 

primers to index the samples. SPRI was used to clean up the ADT final products. In 

both samples in which CITE-seq was conducted and not conducted, cDNA was allocated 

for gene expression library creation (standard 10x protocol; 25% of cDNA), targeted 

genotyping (10% of cDNA), and ONT sequencing with biotin enrichment (10 ng of 

cDNA). Any remaining cDNA was stored. For locus-specific amplification (GoT), two 

serial PCRs were performed with nested reverse primers, based on the SF3B1 mutation 

of interest. For mutations upstream of K700E, (5’-GATCCTCGTGGTCATTGAACCGC-3’ 

and 5’-CACCCGAGAATTCCAGGCTACTATGATCTCTACCATGAGACCTG-3’) and, 

for K700E mutations, (5’-GTGCAAAAGCAAGAAGTCCT-3’ and 5’-

CACCCGAGAATTCCATGAACATGGTCTTGTGGATGAG-3’) were used as reverse 

primers. These reverse primers and the generic forward SI-PCR amplify the site of interest 

from the cDNA template (10 PCR cycles each). The second locus-specific reverse primers 

contain a partial Illumina TruSeq Small RNA read 2 handle and a locus-specific region to 

allow SF3B1 specific priming. The SI-PCR oligo (10x Genomics) anneals to the partial 

Illumina TruSeq read 1 sequence, preserving the cell barcode (CB) and unique molecule 

identifier (UMI). After these rounds of amplification and SPRI purification to remove 

unincorporated primers, a third PCR was performed with a generic forward PCR primer 

(P5_generic, 5’ – AATGATACGGCGACCACCGAGATCTACAC – 3’) to retain the CB and 

UMI together with an RPI-x primer (Illumina) to complete the P7 end of the library and 

add a sample index (6 PCR cycles).Gene expression, ADT, and SF3B1 amplicon libraries 

were pooled to receive 25,000, 5,000, and 5,000 reads per cell, respectively, during Illumina 

sequencing. The cycle settings were as follows: 28 cycles for read 1, 90 cycles for read 2, 

10 cycles for i7, and 10 cycles for i5 sample index. To examine splicing patterns broadly 
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in the whole transcriptome, full-length cDNA was sequenced using the Oxford Nanopore 

Technologies sequencing on PromethION and GridION flow cells. To enrich for transcripts 

that contain CBs and UMIs and decrease the presence of PCR artifacts, on-bead PCR 

with a biotinylated primer selecting for an adapter upstream of the CB was completed67 

(Figure 2a). In brief, 10 ng of full-length cDNA was amplified with LongAmp master mix 

(NEB) and TSO (5’-NNNAAGCAGTGGTATCAACGCAGAG-3’) and biotinylated read 

1 (5’-/5Biosg/AAAAACTACACGACGCTCTTCCGATCT-3’) primers for 5 cycles. M270 

streptavidin beads (ThermoFisher) were washed with 1X SSPE buffer, resuspended in 5X 

SSPE buffer and incubated with PCR amplicon after clean-up with 0.8X SPRI beads. After 

a 15-minute incubation, the beads were washed with 1X SSPE and 10 mM Tris-HCl (pH 

8) resuspended in PCR master mix, and further amplified with LongAmp master mix, TSO 

and read 1 (5’ – NNNCTACACGACGCTCTTCCGATCT – 3’) primers for 5 cycles. After 

cleanup with SPRI, 100–300 ng of each full-length cDNA library was sequenced on one 

PromethION or GridION flow cell with SQK-LSK110.

GoT in U2AF1 was performed with a similar protocol to the described 

above, targeting the U2AF1 S34F mutation using a cDNA spiked primer to 

enrich for the transcript (5’ - GCCTCCATCTTCGGCACCGAGA - 3’) and 

2 PRC rounds (PCR0 - Forward: 5’-GCCTCCATCTTCGGCACCGAGA-3’ PCR0 

– Reverse: 5’- CTACACGACGCTCTTCCGATCT -3’ and PCR1 - Forward: 5’-

CACCCGAGAATTCCAGCATGTCGTCATGGAGACAGGTGC-3’ PCR1 - Reverse: 5’-

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTC -3’) with 

the same specifications as SF3B1. The full-length GoT library was sequenced on a MinION 

flow cell with SQK-LSK114.

ScRNA-seq Illumina data processing, alignment, clustering, and cell-type 
classification—10x Illumina data were processed using Cell Ranger (v.3.1.0) with default 

parameters and reads were aligned to the human reference sequence GRCh38. For all 

samples, the Seurat package (v.3.1) was used to perform QC filtering, and unbiased 

clustering of CD34+ sorted cells136. As an overview, for each sample dataset, cells 

with number of UMIs (nCount_RNA) <1,000 or nCount_RNA > 3 s.d. above the mean 

nCount_RNA value, number of unique genes (nFeature_RNA) > 3 s.d. above the mean 

nFeature_RNA value and mitochondrial gene percentage (perc.mito) > 20% were filtered. 

Using the SCTransform function, each dataset was log normalized using the default scale 

factor of 10,000, scaled and potential confounders (such as nCount_RNA, perc.mito and S 

phase and G2M phase gene expression scores) were regressed out of the data. SCTransform 

also identified the top 3,000 variable genes found in each dataset that are used for 

integration. Before clustering, the individual datasets were integrated based on disease status 

(i.e. primary MDS samples, MDS01-03, were integrated together, MDS validation samples, 

MDS04-06, from patient treated with growth factors at the time of biopsy were integrated 

together and then the CH samples, CH01-02, were integrated together) and underwent 

batch correction within Seurat which implements canonical correlation analysis (CCA) 

and the principles of mutual nearest neighbors (MMN)137. For integration, 30 canonical 

vectors were used for the CCA in the FindIntegrationAnchors function, and 30 principal 

components were used for the anchor weightings step in the IntegrateData function (as 
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recommended in Seurat). Next, a principal component analysis (PCA) was performed using 

the variable genes of the integrated dataset and the JackStraw method was used to determine 

statistically significant principal components (PCs) to be used as inputs into the UMAP 

algorithm for cluster visualization. Clustering was performed with the FindNeighbors (using 

only significant PCs) and the FindClusters (resolution = 2) functions which rely on the k-

nearest neighbors (KNN) algorithm to identify cell clusters. Unique clusters were manually 

assigned based on differentially expressed genes identified with the FindAllMarkers function 

which looked only at genes found in at least 25% of cells in either of the two input 

comparison groups and only returned results for genes with at least a 0.25 log transformed 

fold change between groups. More specifically, cluster annotations were made according 

to the differential expression of canonical lineage marker genes identified in previous 

single-cell RNA-seq data of normal hematopoietic progenitor cells37 (Table S1). Clusters 

with similar increased expression of these canonical markers were merged to form the main 

progenitor subsets: HSPCs, IMPs, NPs, MkPs, MEP, EPs, Pre-Bs and E/B/Ms in the primary 

MDS, MDS validation and CH cohort as well as Mono, MonoDCs, DCs, B cells and T 

cells in MDS and MDS validation. Finally, pseudotime analysis was performed using the 

Monocle3 R package with recommended parameters (v.0.2.1)138.

IronThrone GoT for processing targeted amplicon sequences and performing 
mutation calling—Genotyping of single cells was carried out with the IronThrone (v.2.1) 

pipeline as previously described15,134. In brief, individual amplicon reads were assessed for 

the appropriate structure (i.e., presence of the primer sequence and the expected sequence 

between the primer and given mutation site) and all reads were assessed for a matching 

cell barcode to the list generated from the 10x paired GEX dataset. A Levenshtein distance 

of 0.1 was allowed for all sequence matching and collapsing steps and only UMIs with 

a minimum of 2 supporting reads were retained for final genotyping. Following UMI 

collapse, genotype assignment of individual UMIs was conducted as described previously 

with majority rule of supporting reads for wildtype or mutant status (using a 0.7 PCR read 

ratio, above which the majority of PCR reads must be for a UMI to be called definitively). 

Rare UMIs that did not pass this threshold were removed as ambiguous. Additionally, to 

remove reads that result from PCR recombination, UMIs in the amplicon library that match 

UMIs of non-SF3B1 genes in the gene expression library were discarded (as described in 

the IronThrone GoT pipeline)15,134. Finally, given the heterozygous nature of these SF3B1 
mutations, each single cell was assigned as either mutant (MUT) or wildtype (WT) as 

follows: cells with at least 1 mutant UMI were assigned as MUT cells and cells with 0 

mutant UMIs and at least 1 wildtype UMI were assigned as WT. As benchmarking, the 

SF3B1 genomic regions of interest that were used for GoT were examined in each matching 

GEX library to determine how many UMIs were able to successfully capture the targeted 

sequence in conventional 10x data and, in all cases, less UMIs were captured in the GEX 

library (Figure S2b, S6e). While the genotyping information is derived from transcribed 

molecules alone and may be affected by whether transcripts from wildtype versus mutant 

alleles were expressed and/or captured, the fraction of MUT cells as determined by GoT 

using all cells with at least 1 UMI yielded similar values to those determined by bulk DNA 

exon sequencing (Figure S2a). Despite this, we systematically applied specific approaches 

to exclude the effect of this confounder (that is, the expression level of the target gene) on 
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the conclusions of other downstream analyses. First, to rule out the possibility that higher 

SF3B1 expression results in a greater ability to detect mutant alleles, and thereby in a higher 

mutant-cell frequency, we downsampled all cells to a single amplicon UMI before mutation 

calling when conducting the mutant-cell frequency analyses. Then, for the remaining of our 

downstream analyses between SF3B1 mutant and wildtype cells (except for the differential 

gene expression and gene set enrichment analyses in CH due to low fraction of mutated 

cells, which decreases the likelihood of misclassifying mutant as wildtype), we took the 

more conservative approach considering only genotyped cells with two or more genotyping 

amplicon UMIs.

Mutant cell frequency—The frequency of mutant cells, as determined by GoT, was 

assessed as previously performed in Nam et al.134. Firstly, we used only cells with at least 

1 UMI and only considered cell types with at least 300 genotyped cells. To account for 

the potential confounding effect of a heterozygous mutation as well as variable SF3B1 
expression, we performed amplicon UMI down-sampling to 1 UMI per genotyped cell 

prior to mutation calling for calculating MUT cell frequencies. An equal number of cells 

from each sample within the MDS cohort, were subsampled randomly for the integrated 

data to ensure equal representation from each patient. Genotyping amplicon UMIs were 

downsampled (x100 iterations) to 1 UMI per cell and MUT cell frequency was determined 

for each progenitor cluster for either the integrated dataset or individual samples. This 

frequency was then divided by the total mutant cell frequency across all progenitor subsets 

for each of the iterations. Linear mixed effects analysis was performed using the lme4 

package (v.1.2–1). Progenitor identity was defined as the fixed effect, and for random 

effects, we used intercepts for individual patients (subjects) and iterative downsampling. 

P-values were obtained by likelihood ratio tests of the full model with the fixed effect 

against the model without the fixed effect139.

Differential gene expression and gene set enrichment—The differential gene 

expression analysis (DGEA) comparing WT and MUT cells and gene set enrichment 

analysis (GSEA) were performed as done in Nam et al.134. In brief, for each cohort we 

used a within-sample permutation test for the analysis of each progenitor cell subtype. To 

ensure equal representation from each patient, we downsampled the total number of mutated 

and wildtype cells to the same number across all patients. The observed log2 fold change 

values were calculated comparing the MUT versus WT cells for the tested genes. The tested 

genes included the top 2,000 most variable genes (excluding mitochondrial genes) which 

were filtered for those expressed in at least 10% of either group (MUT versus WT), for each 

progenitor subtype. Next, the WT and MUT labels were shuffled over 100,000 iterations, 

within each patient, and fold change values were re-calculated to create a background 

distribution. P-values were calculated per gene as a percent of permutations whose absolute 

fold change values were more extreme than the absolute value of the observed fold change 

(Table S3, 5). Hypergeometric test for GSEA of the integrated differentially expressed genes 

(P-value < 0.05, log2(fold change) > 0.1) was performed using the Cluster Profile package 

(v.0.1.9). FDR multiple hypothesis testing correction was performed. MSigDB C2 curated 

gene sets were included in the analyses (Table S3, 5).
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ADT processing—CITE-seq was performed on the primary MDS cohort (for samples 

MDS02-03) and as mentioned above, the 10x Illumina ADT data was processed using Cell 

Ranger (v.3.1.0) with default parameters and counts were generated for each marker in 

the CITE-seq panel (Table S2). After using the Seurat package (v.3.1) for QC filtering, 

and unbiased clustering of the CD34+ sorted cells based on RNA data, ADT data was 

also normalized using centered log-ratio (CLR) normalization, scaled and the expression 

of various ADT markers was used in confirming the cell-type assignment of different 

progenitor subsets. For benchmarking purposes, Seurat’s Weighted Nearest Neighbor 

(WNN) Analysis was also performed, which is a multi-modal analysis that integrates 

both RNA and ADT data when performing cell clustering. This was used to compare 

to the clustering output when using the KNN algorithm that relies on RNA data alone 

(Figure S1h). For the WNN analysis, cells were filtered and integrated using SCTransform 

(as described above). The RNA data was logNormalized and the ADT data was run 

through CLR normalization and the RunPCA function for dimensionality reduction was 

also run independently on each modality. Next, the FindMultiModalNeighbors function 

was used which for each cell, calculates its closest neighbors in the dataset based on a 

weighted combination of RNA and ADT similarities. This constructs a WNN graph that 

was visualized with the RunUMAP function. The cell-type assignments generated from 

the initial clustering (with RNA data alone) were then projected onto this new UMAP for 

comparison (Figure S1h).

Denoised scaled by background normalization (DSB) filtering and differential 
protein expression—We used the dsb package140 (v.0.1.0) as an alternative form of 

normalization for the ADT protein expression values. Normalized values were applied for 

selection filtering of ADT markers for which the true signal was above the background noise 

levels, within the captured cell-contained droplets. dsb discriminates between background 

noise by differentiating between empty droplets (containing ambient mRNA and antibody 

but no cell) and true cell-containing droplets. The background matrix was defined from 

the comparison of the raw feature barcode matrices from the 10x sequencing output versus 

the processed filtered feature barcode matrix results generated from running Cell Ranger 

(see Methods above). The final output filters out empty droplets and retains only true 

cell-containing droplets based on the 10x cell calling algorithm. As such, the matrix of 

background noise is generated by subtracting out the positive cell containing droplets found 

in the filtered matrices from the negative empty droplets in the raw matrices. Furthermore, 

with an additional filter requiring the removal of drops with protein library size > 1.5 and 

number of genes < 80 was applied to refine the background noise signal. Normalization 

was performed using the DSBNormalizeProtein function omitting isotype controls and 

denoised counts. The dsb normalized values were defined as the number of standard 

deviations above the background noise and antibodies were then filtered, keeping only those 

with a dsb normalized expression value of > 2 in at least 1 cell-type (Table S2). When 

performing the differential protein expression analysis across our patient samples, we used 

an iterative downsampling (x1,000) approach that, at each iteration, randomly samples an 

equal number of SF3B1mut and SF3B1wt cells from each patient sample before calculating 

the median log10FC of protein expression between SF3B1mut / SF3B1wt cells. This was 

done to ensure equal representation of genotyped cells from each patient. To calculate the 
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median log10FC of SF3B1mut / SF3B1wt cells, we first modified the Seurat’s FindMarker 

function to calculate the median instead of the mean expression, a measure that is more 

robust to outlier values. Then, for each downsampled object we obtained a table containing 

the log10FC of each antibody per cell-type. log10FC matrices are combined by taking 

the median across the downsampled iterations, resulting in the median log10FC values. 

Statistical significance was assessed by performing permutation tests (x10,000) within each 

patient sample matrix. (Figure 1f) shows normalized ADT expression across cell-types, 

using the maximum expression.

ScRNA-seq ONT long-read sequencing data processing, alignment, junction 
calling and annotation—Guppy (v.3.0.6 – 4.0.11) was used for base calling FAST5 

files output from ONT sequencing. We then filtered for only reads containing a polyA tail 

within 100 base pairs of either 5’ or 3’ end using the ǸanoporeReadScanner-0.5.jar` within 

the SiCeLoRe-1.0 workflow. Due to the low number of genotyped cells (139) with two 

or more genotyping amplicon UMIs, MDS01 was excluded from all downstream splicing 

analyses. Filtered reads are aligned to the primary human genome, assembly GRCh38.p12 

using minimap2 (v.2.17). Minimap2 was used with the `-ax splicè flag to prioritize 

annotated splice junctions. Additionally, we made use of the `--junc-bed` option, to increase 

alignment scores for those splice junctions found in the reference junction bed file. For 

our reference junctions, we used splice junctions from single-cell SMART-seq2 data from 

human CD34+ cells obtained from a CH sample with no SF3B1 mutation. Additionally, 

we used `--secondary=nò to suppress multi-mappings. In preparation to identify the cell 

barcodes and UMIs present in the long-read sequencing, we used the ÌlluminaParser-1.0.jar` 

in SiCeLoRe to parse the cell barcodes and UMIs present in the complementary short-read 

sequencing library. We continued to use SiCeLoRe to tag the aligned BAM files with cell 

barcodes and UMIs identified in the short-read library and generate consensus sequences 

for each unique cell barcode and UMI combination. Consensus sequences were used to 

create a gene by cell count matrix. For all other steps, we used the default parameters set 

by SiCeLoRe-1.0, following the workflow found at https://github.com/ucagenomix/sicelore. 

Intron-junction calling is then performed on consensus sequence BAM files, adapted from 

the method used in the LeafCutter pipeline for short-read RNA-seq data72,141. In brief, the 

intron-junction calling pipeline utilizes the pysam.fetch() function and iterates through each 

transcript in the BAM file, noting its cell barcode (CB) tag as well as the coordinates of 

each intron-junction for that transcript. On iterating through the BAM file, counts for the 

usage of each unique intron-junction and the corresponding CB are recorded. This ultimately 

generates an Intron-Junction x Cell Barcode count matrix for the given BAM file. Each 

intron-junction is then identified using annotations available in the GENCODE GRCh38.p12 

v31 basic annotation reference file as canonical 3’, canonical 5’, alternative 3’, alternative 

5’. This outputs a metadata file with annotations for each junction corresponding to the 

junctions of the Intron-Junction x Cell Barcode count matrix. The metadata included the 3’ 

and 5’ sites defining each junction, the distance from the canonical 3’ or 5’ site end for each 

start and end site, and the classification of each site. Additionally, junctions that share the 

same 3’ or 5’ splice site are classified into “junction clusters”, providing a cluster coverage 

which is used in subsequent analyses, such as for calculating the percent spliced in values 

of different splicing events. Alternative 3’ and 5’ junctions were further broken down into 
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alternative and cryptic based on the distance the junction was from the canonical splice site. 

If the alternative splice site was within 100 base pairs of the canonical splice site, it was 

classified as a cryptic splice site. Given the intron-centric approach of the pipeline, each 

event could be classified as either annotated, alternative 3’, alternative 5’, a cryptic 3’ splice 

site, a cryptic 5’ splice site or an exon-skipping event (see Methods below for exon-skipping 

annotation; Table S4, 6).

Junction calling and annotation of short-read sequencing data and 
comparison to long-read sequencing—Using SAMtools (v.1.9, the post-aligned 

short-read sequencing BAM file (see Methods above) was filtered to include only reads 

from the filtered cell barcodes (CB) selected through Cell Ranger, to remove all non-primary 

alignments and reads mapping to multiple genes. Next, using umi-tools (v.1.1.2) we ran umi-

tools group with the `–per-cell flag`, cell barcode and UMI pairs with only one supporting 

read were filtered out and umi-tools dedup was used to remove all duplicate reads. Intron 

junction calling and annotation was performed as described above. To compare the junction 

recovery across the transcript region, we used the Ensembl annotation database (v.104) 

to generate a transcript reference and filtered the database to include only protein coding 

transcripts as well as those with a transcript support level = 1 (i.e., those representing the 

most well supported transcript for that gene). From here, we calculated the distance of a 

junction from the end of its transcript by calculating the distance between the 3’ end of that 

junction to the furthermost 3’ junction end (which is at the 3’ end of the transcript). This was 

done to avoid any measurement biases due to long UTR annotations.

Copy number variation analysis—The InferCNV package (v.1.4.0)142 was used to 

analyze the single cell dataset for any duplications or deletions of entire chromosomes or 

large chromosome fragments. Briefly, by comparing expression levels of genes annotated 

by chromosomal position (using the CONICSmat package v.0.0.0.1143) to a set of reference 

cells (in this case, a one-versus-rest comparison of cells by patient of origin), a heatmap of 

relative expression can be generated and used to identify regions with significantly increased 

or decreased expression. We removed the few genes for which alternative positions 

have been reported (<2% of genes). We ran the InferCNV workflow with recommended 

parameters, using the i6 6-state Hidden Markov model (Figure S6f).

Differential transcript usage—All alternative 3’ junctions were filtered to only include 

those that contained at least 5 total reads. To identify differentially used transcripts between 

SF3B1mut and SF3B1wt cells, junction reads were then pseudobulked based on mutation 

status across all MDS patients or all CH patients. We then computed the log10(odds ratio) 

of the likelihood of each junction being observed in the MUT cells over the WT cells. The 

genotype labels of each of the cells was permuted 100,000 times and we then repeated 

pseudobulking and computation of the log(odds ratio) of each junction. Permutations of 

the genotype label were patient aware, so the mutant cell frequency across patients was 

unchanged for each permutation. The P-value was determined based on the likelihood 

of seeing the observed odds ratio in comparison to the null distribution of the permuted 

odds ratios for each junction. The same testing was done within each cell-type to identify 

the differentially used junctions between SF3B1mut and SF3B1wt cells within a specific 
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cell-type. We classified junctions as differentially spliced events if they had P-value < 0.05 

and delta percent spliced in (dPSI) of >= 2 (a positive dPSI here represents a splicing 

event more highly used in the SF3B1mut population of cells). To observe the usage of these 

differentially spliced cryptic 3’ events (P-value < 0.05 and dPSI >= 2) across the continuum 

of erythroid maturation as opposed to within discrete cellular states, erythroid lineage 

MUT cells (HSPCs, IMPs, MEPs, and EPs) were ordered from least to most differentiated, 

grouped into bins and the MUT cell PSI for each cryptic event was calculated per bin 

(Figure 4a, 6d). Specifically, in the primary MDS cohort (Figure 4a), 6301 SF3B1mut cells 

were ordered by the expression of the erythroid marker CD71 (obtained from CITE-seq) and 

a bin size of 3000 SF3B1mut cells, sliding by 300 SF3B1mut cells at each step, was used 

to capture the continuous change in the usage of the different cryptic 3’ junctions via the 

MUT cell PSI measurements per bin. The variance in the usage of each cryptic 3’ event was 

measured by calculating the range of PSIs across all the bins along the continuum and only 

cryptic junctions that had a PSI range of at least 2 and average coverage across all bins of 

10 reads were considered. This approach was taken to focus on cryptic events that had a 

variable signal and that were also well supported. In CH (Figure 6d), 1,020 MUT cells were 

ordered by pseudotime and a bin size of 600 SF3B1mut cells, sliding by 60 SF3B1mut cells 

at each step, was used to capture the MUT cell PSI per bin. Similarly, only cryptic junctions 

that had a PSI range of at least 2 and average coverage of 10 reads were considered.

For the BAX cryptic event (Figure 6e), to directly compare the per bin PSI values across 

all 3 cohorts (MDS, MDS validation and CH) we adjusted the bin and window sizes across 

the cohorts to ensure the same number of final bins for each cohort. To achieve this, we 

took the following approach: MDS - MUT cells ordered by CD71 expression, window size 

of 3750 SF3B1mut cells, sliding by 375 SF3B1mut cells, MDS validation: cells ordered by 

pseudotime, window size of 580 SF3B1mut cells, sliding by 58 SF3B1mut cells, CH: cells 

ordered by pseudotime, window size of 600 SF3B1mut cells, sliding by 60 SF3B1mut cells. 

To note, for each of the sliding window analyses, only MUT cells with at least 2 genotyping 

amplicon UMIs were considered.

Exon skipping and nonsense-mediated decay (NMD) annotations—To identify 

exon skipping events, for each gene in the GENCODE GRCh38.p12 v31 basic annotation 

reference file we determined its main functional isoform (as those that belong to the 

APPRIS database and carry the “appris_princial” tags) to compare to the transcript isoforms 

generated in our data. With this, for a given gene, each identified intron junction within 

our data was compared to the reference and labeled as an “exon_skip” if it excluded any 

of the exons present in the reference. The number of exons skipped was also recorded. 

To identify NMD inducing alternative splicing events, we also developed a pipeline that 

inspects each intron junction in the Intron-Junction x Cell Barcode count matrix and detects 

the presence of premature termination codons (PTCs) and frameshift events induced because 

of alternative splicing. In brief, this is done by grabbing the entire nucleotide sequence of 

a particular isoform noting the position of the last exon-exon junction, finding the position 

of the first start codon and from there, phasing along the triplets of nucleotides of that 

given sequence string. By following the known rules of NMD, each intron junction was 

further annotated as being (i) NMD-inducing (which would lead to NMD of its associated 
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transcript) or (ii) NMD-neutral. Specifically, the 50-nucleotide rule was followed such that 

an event is labeled NMD-inducing if a PTC is introduced greater than 50 nucleotides 

away from the last exon-exon junction or NMD-neutral if a PTC is introduced within 50 

nucleotides of the transcript’s last exon-exon junction. Finally, Intron-junctions were labeled 

to cause frameshifts if the total number of nucleotides involved in an alternative 3’ or 5’ 

splicing event was not divisible by 3.

Motif enrichment analysis—High quality cryptic 3’ junctions (MUT read coverage > 

3, PSI >= 2, junction cluster read coverage > 20 across at least 2 junction clusters) were 

obtained from the junction quantification matrix from samples MDS05-06. Each of these 

cryptic 3’ splice sites were then paired to a corresponding canonical junction, requiring both, 

canonical and cryptic junctions, to be part of the same splicing cluster (as described above). 

Flanking sequences, 50 nucleotides upstream and 10 nucleotides downstream of the 3’ splice 

site were obtained from the two junction sets and used to calculate position weight matrices 

(PWM). For each position, a log odds ratio enrichment for each nucleotide was calculated 

using Fisher’s exact test, comparing the cryptic 3’ splice site nucleotide composition against 

the canonical. Reported positions were filtered according to their enrichment significance 

(P-value < 0.05).

Isoform tool comparison—Given that full-length isoform tools provide transcript-level 

descriptions rather than local events like GoT-Splice (e.g., exon skipping or cryptic splice 

sites), the comparison to FLAMES68 and IsoQuant76 was performed at the local level, 

overlapping junctions responsible to define the local splicing changes. For this analysis, 

samples of the discovery cohort (MDS02-03) were used. First, FASTQ files were processed 

in the FLAMES (v.1.3.4) multi-sample scRNA-seq pipeline with standard parameters and 

using the same genome references than in GoT-Splice (described above). In parallel, 

collapsed BAM files resulting from the SiCeLoRe pipeline (see description above), were 

used as input for IsoQuant (v.3.1.1) in two steps: first all samples were run together, using 

the ǹanoporè data type input, generating an unified isoform annotation (in GTF format) and 

subsequently, each sample was processed individually to generate isoform per cell barcode 

matrices, using the previously created GTF as reference, which includes new isoforms 

detected across all the samples. To extract the junction annotations and assess quality of 

the recovered transcript annotations, SQANTI3144 (v.5.1.1) QC script was applied, with 

default parameters, to the GTF isoform annotations produced by FLAMES and IsoQuant. 

Local splicing events (cryptic splice sites and exon skipping) in the filtered SQANTI3 GTF 

annotations were then produced with the SUPPA2145 (v.2.3) `generateEvents` option. PSI 

values were estimated following a similar approach to the one described in SUPPA2, briefly, 

PSI values reflect a ratio between the read counts corresponding to isoforms that include a 

particular event divided by the total isoforms over a particular region (isoforms that do not 

include the event + isoforms including the events). To identify MUT versus WT isoform 

proportion changes we merged the sample transcript per cell count matrices obtained in 

FLAMES or IsoQuant and using DRIMSeq146 (v.1.22.0) we filtered for a minimal gene 

expression of 5, minimal transcript expression of 2 and gene expressed in a minimum of 

2 cells and performed a likelihood ratio test (via the dmTest function). Isoforms with FDR 

adjusted P-value < 0.05 and change in proportion > 0.25 were considered as significantly 
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changed. Estimation of a splicing aberration bias in the significantly changed isoforms was 

determined by overlapping the isoforms with cryptic and alternative 3’ ss annotated with 

GoT-Splice.

Quantification and statistical analysis—Categorical variables were compared using 

the hypergeometric test or Fisher’s Exact test. Continuous variables were compared 

using the Mann-Whitney U test, Student’s t-test, non-parametric permutation test or 

Kolmogorov–Smirnov test, as appropriate. P-values were adjusted for multiple comparisons 

by Benjamini-Hochberg FDR adjustment procedure. All P-values are two-sided and 

considered significant at the 0.05 level unless otherwise noted. To add further stringency 

and confidence to the results, we have independently analyzed a distinct cohort of samples 

(validation cohort) and specifically focused on reporting results that passed a statistical 

cutoff of 0.2 for FDR adjusted P-values in both cohorts. We report genes with FDR adjusted 

P-value < 0.05 in either cohort in Table S4 and S6.
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Highlights

• GoT-Splice profiles single-cell genotype, expression, surface markers, and 

splicing.

• SF3B1mut cells show lineage skewing and stage-specific mis-splicing in 

MDS.

• SF3B1mut-specific isoform Bax-ω may provide MDS anti-apoptotic 

advantage.

• In CH, SF3B1mut cells display erythroid lineage bias and mirror MDS mis-

splicing.
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Figure 1. Enrichment of SF3B1mut cells in the megakaryocytic-erythroid lineage.
(A) GoT-Splice workflow combines GoT with CITE-seq and long-read full-length cDNA 

using ONT for the simultaneous single-cell profiling of protein and gene expression, 

somatic mutations, and alternative splicing. (B) Patient metadata and quality controlled 

GoT data for SF3B1-mutant MDS and CH samples. (C) Uniform manifold approximation 

and projection (UMAP) of CD34+ cells (n = 15,436 cells) from MDS patients with 

SF3B1 K700E mutations (n = 3 individuals), overlaid with cluster cell-type assignments. 

HSPC, hematopoietic stem progenitor cells; IMP, immature myeloid progenitors; MkP, 

megakaryocytic progenitors; MEP, megakaryocytic-erythroid progenitors; EP, erythroid 

progenitors; NP, neutrophil progenitors; E/B/M, eosinophil/basophil/mast progenitor cells; 

T/B cell progenitors; Mono, monocyte; DC, dendritic cells; Pre-B, precursors B cells; 
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Mono DC, monocyte/dendritic cell progenitors. (D) Density plot of SF3B1mut vs. SF3B1wt 

cells, with genotypes (MDS01-03) for 12,494 cells (80.9 % of all cells). (E) Normalized 

frequency of SF3B1mut cells in progenitor subsets with at least 300 genotyped cells. 

Bars show analysis of MDS01-03 with mean +/− s.e.m. of 100 downsampling iterations 

to 1 genotyping UMI per cell. Cell types with >300 cells were analyzed. P-value from 

likelihood ratio test of linear mixed model with or without mutation status. (F) Differential 

ADT marker expression between SF3B1mut and SF3B1wt cells. Red: higher expression 

in SF3B1mut cells; blue: higher expression in SF3B1wt cells. Dot size corresponds to 

the average ADT expression across cells in each cell-type. P-values determined through 

permutation testing. (G) Mutant cell fraction and ADT expression levels of CD36 and CD71 

as a function of pseudotime along the megakaryocyte-erythroid differentiation trajectory 

for SF3B1mut and SF3B1wt cells in MDS01-03. Shading denotes 95% confidence interval. 

Histogram shows cell density of analyzed clusters, ordered by pseudotime. P-values 

were calculated by Wilcoxon rank sum test by comparing mutant cell fraction between 

pseudotime trajectory quartiles. (H) Differential gene expression between SF3B1mut and 

SF3B1wt EP cells in MDS samples. Genes with an absolute log2(fold change) > 0.1 and 

P-value < 0.05 were defined as differentially expressed (DE). Cell cycle (red) and translation 

(blue) pathways (Reactome) are highlighted. (I) Expression (mean +/− s.e.m.) of TP53 

pathway related genes (Reactome) between SF3B1mut and SF3B1wt cells in progenitor cells 

from MDS01-03 samples. Red: module score in SF3B1mut cells; blue: module score in 

SF3B1wt cells. P-values from likelihood ratio test of linear mixed model with or without 

mutation status. (J) Same as (I) for expression of cell cycle related genes (Reactome) 

between SF3B1mut and SF3B1wt cells in progenitor cells from MDS01-03 samples.

Cortés-López et al. Page 39

Cell Stem Cell. Author manuscript; available in PMC 2024 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Simultaneous profiling of gene expression, cell surface protein markers, somatic 
mutation status, and alternative splicing at single-cell resolution.
(A) Comparison of the percentage of ONT reads with either incorrect structure (double 

TSO, no adaptors, single R1 or single TSO) or correct structure (full-length reads) both 

before and after the inclusion of a biotin enrichment protocol step during preparation for 

sequencing. Bars show the aggregate analysis of n = 5 samples with mean +/− s.d. of 

the percentage for each category. (B) Scatter plot of the correlation between the number 

of UMIs/cell detected in long-read ONT vs. short-read Illumina data for cells sequenced 

across both platforms for sample MDS05. (C) Density plot of the correlation between 

the number of UMIs/gene detected in long-read ONT vs. short-read Illumina data for 

sample MDS05. (D) Number of splice junctions captured in the full-length long-read ONT 

data compared to short-read sequencing data (gene coverage >= 10 in both sequencing 
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protocols, junction cluster coverage >= 600 and junction read support >= 1 read [see 

Methods]), demonstrating increased junction capture with GoT-Splice across cells. (E) 
Greater sequencing coverage uniformity of GoT-Splice compared to short-read sequencing 

over splice junctions, illustrated with the ERGIC3 gene. (F) Pie chart summarizing the 

distribution of different alternative splicing events detected after junction annotation. Inset: 
Differences in the usage of cryptic 3’ and 5’ splice site events between SF3B1mut and 

SF3B1wt cells measured with a dPSI (SF3B1mut PSI - SF3B1wt PSI). Associated with 

SF3B1mut: +ve dPSI; associated with SF3B1wt: -ve dPSI. (G) Comparison of dPSI values 

for shared cryptic 3’ splicing events identified in the MUT vs. WT cell comparison from 

GoT-Splice of SF3B1mut MDS01-03 samples and in the SF3B1mut vs. SF3B1wt bulk 

comparison from bulk RNA-sequencing of CD34+ cells of MDS samples in Pellagatti et 

al.32. Correlation coefficient ρ calculated using Spearman’s correlation and P-value derived 

from Student’s t-distribution.
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Figure 3. Progenitor cell-type specific mis-splicing in SF3B1mut MDS.
(A) Differential splicing analysis between SF3B1mut and SF3B1wt cells across MDS 

samples. Junctions with absolute dPSI > 2 and BH-FDR adjusted P-value < 0.2 were defined 

as differentially spliced. Top: Bars showing percentage of genes differentially spliced in 

SF3B1mut and SF3B1wt cells in MDS and MDS validation cohorts. Inset: Expected peak in 

the number of identified cryptic 3’ splice sites at 15–20 base pairs upstream of the canonical 

3’ splice site in SF3B1mut cells. (B) Sashimi Plot of METTL17 intron junction with an 

SF3B1mut associated cryptic 3’ splice site showing RNA-seq coverage in SF3B1mut vs. 

SF3B1wt cells within MDS samples. Inset: Expected increase in PSI value for the usage 

of this cryptic 3’ splice site in SF3B1mut cells. (C) dPSI values between SF3B1mut and 

SF3B1wt cells for cryptic 3’ splicing events identified in main progenitor subsets across 
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MDS samples. Columns- cryptic 3’ junctions differentially spliced in at least one cell-type, 

with P-value <= 0.05 and dPSI >= 2. Rows- cell-type. Genes highlighted for cell cycle 

(purple), heme metabolism (green), oxygen homeostasis (black), RNA processing (red) and 

erythroid differentiation (yellow) pathways. Left bar plots show the fraction of differentially 

spliced cryptic 3’ splice sites per cell. Top bar plots quantify the total number of cell types 

where an event is differentially spliced, with the cell-type specific events on the right.
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Figure 4. SF3B1mut-associated mis-splicing changes along the continuum of erythropoiesis.
(A) Percent spliced-in (PSI) of junctions in SF3B1mut cells along the hematopoietic 

differentiation trajectory (HSPCs, IMPs, MEPs, EPs). Rows (z-score normalized)- cryptic 

3’ splice sites; columns- PSI for usage of a given cryptic 3’ splice site in each window 

(size of 3000 SF3B1mut cells, sliding by 300 SF3B1mut cells). Only junctions differentially 

spliced in at least one cell-type with a dPSI > 2 were analyzed. ADT expression of 

CD71 and cell type fractions are shown. Rows ordered according to PSI peak. Genes 

highlighted for cell cycle (purple), heme metabolism (green), oxygen homeostasis (black), 

RNA processing (red), erythroid differentiation (yellow) and apoptosis (blue) pathways. (B) 
Examples of mis-spliced genes at different erythroid maturation stages. Bars represent PSI 

in SF3B1mut cells. Red lines represent junction ONT expression in SF3B1mut cells. (C) 
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Fold change (log2) of gene expression between SF3B1mut and SF3B1wt EP cells in NMD-

inducing vs. NMD-neutral genes. (D) BAX gene model and relevant isoforms. Characteristic 

domains are highlighted in main isoform BAX-ɑ. The cryptic 3’ splicing event on the 

terminal exon defines the BAX-ω isoform, characterized by frameshift disruption of the 

transmembrane domain (TM). (E) Western blot of TF-1 BAX/BAK knockout cells (DKO) 

with doxycycline-inducible expression of control GFP or FLAG-tagged BAX isoforms α, 
β, and ω after 24 hours. (F) Fold change in annexin V positive TF-1 DKO cells expressing 

different BAX isoforms under cytokine depleted conditions + doxycycline (1ug/mL) at 

48 and 72 hours normalized to apoptotic cells - doxycycline treatment (black line). N=2 

independent experiments performed in triplicate. (G) Representative annexin V/DAPI flow 

cytometry plots of different BAX isoforms after 72 hours under cytokine depleted conditions 

+ doxycycline. Percent frequencies noted in relevant quadrants. Bars represent mean values. 

Error bars represent ±SD; ** P < 0.01 *** P < 0.001.
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Figure 5. SF3B1 mutations are enriched along the erythroid lineage in clonal hematopoiesis.
(A) UMAP of CD34+ (n = 9,007) cells from clonal hematopoiesis (CH) samples with 

SF3B1 K700E or SF3B1 K666N mutation (n = 2 individuals), overlaid with cluster cell-type 

assignments. See Figure 1A for cell-type descriptions. (B) Density plot of SF3B1mut vs. 

SF3B1wt cells. (C) UMAP of CD34+ cells from CH samples overlaid with pseudotemporal 

ordering. Inset: Pseudotime in SF3B1mut vs. SF3B1wt cells in the aggregate of CH01-02. 

P-value for comparison of means from Wilcoxon rank sum test. (D) Normalized ratio of 

mutated cells along pseudotime quartiles. Bars show aggregate analysis of samples CH01-

CH02 with mean +/− s.e.m. of 100 downsampling iterations to 1 genotyping UMI per 

cell. Only cell types with >300 cells were analyzed. P-value from likelihood ratio test of 

linear mixed model with or without mutation status. Bottom: Fraction of cell types within 

each pseudotime quartile. (E) Differential gene expression between SF3B1mut and SF3B1wt 

HSPC cells in CH samples. Genes with an absolute log2(fold change) > 0.1 and P-value 

< 0.05 were defined as differentially expressed (DE). DE genes in the translation pathway 

(red, Reactome) are highlighted (see Table S5). (F) Gene Set Enrichment Analysis of DE 

genes in SF3B1mut HSPC cells across CH samples. Gene sets that overlap with SF3B1mut 

EP cells in MDS highlighted (red). (G) Expression (mean +/− s.e.m.) of translation-related 
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genes (Reactome) between SF3B1mut and SF3B1wt cells in progenitor cells from CH01-02 

samples. P-values from likelihood ratio test of linear mixed model with or without mutation 

status.
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Figure 6. SF3B1mut clonal hematopoiesis progenitor cells display cell-type specific cryptic 3’ 
splice site usage.
(A) Differential splicing analysis between SF3B1mut and SF3B1wt cells across CH samples. 

Junctions with an absolute delta percent spliced-in (dPSI) > 2 and BH-FDR adjusted P-value 

< 0.2 were defined as differentially spliced. (B) Sashimi Plot of ERGIC intron junction with 

an SF3B1mut associated cryptic 3’ splice site showing RNA-seq coverage in SF3B1mut vs. 

SF3B1wt cells within CH samples, as well as compared to the CH samples when treated 

as bulk (pseudobulk of all cells regardless of genotype). PSI values showing the expected 

increase in usage of this cryptic 3’ splice site in SF3B1mut cells alone when compared 

to both SF3B1wt cells as well as all cells (pseudobulk of sample). (C) Venn Diagram of 

overlapping genes with cryptic junctions significantly differentially spliced in at least one 

erythroid lineage cell type (HSPCs, IMPs, MEPs, EPs) with a dPSI > 2 between MDS01-03 

and CH samples. P-value for the overlap from Fisher’s Exact test. (D) Percent spliced-in 
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(PSI) of junctions in SF3B1mut cells along the hematopoietic differentiation trajectory of 

erythroid lineage cells. Rows (z-score normalized)- cryptic 3’ splice sites; columns- PSI for 

usage of a given cryptic 3’ splice site in each window (size of 600 SF3B1mut cells, sliding by 

60 SF3B1mut cells). Only junctions differentially spliced in at least one cell type with a dPSI 

> 2 were analyzed. Pseudotime across each window shown. Rows are ordered according 

to the peak in PSI. Cryptic events also differentially spiced in MDS highlighted (red). (E) 
Bar plots of PSI values for usage of the BAX-ω isoform across each window of SF3B1mut 

cells in the MDS, MDS validation and CH cohorts along the hematopoietic differentiation 

trajectory of erythroid lineage cells. Fraction of cell types in each window shown per cohort 

(MDS: SF3B1mut cells (n = 6376) ordered by CD71 expression, MDS validation: SF3B1mut 

cells (n = 987) ordered by pseudotime, CH: MUT cells (n = 1021) ordered by pseudotime).
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

CITE-seq ADTs (see Table S2) BioLegend TotalSeq-A N/A

CD34-PE-Vio770 Miltenyi Biotec clone AC136; RRID: AB_2660374

BAX Santa Cruz Biotechnology sc-7480; RRID: AB_626729

BAK Thermo Fisher MA5–36225; RRID: AB_2884059

GFP Cell Signaling Technology 2555S; RRID: AB_10692764

GAPDH Cell Signaling Technology 5174S; RRID: AB_10622025

FLAG Sigma Aldrich F1804; RRID: AB_262044

Bacterial and virus strains

Lentiviral expression vector Addgene RRID: Addgene_128055

Neomycin lentiviral expression vector Addgene RRID: Addgene_139449

Tetracycline inducible lentiviral expression 
vector

Addgene RRID: Addgene_162823

Chemicals, peptides, and recombinant proteins

FSC TaKaRa #631106

Human GM-CSF R&D Systems 215-GM

DAPI Sigma-Aldrich D9542

Annexin V BioLegend 640920

RIPA buffer Cell Signaling Technology N/A

Intercept Blocking Buffer LI-COR N/A

Critical commercial assays

Ligation Sequencing Kit Oxford Nanopore Technologies SQK-LSK110
SQK-LSK114

LongAmp Taq 2X Master Mix New England BioLaboratories M0287S

Chromium 3’ (v.3.1 chemistry) 10x Genomics N/A

SPRI beads Beckman Coulter Life Science B23317

MycoAlert Mycoplasma Detection Kit Lonza LT07–701

MycoAlert Assay Control Set Lonza LT07–518

True-Stain Monocyte Blocker BioLegend Cat#422302; RRID: AB_2818986

Deposited data

scRNAseq CH01–02, CH04, MDS01–06 
and AML01A-B (See Table S1), raw 
(FASTQ) and processed (gene matrix 
counts, barcodes, features, and isoform 
junction counts) samples.

This paper GEO: GSE204845
EGA: EGAS00001007402

Human reference GRCh38 (GENCODE 
v32/Ensembl 98)

10x Genomics https://support.10xgenomics.com/single-cell-gene-expression/
software/release-notes/build#GRCh38_2020A

MSigDB C2 curated gene sets GSEA RRID: SCR_016863; https://www.gsea-msigdb.org/gsea/
msigdb/human/collection_details.jsp#C2

Human transcript reference GRCh38.p12 
(v31)

GENCODE RRID: SCR_014966; https://www.gencodegenes.org/human/
release_31.html

Experimental models: Cell lines

TF-1 ATCC CRL-2003; RRID: CVCL_0559
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REAGENT or RESOURCE SOURCE IDENTIFIER

TF1-Cas9 BAX and BAK DKO cells This paper N/A

Oligonucleotides

Used in GoT and cDNA ONT sequencing; 
KO experiments (see Table S1)

This paper N/A

Software and algorithms

Cell Ranger (v.3.1.0) 10x Genomics RRID: SCR_017344; https://support.10xgenomics.com/single-
cell-gene-expression/software/release-notes/3-1

Seurat (v.3.1) Stuart et al.134 RRID: SCR_016341; https://github.com/satijalab/seurat/
releases/tag/v3.1.0

Monocle3 (v.1.0) Cao et al.135 RRID: SCR_018685; https://github.com/cole-trapnell-lab/
monocle3

IronThrone (v.2.1) Nam et al.133 https://github.com/landau-lab/GoT-IronThrone

lme4 (v.1.2–1) Bates et al. RRID: SCR_015654; https://github.com/lme4/lme4

dsb (v.0.1.0) Mulè et al.136 https://github.com/niaid/dsb

Guppy (v.3.0.6 – 4.0.11) NanoporeTech RRID: SCR_023196; https://github.com/nanoporetech/
pyguppyclient

SiCeLoRe (v.1.0) Lebrigand et al.67 RRID: SCR_018550; https://github.com/ucagenomix/sicelore

minimap2 (v.2.17) Heng Li137 RRID: SCR_018550; https://github.com/lh3/minimap2/
releases/tag/v2.17

SAMtools (v.1.9) Danecek et al.138 RRID: SCR_002105; https://github.com/samtools/samtools/
releases/tag/1.9

umi-tools (v.1.1.2) Smith et al.139 RRID: SCR_017048; https://github.com/CGATOxford/UMI-
tools/releases/tag/1.1.2

InferCNV (v.1.4.0) Tickle et al.140 RRID: SCR_021140; https://github.com/broadinstitute/
infercnv

CONICSmat (v.0.0.0.1) Müller etal.141 https://github.com/diazlab/CONICS

FLAMES (v.1.3.4) Tian et al.68 https://github.com/OliverVoogd/FLAMES

IsoQuant (v.3.1.1) Prjibelski et al.76 https://github.com/ablab/IsoQuant/releases/tag/v3.1.1

SQANTI3 (v.5.1.1) Tardaguila et al.142 https://github.com/ConesaLab/SQANTI3

SUPPA2 (v.2.3) Trincado et al.143 https://github.com/comprna/SUPPA

DRIMSeq (v.1.22.0) Nowicka and Robinson144 https://bioconductor.org/packages/release/bioc/html/
DRIMSeq.html

ONT-Splice (v.1.0.0) This paper https://doi.org/10.5281/zenodo.8084364;https://github.com/
landau-lab/ONT-sc-splice
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