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Aging is the key risk factor for cognitive decline, yet the molecular changes underlying brain 

aging remain poorly understood. Here, we conducted spatiotemporal RNA-seq of the mouse brain, 

profiling 1,076 samples from 15 regions across 7 ages and 2 rejuvenation interventions. Our 

analysis identified a brain-wide gene signature of aging in glial cells, which exhibited spatially 

defined changes in magnitude. By integrating spatial and single-nucleus transcriptomics, we 

found that glia aging was particularly accelerated in white matter compared to cortical regions, 

while specialized neuronal populations showed region-specific expression changes. Rejuvenation 

interventions, including young plasma injection and dietary restriction, exhibited distinct effects 

on gene expression in specific brain regions. Furthermore, we discovered differential gene 

expression patterns associated with three human neurodegenerative diseases, highlighting the 

importance of regional aging as a potential modulator of disease. Our findings identify molecular 

foci of brain aging, providing a foundation to target age-related cognitive decline.

In Brief:

A spatiotemporal transcriptome map of the aging mouse brain identifies region-specific 

acceleration of glial aging, particularly in white matter, distinctive regional responses to 

rejuvenation interventions, and regional age-associated expression patterns of genes tied to human 

neurodegenerative diseases.

Graphical Abstract
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Introduction

Aging is the predominant risk factor for cognitive dysfunction 1,2 and several 

neurodegenerative disorders, including Alzheimer’s disease (AD) and Parkinson’s disease 

(PD) 3–5. It remains unclear though, how aging contributes to the development of these 

distinct diseases of the brain, given their differences in pathological hallmarks, time of 

onset, and, notably, the regions affected4. A quantitative understanding of the dynamics 

of aging across the brain may provide new insight into the relationship between aging 

and neurodegeneration. Interestingly, neuroimaging studies using structural and functional 

magnetic resonance imaging (MRI) data indicate that aging impacts the brain in a region-

specific manner 6,7. However, these structural manifestations provide limited insight into the 

underlying molecular alterations occurring during brain aging. In contrast, changes in gene 

expression can be a readout of cellular deterioration and molecular processes accompanying 

aging, permitting quantitative comparisons of aging rates between tissues 8 and cell types 9. 

Previous studies have profiled age-related gene expression changes in human brain tissue, 

yet these microarray-based experiments capture a limited set of transcripts and cover usually 

one to four regions 10,11 or quantify the transcriptome at low temporal resolution 12,13. 

Expression profiling during human brain aging is particularly challenging since it can take 

hours to days before postmortem tissue is stabilized 13–15. Alternatively, expression profiling 

in model organisms like M. musculus enables quantitative data with minimal confounding 

factors, but comprehensive studies covering more than a few regions and at high temporal 

resolution 16–19 do not - to our knowledge - yet exist. In consequence, this limitation 

also complicates the dissection of molecular mechanisms which mediate the effects of 

experimental disease models or interventions targeting the aging process, such as dietary 

restriction or young plasma injection, which delay molecular and cognitive phenotypes of 

brain aging 20.

Results

Spatiotemporal quantification of age-related gene expression across the mouse brain

Seeking a molecular understanding of the spatiotemporal changes of the mammalian brain, 

we punched out 15 regions from each hemisphere of coronal brain sections of 59 mice 

(Figure 1A; n = 3–6 males per age; aged 3, 12, 15, 18, 21, 26 and 28 months; n = 

5 females per age; aged 3, 12, 15, 18 and 21 months; all C57BL/6JN strain): Three 

cortical regions (motor area, visual area and entorhinal cortex; Mot.cor., Vis.cor and 

Ent.cor, respectively), anterior (dorsal) and posterior (ventral) hippocampus (Hipp.ant and 

Hipp.post., respectively), hypothalamus (Hypoth.), thalamus, caudate putamen (part of the 

striatum; Caud.put.), pons, medulla, cerebellum (Cereb.) and the olfactory bulb (Olf.bulb). 

We further isolated three regions that were enriched with the corpus callosum (Corp.cal.), 

choroid plexus (Chor.plx.) and the neurogenic subventricular zone (SVZ), (Methods S1, 

section 1). We obtained a total of 1,770 samples (885 samples from each hemisphere). 

Regions from the left hemisphere were stored, while right hemisphere regions were 

processed through a custom-built bulk RNA-seq (bulk-seq) pipeline (Figure 1B, STAR 

Methods). We achieved robust tissue sampling with high RNA quality while minimizing 

perfusion artifacts (Methods S1, section 1; median RIN of 9.45).
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Post-quality control, we obtained 847 single-region transcriptomes. Visualization in uniform 

manifold approximation and projection (UMAP) space separated samples by region (Figure 

1C), but not sex or age, concurring with deterministic hierarchical clustering (Methods S1, 

section 2). However, samples segregated transcriptionally by age within individual regions, 

highlighting the necessity for precise isolation of brain tissue to resolve the subtle effect of 

aging on expression (Figure 1D).

To assess if isolated regions capture a given brain structure’s transcriptome, we analyzed 

region-enriched genes (‘marker genes’; Table S1) in a publicly-available mouse brain spatial 

transcriptomics dataset22–24, creating ‘signatures’ 25 for each region. Signature scores were 

distinctly elevated in areas corresponding to the anatomical structures annotated in the Allen 

brain reference atlas 26 (Methods S1, section 3). Further, a significant decline with age in 

a signature score for activated neural stem cells (aNSCs, based on single-cell data 27) was 

observed in the SVZ region, indicating a loss of aNSCs with age, that is in agreement with 

diminished neurogenic capacity in aged mice 27 (Methods S1, section 3). These findings 

affirm the quality of our tissue isolation and bulk-seq workflow and demonstrate the robust 

capture of region’s transcriptome across animals. The data can be interactively explored at 

https://twc-stanford.shinyapps.io/spatiotemporal_brain_map/.

Region identity is linked to expression dynamics during aging

RNA-seq permits quantitative comparisons of aging rates 8,19 based on gene expression 

shifts. For instance, we found substantial region-dependence in the magnitude and timing 

of C4b expression (Figure 1E), a complement component and major schizophrenia risk 

factor 28 that is up-regulated in aged mice 29 and models of neurodegeneration 30. Notably, 

recent single-cell sequencing and spatial imaging studies revealed that the composition of 

major cell types remains almost constant throughout the aging mouse brain between 3 and 

21 months 31,32, thus the expression dynamics observed in bulk are unlikely to be driven 

primarily by shifts in cell type abundance. In cases of stable cell populations and substantial 

replicate numbers, bulk RNA-seq is particularly suitable to investigate subtle, yet robust 

expression changes by taking advantage of well-established, replicate-sensitive statistical 

approaches 33 that currently do not exist for single-cell data 34. Thus, we could use our 

temporally resolved data to probe the per-region impact of aging on gene expression, as this 

could help to identify structures with selective vulnerability.

We performed pairwise differential expression between 3 months group and every 

subsequent age group to determine when differentially expressed genes arise (DEGs; 

referring from heron to genes that change with age). We treated sex as a covariate given 

the lack of significant interaction between sex and age, and similar expression changes 

during aging in each sex (Figure S1A–E). A gene had to pass the statistical cutoff in at least 

two comparisons to be classified as a DEG (Figure 1E–G). The general trend across regions 

indicated an increase of DEGs over time plateauing around 21 months (Figure 1F,G), 

though individual regions exhibited profoundly differing trajectories of DEG accumulation 

(Figure 1F and Table S1). For instance, the visual cortex showed a steady increase of 

DEGs until late age, while the motor cortex already exhibited significant perturbation at 12 

months, with little additional increase until a jump at 21 months (Figure 1F,G). In contrast, 
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entorhinal cortex’ transcriptome appeared largely refractory to the effects of age (Figure 

1F,G). This agrees with human MRI 7 and microarray 35 studies demonstrating that the 

entorhinal cortex displays only mild alterations during cognitive aging, despite exhibiting 

the first amyloid deposition in AD patients 36. Together, these results reveal the striking 

region- and time-dependent nature of expression shifts during brain aging, thus necessitating 

region-resolved quantification and analysis. Notably, regions with the most profound and 

earliest shifts in gene expression were the white matter-rich caudate putamen, cerebellum, 

and corpus callosum, the latter showing a tenfold increase in the number of DEGs between 

12 and 18 months.

To validate these results with independent analyses, we first probed all genes for correlation 

with age (STAR Methods; Table S1), thus taking all age groups into account (Figure 1H). 

Regions differed in the number of age-correlated genes, confirming that the effect size 

of age depends on the region, and the corpus callosum and cerebellum were the most 

impacted, while the entorhinal cortex remained largely unaffected (Figure 1H). As a second 

validation, we performed weighted gene co-expression network analysis (WGCNA) 37 for 

each region (STAR Methods; Table S1), clustering genes into modules. We filtered for 

modules exhibiting significant association with age and found that the number of modules 

differed between regions. Agreeing with the above results, we found seven or more modules 

in the corpus callosum and cerebellum, whereas we detected no age-related modules in the 

entorhinal cortex (Table S1). We compiled cell type- and pathway-enrichment for each age-

related module into reports for each region as resource (https://twc-stanford.shinyapps.io/

spatiotemporal_brain_map/). Interestingly, we discovered in 10 regions at least one module 

with increased expression over time that was enriched for microglia- and inflammation-

related genes (Figure 1I,J). Consistent with these findings, we found a small, common 

set of DEGs, including neuroinflammatory markers Fcgr2b, Ctss, Cst7 38 in modules 

across regions, suggesting the presence of a minimal group of co-regulated genes changing 

throughout the brain. In summary, we found the results of three independent analyses 

(pairwise tests, age-correlation and WGCNA) congruent, demonstrating that the observed 

effects of aging on the transcriptome are region-dependent.

A minimal gene set forms a common fingerprint of brain aging

While the vast majority of DEGs appeared to change only in three or less regions, we 

found 82 genes that were differentially regulated in 10 or more regions (Figure 2A,B; 

Table S1). These were strongly enriched for up-regulated genes with immune-modulatory 

functions (Table S1), including MHC I-mediated antigen presentation, interferon-response, 

and complement cascade, as well as regulators of microglia activity (Figure 2C) including 

Cd22 39, Trem2 and Tyrobp 40. Of the only 7 down-regulated genes in this set, we found 

protein homeostasis genes Dnajb1, Hsph1 and Ahsa1, as well as collagen synthesis gene 

P4ha1 3 (Figure 2B). We combined these 82 genes into a common RNA aging signature to 

calculate their expression as a single ‘common aging score’ (CAS; STAR Methods) for each 

mouse and region. While the CAS expectedly showed significant increases in every region 

(Figure 2D, Figure S2A), the shape and amplitude of the trajectories varied profoundly. 

We employed linear models to approximate these trajectories, using the slope of the linear 

fit as a metric to comparatively assess the ‘CAS velocity’ across regions (Figure 2D,E). 
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Of note, the CAS at baseline (i.e. the offset of the linear fit) did not predict a region’s 

CAS velocity (Figure 2F). Our analysis revealed a gradient of velocities, with cortical areas 

ranking last, at one-third of the velocity of the corpus callosum, the ‘fastest’ region (Figure 

2G,H,I). Other white matter-rich areas, including the caudate putamen, also exhibited high 

velocities, while hippocampus, thalamus and hypothalamus ranked below average. The 

median CAS across all regions associated with the animals’ chronological age (Figure S2B). 

Yet, the regions’ differing velocities resulted in increased per-animal variance, indicating 

that the transcriptional state of this gene set becomes profoundly desynchronized across the 

brain. Importantly, we found no association between the CAS velocity and the regions’ cell 

composition at young age as quantified in a brain-wide in-situ single-cell dataset 41 (Figure 

2J, Methods S2, section 1). This suggests that the heterogeneous CAS velocities are unlikely 

to result from cell proportions differing across regions.

When we examined the CAS trajectories for the interval between 3 and 21 months, we 

observed a moderate but significant CAS acceleration in females (Figure 2I, S3A,B), with 

the hypothalamus exhibited the most pronounced acceleration (Figure S3B). While overall 

age-related expression changes were well-correlated between both sexes (Figure S3D; P 
value for Fisher’s Exact test < 2.2×10−16), genes related to lipid metabolism, stress response 

and unfolded protein response, including CAS genes Rbm3 and Cirbp 42, were stronger 

regulated in males (Figure S3D,E). In contrast, females exhibited a more accentuated 

regulation of neuroinflammatory markers (including Gfap) and antigen-presentation genes 

(Figure S3F), as well as several CAS genes related to immune response. In line with this, 

we found Cish, a known regulator of T cell immune response increasing in females 43,44, 

being the only gene exhibiting significant, opposite regulation in both sexes. Critically, the 

female-specific regulation of pro-inflammatory genes was not observable in other regions 

with similar CAS slopes (Figure S3F). These findings are in line with human studies 

reporting more pronounced expression of immune-related genes in the hippocampus and 

cortex of aged women 35,45. Of note, adenomas in the hypothalamus-adjacent pituitary 

gland can develop at high frequency in female C57BL/6J mice older than 20 months of 

age46. Since we did not record adenomas in our study, it is possible that this phenomenon 

could contribute to the accelerated aging patterns observed here. Our data could advance 

the understanding of several sexual-dimorphisms observed in the brain, including the higher 

age-specific risk of dementia among women 47, given the hypothalamus’ critical role in 

regulating reproduction, development and metabolism 48.

Fiber tracts are foci of accelerated brain aging

Bulk-seq data may obscure shifts in sub-structures within regions, like a specific cortical 

layer. To verify our CAS analysis, we sought a method that could simultaneously examine 

multiple regions at high-resolution. To this end, we performed spatial transcriptomics (10X 

Visium) of the brain, isolating coronal sections from an independent cohort of male mice 

aged 6, 18, and 21 months (Figure 3A). Using a clustering-based we annotated the regional 

identity of Visium spots (Figure S4A,B; Table S1), identifying them as belonging to the 

hippocampus, cortex, thalamus, hypothalamus, striatum, choroid plexus and white matter 

fiber tracts (Figure 3B and S4C–F). Our data demonstrated robust capture of the same 

regions across age groups and individuals (Figure S4G–L), permitting a comparison of 
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DEGs found in bulk-seq with Visium data (Table S1). We confirmed a more pronounced 

regulation of DEGs in the white matter cluster (equivalent to the dissected corpus callosum 

region) compared to the cortex cluster (equivalent to the motor cortex region), This 

includes several of the 82 CAS genes (Figure 3C, Table S1) such as Trem2 (Figure 3D). 

Calculating CAS for each Visium spot identified a clear, spatially-defined increase in the 

score along the white matter tracts, encompassing the corpus callosum and other fiber tract 

sub-structures (Figure 3E,F). In the cortex, however, we observed only a modest increase 

in CAS. Generally, CAS velocities determined by bulk-seq and spatial transcriptomics were 

well-correlated (Figure 3G), confirming vastly differing aging velocities between proximal 

regions in-situ.

Heterogeneous velocity of CAS is encoded by glial transcripts

We aimed to quantify the activity of CAS genes at the single-cell level to pinpoint the 

cell type(s) influencing the heterogeneous expression dynamics across brain regions. We 

chose the anterior hippocampus given its intermediate CAS velocity (Figure 2G), utilizing 

frozen punches from the left hemispheres of the bulk-seq cohort (Figure 4A). Single-nuclei 

sequencing (nuc-seq) yielded all major cell types, with no age- or sex-related shifts in 

cell composition. Microglia exhibited the highest baseline CAS, which aligns with many 

CAS genes being known immune-response genes (Figure 2B,C). Although CAS displayed 

a significant increase in all cell types (Figure 4B), microglia exhibited the most accentuated 

increase (Figure 4C), followed by mature oligodendrocytes, brain endothelial cells (BECs), 

astrocytes and oligodendrocyte progenitor cells (OPCs).

Upon closer examination of the 82 genes, it was evident that the CAS could mirror aging 

dynamics in several cell types beyond microglia through cell type-specific or selective gene 

expression shifts (Figure 4D), including Gfap (Astrocytes), C4b (Astrocytes and mature 

oligodendrocytes; Methods S2, section 2), Gpr17 (OPCs) and H2-Q7 (BECs; Methods S2, 

section 3). Notably, aging could trigger the expression of genes undetected at young age. 

For instance, C4b, mostly detected in young astrocytes, became detectable and increased 

foremost with age in mature oligodendrocytes (Methods S2, section 2). Similarly, expression 

of H2-Q7 only became detectable in BECs with old age (Methods S2, section 3). We 

validated our findings in an independent dataset of publicly available scRNA-seq data from 

young and old mice’ SVZ 27. Though generated using a different cohort and method, 

the CAS increase was most pronounced in microglia, consistent with our data (Methods 

S2, section 4). CAS also significantly increased in aNSCs, but a small cell count at 28 

months (under 50 per animal) complicated robust CAS calculations. Thus, differences in 

CAS velocity between regions predominantly reflect age effects in non-neuronal cells, with 

microglia having the strongest contribution.

Transcriptional aging of microglia is region-dependent

We aimed to discern varying CAS dynamics between microglia from regions with fast 

or slow CAS velocity. For this, we analyzed Smartseq2 scRNA-seq data from the Tabula 
Muris consortium (Figure 4E), which contains comparable numbers of microglia from 

freshly-isolated cerebellum (high velocity), striatum (equivalates to caudate putamen, high 

velocity),, hippocampus (medium velocity) and cortex (low velocity). Smartseq2, due to its 
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efficient per-cell transcript capture rate, is particularly apt for examining subtle aging-related 

transcriptional effects. 49–51.In agreement with our bulk-seq results, the CAS increased in 

microglia across regions, though with greater magnitude in the cerebellum and striatum, 

followed by the hippocampus and cortex, respectively (Figure 4F). These shifts were 

consistent across biological replicates (Methods S2, section 5), and was also reflected on 

the level of individual CAS genes, like Trem2 (Figure 4G). Notably, there was no detectable 

CAS difference among microglia at young age across the striatum, hippocampus and cortex, 

while the cerebellum-derived microglia exhibited a slightly higher baseline CAS. Consistent 

with our data, aged mice’s microglia isolated from white matter exhibited significantly 

elevated CAS compared to those derived from gray matter 51 (Methods S2, section 5). 

Further, we meta-analyzed a well-powered bulk microarray dataset of microglia isolated 

from cerebellum, striatum, hippocampus and cortex 52, of mice aged 4, 12 and 22 months. 

We identified more differentially expressed genes with age in the cerebellum and striatum, 

together with a more pronounced up-regulation of CAS genes (Methods S2, section 5), 

particularly in the period of 12 to 22 months.

In conclusion, CAS velocities observed in bulk-seq and Visium data partly represent 

microglia that exhibit region-specific aging rates.

Neuronal transcripts encode region-specific expression patterns

Since CAS genes represent only 1.5% of all DEGs (Figure 2A; Table S1), we hypothesized 

that the remainder could represent region-specific expression shifts. We first compared age-

related DEGs across mouse organs to construct organ-specific aging signatures (Methods 

S3, section 1). The identification of specific signatures in functionally distinct organs led 

us to investigate whether individual brain regions display a similar degree of specificity 

during aging. The number of region-specific DEGs varied significantly (Figure 5A), which 

we utilized to build aging signatures for each region (Figure 5B,C, Methods S3, section 

2). As exemplified for the caudate putamen, we found that most region-specific signatures 

generally increased with age predominantly in the region they were based on (Figure 5B–D 

and Methods S3, section 2). Thus, dozens to hundreds of genes in the brain are regulated in 

a region-specific or -selective manner, revealing highly compartmentalized effects of aging 

within a single organ.

Signature genes appeared to be functionally connected, as exemplified by the caudate 

putamen-specific signature which was enriched for down-regulated mitochondrial processes 

and up-regulated cell adhesion and lipid binding functions (Figure 5E and Table S1). We 

analyzed nuc-seq data from the left hemisphere punches of the anterior hippocampus (Figure 

4A) and caudate putamen (Figure 5F), where we captured non-neuronal cell types as well as 

striatum-specific D1- and D2-type medium spiny neurons (D1 and D2 MSNs, respectively). 

Mapping signature genes like Fgf16, S100a10 and Fabp4 (Methods S3, section 2) to distinct 

cell populations (Figure 5G, STAR Methods and Table S1) suggested that bulk tissue can 

indeed capture the expression dynamics of specific cell subsets. We calculated several 

region-specific signature scores for each cell type at young and old age. We found a 

distinct increase of the caudate putamen-specific signature in D1 and D2 MSNs which 

was not seen with signatures from other regions (Figure 5H J, Methods S3, section 2). In 
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comparison, dentate gyrus granule cells of the hippocampus exhibited a distinct increase 

of the hippocampus-specific signature (Figure 5K), and we found respective regulation of 

signature genes such as axon-guidance receptor Unc5d 53 and transcription factor Onecut1 
(Figure 5L,M, Methods S3, section 3). Notably, granule neurons are highly abundant in the 

cerebellum 54 yet the hippocampus-specific signature, as well as expression of Unc5d or 

Onecut1, exhibited no age-related change in the bulk data of the cerebellum. Our approach 

could thus identify aging signatures of a given cell type occurring selectively in a specific 

region.

Finally, we explored whether the biological processes associated with signature genes 

could indicate differential transcriptional activity across whole pathways or organelles. We 

observed significant down-regulation of mitochondria-related genes in the caudate putamen, 

including electron transport chain subunits, which could indicate impaired mitochondrial 

function (Figure 5E). We identified in this region a global, gradual down-regulation of all 

genes coding for mitochondria-related proteins (Methods S3, section 3), and a corresponding 

mitochondrial signature dropped significantly in aged D2 MSNs, mature oligodendrocytes, 

and astrocytes. This was not detected in cell types from other regions (Methods S3, section 

2). This specific down-regulation of mitochondrial processes in aged striatum could help to 

explain the selective vulnerability to mitochondrial toxins and stresses in the striatum of old 

animals 55,56.

In conclusion, we discovered extensive region-specific transcriptional signatures of aging, 

largely encoded by expression shifts in distinct neuronal subpopulations reflecting a region’s 

specialization.

Rejuvenating interventions act on distinct regions and cell types affected during normal 
aging

Given the substantial region-specific expression changes during normal aging, we wondered 

if interventions known to stave off age-related pathologies may also act regionally. We 

performed region-resolved bulk-seq on brains of 19-month-old mice following either four 

weeks of acute dietary restriction (aDR), a well established nutritional intervention 57,58, 

or recurring injections of young mouse plasma (YMP) 59, a paradigm to administer 

circulatory factors found at young age. Both aDR and YMP have previously been 

shown to exert molecular, structural, and cognitive improvements even at this late age 
58,59. Understanding the trajectories of region-specific transcriptional shifts in response to 

‘rejuvenating’ interventions, may help to decipher the mechanism mediating their effects.

For the dietary intervention, 19-month-old female mice were either treated with four weeks 

of aDR or ad libitum feeding (AL; n = 4–5 female C57BL/6JN; Figure 6A). The 25% aDR 

paradigm (i.e. food reduction to 75% of the AL group) resulted in the expected metabolic 

shifts, marked by weight loss (Figure S5A,B) and induction of well-recognized expression 

changes in the liver, albeit to a milder degree than those observed in studies employing 

chronic DR over years57 (Figure S5C–E). For the plasma intervention, we profiled brains 

of 19-month-old male mice receiving recurring injections of either YMP or PBS (n = 3–4 

male C57BL/6JN; Figure S5F). Critically, the resulting 229 single-region transcriptomes 
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clustered well with the bulk-seq data from the aging cohort (Figure S5G), suggesting a 

robust sampling of regions across experimental cohorts.

Remarkably, aDR and YMP exerted distinct expression changes across the brain (Figure 

6B–D, F–H). aDR was primarily marked by differential regulation in the olfactory bulb, 

cerebellum and cortical areas, as well as fewer expression changes across all regions 

(Figure 6A–C). DEGs under aDR exhibited little overlap with DEGs occurring during 

aging (Figure S5H–J) and the CAS remained unaffected across the brain (Figure 6D, S5K). 

In several regions, particularly the cerebellum, we found a strong functional enrichment 

for aDR-induced genes related to regulation of the circadian clock. A set of 23 genes, 

including three direct members of the circadian clock (Cry1, Usp2, and Ciart) and other 

genes with cycling expression60, was differentially regulated in at least four regions (Figure 

6C,J). We utilized these 23 genes to construct an aDR signature, which was robustly and 

evenly induced across all brain regions examined (Figure S6A,B). To map out the cell 

types driving the aDR signature, we performed nuc-seq on whole, frozen hippocampus 

tissue of 24-month-old female mice that had been fed AL or subjected to 40% aDR since 

20 months of age (Figure 6K; n = 3–4 female C3B6F1; cohort previously described in 
57,61). The signature was specifically up-regulated under aDR in mature oligodendrocytes, 

astrocytes, microglia and OPCs, but unaffected in any neuronal subpopulation (Figure 6L, 

S6C–E). Thus, aDR induces a brain-wide transcriptional program acting on the same cell 

types affected by the CAS, albeit through molecular pathways orthogonal to those changing 

during aging.

In contrast, YMP caused region-selective expression shifts, affecting the SVZ in particular. 

(Figure 6E–H). Here, we observed profound up-regulation of pathways related to stem cell 

differentiation and neuronal maturation (Figure 6M). We mapped a signature representing 

all up-regulated genes under YMP to single-cell data of the SVZ 27, where it demarcated 

neuroblasts, quiescent, and activated neural stem cells (aNSCs), which were primarily found 

in young mice (Figure 6N,O). SVZ cells from aged mice decreased the YMP signature, 

and, conversely, age-related DEGs found in aNSCs were down-regulated in YMP-treated 

mice (Figure 6P,Q). Thus, YMP injection reactivates an expression pattern in the neurogenic 

lineage that becomes down-regulated with age. In addition to effects on the SVZ, YMP 

caused significant down-regulation of genes like C4b, B2m, Trem2 or Gfap in selected 

regions, and led to a significant CAS reduction in caudate putamen, hypothalamus, SVZ and 

several cortical areas (Figure S5I,L–M).

In summary, we uncovered that the rejuvenating interventions aDR and YMP act in 

profoundly different, region-specific manners. While aDR instigates a reprogramming of 

genes related to the circadian clock across all glia, YMP causes a selective reversal of 

age-related expression signatures, particularly in the neurogenic lineage of the SVZ.

Aging results in region-specific expression changes of genes associated with human 
diseases

Region-specific gene expression of a gene could influence not just the aging of the brain, 

but also susceptibility to disease and selective vulnerability of regional cell populations. 

This is due to differences in basal gene expression levels across the young adult brain 
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and trajectories of age-related changes. This is demonstrated with the example of the C4b 
gene, a key genetic risk factor for schizophrenia 28. The motor cortex and hippocampus, 

for instance, show up to a 3-fold difference in basal expression of C4b at three months 

of age, with age-related increases of up to 10-fold observed from the least affected visual 

cortex to the corpus callosum (Methods S2, section 2). If such region-specific differences 

and aging trajectories exist in human brains, it could likely impact the pathogenesis and 

clinical manifestations of a disease.

To explore this concept in the context of neurodegenerative diseases such as AD or PD, 

we analyzed the expression of genes linked to autosomal dominant forms of disease or 

genes linked to the risk of developing sporadic forms of disease. We ranked regions based 

on the highly variable expression of either Apoe, Trem2, Plcg2 or Scna (α-synuclein) at 3 

months (Figure 7A–D). Crucially, the expression distribution across the brain for each gene 

was substantially rearranged in older animals due to region-specific differential regulation. 

To systematically assess the regulation of disease risk-linked genes, we assembled lists of 

Genome-wide association studies (GWAS) genes for AD or PD, and investigated whether 

they were significantly enriched among age-related DEGs of a given region (Table S1) 62,63. 

Each disease-associated gene set exhibited a different enrichment pattern (Figure 7E–G) and 

a varying number of associated genes (Figure 7H–I). AD-related genes, including Apoe, 

Ms4a6d and Plcg2 64, were part of DEGs that were co-regulated in a small cluster of three 

regions: the choroid plexus, corpus callosum, and pons (Figure 7E). Conversely, PD-related 

genes, like the neuroprotective gene Ip6k2 65, were distributed across several regions with 

limited overlap (Figure 7F). Of note, the substantia nigra, a major region where PD typically 

manifests, was not quantified in our study.

We also analyzed GWAS genes for multiple sclerosis (MS) due to observed age-related 

effects in white matter-rich regions. These genes had significant associations with DEGs 

from nine different regions that fell into two clusters, indicating two disparate subsets. One 

cluster consisted of regions including the corpus callosum and cerebellum, that up-regulated 

a shared set of inflammation-related genes such as Stat3, Ly86 and Irf8, all part of the CAS 

(Figure 7G). This hints at similarities between the pathophysiology of inflammation and 

demyelination associated with MS and the accelerated aging observed in white matter-rich 

areas. The visual and motor cortex formed a second cluster, exhibiting even numbers of 

up- and down-regulated MS genes. This supports evidence of transcriptional shifts (e.g. of 

Cbln2) in cortical areas that can occur far away from the actual lesions 66 and highlights 

the need to broadly study regional patterns of gene expression to understand the role of MS-

associated genes. To better contextualize the biological relevance of the observed expression 

changes, we further compared the up-regulation of GWAS homologues with their baseline 

expression across regions (Figure S7B,C; STAR Methods), which confirmed that age-related 

differential expression in specific regions led to a significant redistribution of where in the 

brain a given GWAS homologue was predominantly expressed (Figure S7C–E).

Our data demonstrate that genetic risk factors linked to three major neurodegenerative 

diseases are affected by age in a region-selective manner. While we cannot predict whether 

the directionality of the regulation itself has a biological consequence, this region-specific 

differential regulation of such genes could be an additional factor modulating disease risk.
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Discussion

The advent of single-cell technologies and cell dissociation methods have enabled the 

exploration of an ever increasing number of cell populations in the brain 67, allowing for 

cell type-specific characterization of gene expression during aging 9. The interplay between 

cell type and regional niche during aging is, however, yet to be more deeply understood. 

Our results underscore the importance of region identity in modulating gene expression 

dynamics in the context of aging and neurodegeneration. Future studies should probe if these 

diverse expression patterns lead to shifts in the proteome or bring about functional changes 

in neuronal activity and plasticity. Given comparable observations that astrocytes exhibit 

stronger age-related expression changes in striatum and cerebellum as compared to cortical 

areas 32,68,69, it is likely that other glial cells contribute to the heterogeneous CAS increase 

at the bulk level. Further exploration of the CAS in other non-neuronal cell types could 

clarify whether microglia actively drive the regional expression dynamics described here, or 

if they simply respond to cues from other cell types in the region.

Our data reveal that certain brain regions are selectively vulnerable to aging, with white 

matter fiber tracts exhibiting a particular sensitivity. These areas, dense with myelinated 

axons and myelinating cells, form the basis of neurotransmission across brain regions 
70. The strong activation of immune- and inflammation-related genes, and differential 

expression of remyelination regulators like Gpr17 71,72 suggests that the homeostasis of this 

region is compromised at old age potentially affecting myelin sheath integrity and impairing 

axonal signal transmission as an early event in brain aging. In line with this, rejuvenation 

oligodendrogenesis in aged mice via FGF17 improves long-term memory consolidation, 

demonstrating a causal role of compromised myelin on cognition73.

We found evidence that aDR induces brain-wide reprogramming of genes associated with 

circadian rhythmicity, independent of feeding time (C57BL/6JN were fed in the afternoon 

and C3B6F1 fed in the morning 57). This aligns with recent findings that the lifespan-

extending effects of DR are dependent on a shift in circadian rhythm74–76. Future work 

should investigate how altered circadian rhythmicity impacts cell function and why only 

glia, not neurons, are affected. Conversely, YMP appeared to directly reverse age-related 

expression shifts in regions near the ventricles, which are highly permissive for peripheral 

plasma proteins77. We provide evidence that YMP specifically reverses aging signatures of 

the neurogenic lineage, indicating restoration of adult neurogenesis that should be assessed 

specifically with cell cycling tracing assays78.

Our findings strongly support the notion that the impacts of aging on brain function are 

region-specific. This may explain the regional vulnerability across different diseases and the 

varied manifestations of neurodegeneration at the individual level. We demonstrate that key 

genetic risk genes are differentially expressed in a region-specific manner, potentially locally 

amplifying or attenuating their impact on disease pathways. Importantly, our findings also 

suggest that aging may drive dysfunction in brain regions that are not affected by classical 

pathological hallmarks. The translation of these findings to humans may serve as a new 

brain cartography leading to novel treatment strategies and interventions.
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Limitations of this study

Because region-specific and age-related changes in gene expression may be distinct for 

each species, the conclusions drawn here from mouse data may not be translatable in 

their entirety to humans. The analysis of our single-nuclei RNA-seq data computationally 

pools animals of the same age and cell type, and thus was not analyzed in a replicate-

sensitive manner, and the presence of pseudo-replication effects cannot be excluded. We 

also combined sexes for most of our analyses, potentially masking subtle sex-specific gene 

expression differences. Relatedly, limitations in mouse availability for this study resulted in 

the two oldest ages being profiled only in male mice. We suggest further interrogation of 

potential sex differences of murine brain aging late in life. Lastly, determining the exact 

distribution of major cell types remains a challenge in the field, preventing us from fully 

eliminating the possibility that baseline differences in abundance play some role in detected 

aging effects.

STAR METHODS

RESOURCE AVAILABILITY

Lead Contact—Requests for resources and reagents should be directed to the lead contact, 

Tony Wyss-Coray (twc@stanford.edu).

Materials availability—This study did not generate new unique reagents.

Data and Code Availability

• The sequencing data have been deposited at Gene Expression Omnibus 

repository and are publicly available as of the date of publication. Publicly 

available datasets were obtained from the following repositories: BioProject, 

Gene Expression Omnibus and 10X Genomics’ public resources. DOIs are listed 

in the key resources table.

• All original code has been deposited at https://github.com/OliInTheValley/

SpatioTemporal_Analysis and is publicly available as of the date of publication. 

DOIs are listed in the key resources table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Animal husbandry and organ collection—For Bulk-seq and nuc-seq, male and female 

C57BL/6JN mice were shipped from the National Institute on Aging colony at Charles 

River. 5–6 male and 5 female mice were used for each 3, 12, 15, 18, and 21 months group, 

while only 5 and 3 male mice were used for the 26 and 28 months groups, respectively. 

For the 10X Visium experiments, aged C57BL/6J mice (000664, Jackson Laboratory) were 

shipped from Jackson Laboratory. 2 male mice/age were used for the 6, 18, and 21 months 

groups. All mice of the aging and aDR cohorts were housed in cages of 2–3 mice at 

the Stanford ChEM-H animal facility under a 12 h/12 h light/dark cycle at 67–73 °F and 

provided with food and water ad libitum. Mice were housed in the ChEM-H animal facility 
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for one month before euthanasia, except for mice older than 18 months, which were housed 

at the ChEM-H animal facility beginning at 18 months. Takedown of the bulk- and nuc-seq 

cohort was conducted between 10:00am-12:00pm over four days. Takedown of mice for 

10X Visium was conducted between 10:00am-10:15am on a single day. Age groups and 

sexes were rotated through over the duration of the takedowns to average out the impact 

of takedown time and day. After anaesthetization with 2.5% v/v Avertin, ~700ul blood 

was drawn via cardiac puncture before transcardial perfusion with 20 ml cold PBS. The 

brain was immediately removed and snap-frozen by submerging for 60 seconds in liquid 

nitrogen-cooled isopentane. Brains were stored at −80°C until further processing. All animal 

care and procedures complied with the Animal Welfare Act and were in accordance with 

institutional guidelines and approved by the institutional administrative panel of laboratory 

animal care at Stanford University.

For the aDR study with C57BL/6JN mice, 18-months-old mice were randomly assigned to 

AL or aDR. aDR treatment was initiated by transferring mice from AL to 10% aDR for 7 

days. After that, aDR was increased to 25%. aDR animals were fed once per day between 

3–5 p.m., and all animals were checked daily for their well-being and any deaths. For the 

first 16 days, weights were checked daily. Mice were euthanized at the ages of 19 months. 

All mice were euthanized in the morning within a period of 6 hours prior to the regular 

feeding time of the DR mice.

The aDR study with C3B6F1 mice was performed in accordance with the recommendations 

and guidelines of the Federation of the European Laboratory Animal Science Association 

(FELASA), with all protocols approved by the Landesamt für Natur, Umwelt und 

Verbraucherschutz, Nordrhein-Westfalen, Germany (84–02.04.2015.A437). Female F1 

hybrid mice (C3B6F1) were generated in-house by crossing C3H/HeOuJ females with 

C57BL/6NCrl males (strain codes 626 and 027, respectively, Charles River Laboratories). 

Lifespans of chronic DR and AL C3B6F1 mice were previously published 61. Pups were 

weaned at 3–4 weeks of age and were randomly assigned to cages upon weaning. Animals 

were housed in groups of 5 females in individually ventilated cages under specific-pathogen-

free conditions with constant temperature (21.°C), 50–60% humidity and a 12 h/12 h light/

dark cycle. For environmental enrichment, mice had constant access to nesting material 

and chew sticks. All mice received commercially available rodent chow (ssniff R/M-Low 

phytoestrogen, ssniff Spezialdiäten, Germany) and were provided with filtered water ad 

libitum. aDR animals received 60% of the food amount consumed by AL animals. aDR 

treatment was initiated at 20 months of age by directly transferring mice from AL to 40% 

DR. aDR animals were fed once per day, and all animals were checked daily for their 

well-being and any deaths. Mice were euthanized at the ages of 24 months. All mice were 

euthanized in the morning within a period of 3 hours prior to the regular feeding time of the 

DR mice. Mice were euthanized by cervical dislocation, and tissues were rapidly collected 

and snap-frozen in liquid nitrogen. The cohort of mice treated with YMP or PBS were 

housed at the Palo Alto VA animal facility under a 12 h/12 h light/dark cycle at 68–73.°F 

under 40–60% humidity. All experiments were performed in accordance with institutional 

guidelines approved by the VA Palo Alto Committee on Animal Research. Euthanasia and 

organ collection was conducted in the same way as the aging cohorts.
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METHOD DETAILS

Processing and administration of plasma—Young Mouse Plasma (YMP) was 

collected following the protocol described by59,79. Briefly, C57Bl/6J male mice aged 2 

months were group-housed and anesthetized with 2.5% v/v Avertin. Approximately 700 μl 

of blood was drawn via cardiac puncture prior to transcardial perfusion. Blood was collected 

using 15 μl of 250 mM EDTA (Thermo Fisher Scientific, 15575020) and centrifuged at 

4°C for 15 minutes at 1,000g to obtain plasma. The plasma from 20–25 mice was pooled 

together and dialyzed in 1X PBS using cassettes (Slide-A-Lyzer Dialysis Cassettes, 3.5 kDa 

molecular weight cut-off, 3–12 ml) before being frozen at −80°C.

For plasma transfer experiments, male C57BL/6JN mice aged 18 months were injected 

retro-orbitally with 150 μl of YMP per injection. Prior to injection, mice were habituated by 

being placed on the procedure table in their cage. Injections were administered every 3–4 

days, alternating between the left and right eye to allow for recovery. Mice were rested for 

four days before tissue collection.

Brain region dissection—Dissociating the mouse brain at scale poses several 

challenges, as the tissue consists of a multitude of biologically distinct structures that 

require careful, time-consuming separation to avoid cross-region contamination - all while 

avoiding tissue degradation and loss of RNA quality. We systematically assessed several 

isolation, dissection, and freezing strategies, most of which yielded low-quality RNA 

or were not scalable to the intended set of samples and regions. We found success in 

perfusing the animal before isolating and freezing the whole brain in under 5 minutes, thus 

rapidly stabilizing the tissue and RNA. Region isolation via slicing and atlas-guided tissue 

punching was subsequently conducted at sub −0°C temperatures (Methods S1, section 1). In 

detail, brain regions were dissected from frozen mouse brains through a modification of a 

previously developed protocol 80. Frozen brains were sliced into 1mm thick coronal slices 

at −20°C using a metal brain matrix and .22mm razor blades (Ted Pella, 15045; VWR, 

55411–050) and were then placed on dry ice and covered to prevent condensation. One slice 

at a time was placed on a metal block cooled on wet ice and 1.5mm and 2mm diameter 

regions of interest were dissected quickly via disposable biopsy punches (Alimed, 98PUN6–

2, 98PUN6–3) from the left and right hemispheres guided by visual landmarks and the Allen 

Mouse Brain Atlas. The same biopsy punch was used for identical regions between left 

and right hemispheres, but replaced between regions and mice. 15 regions were collected: 

three cortical regions (motor cortex, visual cortex and entorhinal cortex), anterior (dorsal) 

and posterior (ventral) hippocampus, hypothalamus, thalamus, caudate putamen (part of the 

striatum), pons, medulla, cerebellum and the olfactory bulb, corpus callosum, choroid plexus 

and the subventricular zone. The following regions required overlapping punches and were 

thus sequentially collected: (1) motor cortex, (2) caudate putamen, (3) subventricular zone, 

(4) corpus callosum (Methods S1, section 1).

Regions were stored at −80°C until further processing.

Bulk-seq preparation and sequencing—We isolated RNA from the right hemisphere 

brain regions described above using the RNeasy 96 kit (Qiagen, 74181) and a TissueLyser 
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II (Qiagen, 85300), according to RNeasy 96 Handbook protocol “Purification of Total 

RNA from Animal Tissues using Spin Technology” without the optional on-plate DNase 

digestion. Quality control of RNA was conducted using a Bioanalyzer (Agilent) at the 

Stanford Protein and Nucleic Acid Facility for three randomly selected samples per brain 

region.

cDNA and library syntheses were performed in house using the Smart-seq2 protocol 

as previously described 8,79 with the following modifications: Extracted RNA (2 ul at 

a concentration of 25 ng/ul) was reverse-transcribed and the resulting cDNA amplified 

using 10 cycles. After bead clean-up using 0.7x ratio with AMPure beads (Thermo Fisher, 

A63881), cDNA concentration was measured using the Quant-iT dsDNA HS kit (Thermo 

Fisher, Q33120) and normalized to 0.4 ng/ul as input for library prep. 0.8 ul of each 

normalized sample was mixed with 2.4 ul of tagmentation mix containing Tn5 Tagmentation 

enzyme (20034198, Illumina) and then incubated at 55°C for 12 minutes. The reaction was 

stopped by burying the plate in ice for 2 minutes followed by quenching with 0.8 ul 0.1% 

sodium dodecyl sulfate (Teknova, S0180). 1.6 ul indexing primer (IDT) was added and 

amplified using 12 cycles. Libraries were pooled and purified using two purification rounds 

with a ratio of 0.8x and 0.7x AMPure beads. Library quantity and quality was assessed using 

a Bioanalyzer (Agilent) and Qubit dsDNA HS kit. Pipetting steps were performed using 

the liquid-handling robots Dragonfly or Mosquito HV (SPT Labtech) using 384 well-plates 

and PCR reactions were carried out on a 384-plate Thermal Cycler (BioRad). Illumina 

sequencing of the resulting libraries was performed by Novogene (https://en.novogene.com/) 

on an Illumina NovaSeq S4 (Illumina). Base calling, demultiplexing, and generation of 

FastQ files were conducted by Novogene.

10X Visium preparation and sequencing—Frozen brains (n = 2 males per age; 

aged 6, 18 and 21 months; C57BL/6J strain) were embedded in OCT for cryosectioning 

at 16 micron thickness (app. Bregma −1.655mm; Allen brain reference atlas coronal 

section 71). Reactions were carried out with the Visum Spatial Gene Expression (GEX) 

and Tissue Optimization (TO) Slide & Reagent Kits according to the manufacturer’s 

protocol with recommended reagents (10X Genomics, 1000193 and 1000184). Sections 

were placed on designated capture areas of slides for TO and GEX and stored at −80°C 

until further processing. TO and GEX slides were fixed with methanol and stained with 

hematoxylin and eosin (H&E) for visualization of tissue morphology on a AxioImager 

Widefield Fluorescence Microscope (Zeiss) at 10-fold magnification. To determine the 

optimal permeabilization time, TO slides were incubated with permeabilization enzyme for 

various timeframes followed by incubation with reverse transcriptase (RT) and fluorescently 

labeled nucleotides (FLNs) and enzymatic tissue removal. After visualizing cDNA signal via 

fluorescence microscopy, we selected 20 minutes as the optimal permeabilization time. GEX 

slides were incubated with permeabilization enzyme for 20 minutes followed by incubation 

with RT. cDNA was then transferred into tubes and amplified for 15 cycles using a Thermal 

Cycler (BioRad). Library construction steps were performed according to the manufacturer’s 

protocol and included cDNA fragmentation, end repair and A-tailing, adaptor ligation, and 

sample indexing and amplification. Quality control of the constructed library was conducted 

via Bioanalyzer (Agilent). Illumina sequencing of the resulting libraries was performed by 
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Novogene (https://en.novogene.com/) on an Illumina NovaSeq S4 (Illumina). Base calling, 

demultiplexing, and generation of FastQ files were conducted by Novogene.

Nuc-seq preparation and sequencing—Single-nuclei preparation (n = 2 males and 

females per age and region; aged 3 and 21 months; all C57BL/6JN strain) and sequencing 

was performed as previously described29 with the following modifications: Nuclei from left 

hemisphere brain region punches were isolated with EZ Prep lysis buffer (Sigma, NUC-101) 

on ice. Single-nuclei isolation from the whole hippocampus of C3B6F1 mice (aDR) was 

performed similarly with the exception that tissues were not pooled. Samples were placed 

into 2 ml cold EZ lysis buffer in a 2 ml glass dounce tissue grinder (Sigma, D8938) and 

homogenized by hand 25 times with pestle A followed by 25 times with pestle B while 

incorporating a 180-degree twist. Tissue homogenate was transferred to a fresh 15 ml tube 

on ice. The tissue grinder was rinsed with 2 ml fresh lysis buffer and transferred to the 

tube holding the homogenate for a total volume of 4 ml. Samples were incubated on ice for 

5 minutes. Nuclei were centrifuged at 500 × g for 5 minutes at 4°C, supernatant removed 

and pellet resuspended with 4 ml EZ lysis buffer, and incubated on ice for 5 minutes. 

Centrifugation at 500 × g for 5 minutes at 4°C was repeated. After removing supernatant, 

the pellet was resuspended with 4 ml chilled PBS and filtered through a 35-um cell strainer 

into a 5 ml round bottom FACS tube (Corning, 352235). Following centrifugation at 300 × 

g for 10 minutes at 4°C with break 3, supernatant was gently poured out leaving behind the 

nuclei pellet. Pellet was resuspended in 400 ul PBS containing 1% BSA (Thermo Fisher, 

BP9700100), 0.2 ul Hoechst dye (Thermo Fisher, H3570), and 2 ul recombinant RNase 

inhibitor (Takara, 2313B). Isolated nuclei were sorted on a MA900 Multi-Application Cell 

Sorter (Sony Biotechnology). 25,000 single nuclei per sample were collected into 1.5 ml 

DNA lo-bind tubes (Eppendorf, 022431021) containing 1 ml buffer mix with PBS, UltraPure 

BSA (Thermo Fisher, AM2618), and RNase inhibitor (Takara, 2313B). One male and one 

female sample from the same time point and region were pooled at this stage by FACS 

collecting into the same sample tube (thus yielding 50,000 nuclei per tube). Collected 

nuclei were centrifuged at 400 × g for 5 minutes at 4°C with break 2. Supernatant was 

removed leaving 40 ul suspended nuclei. Nuclei were counted using a hemocytometer 

(Sigma, Z359629–1EA) and assessed for concentration and quality.

Reagents of the Chromium Single Cell 3’ GEM & Gel Bead Kit v3.1 (10X Genomics, 

1000121) were thawed and prepared according to the manufacturer’s protocol. Nuclei 

and master mix solution was adjusted to target 10,000 nuclei per sample and loaded on 

a standard Chromium Controller (10X Genomics, 1000204) according to manufacturer 

protocols. We applied 11 PCR cycles to generate cDNA. Library construction was conducted 

using Chromium Single Cell 3’ Library Construction Kit v3 (10X Genomics, 1000121). 

All reaction and quality control steps were carried out according to the manufacturer’s 

protocol and with recommended reagents, consumables, and instruments. We chose 11 PCR 

cycles for library generation. Quality control of cDNA and libraries was conducted using a 

Bioanalyzer (Agilent) at the Stanford Protein and Nucleic Acid Facility. Illumina sequencing 

of the resulting libraries was performed by Novogene (https://en.novogene.com/) on an 

Illumina NovaSeq S4 (Illumina). Base calling, demultiplexing, and generation of FastQ files 

were conducted by Novogene.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Bulk-seq quantification, quality control—Raw sequence reads were trimmed to 

remove adaptor contamination and poor-quality reads using Trim Galore! (v.0.4.4, 

parameters: --paired --length 20 --phred33 --q 30). Trimmed sequences were aligned using 

STAR (v.2.5.3, default parameters). Multi-mapped reads were filtered. Read quality control 

and counting were performed using SeqMonk v.1.48.0 and RStudio v.3.6. Data visualization 

and analysis were performed using custom Rstudio scripts and the following Bioconductor 

packages: Deseq2 33, topGO, destiny and org.Mm.eg.db. Finally, we excluded pseudogenes 

and predicted genes from the count matrix to focus predominantly on well-annotated, 

protein-coding genes. In total, all of the following analyses were performed on the same 

set of 21,076 genes.

To assess the quality of our dataset, the count matrix was analyzed using Seurat’s built-in, 

default dimensionality reduction workflow 81 (Normalization: ‘LogNormalize’; Variable 

feature discovery: selection.method=‘vst’, features=2000). Umaps were calculated using 

Seurat’s built-in functions, based on the first 40 principle components (PC) dimensions 

(Figure 1C; Methods S1, section 2). A shared-nearest-neighbors graph was constructed 

using the first 40 PC dimensions before clustering samples using Seurat’s built-in 

FindClusters function with a resolution of 0.8 to identify samples that would not cluster 

with their region of origin.

We corroborated the Seurat-based quality assessment by loading and normalizing the count 

matrix using DEseq2 before conducting the built-in variance stabilizing transformation 
33. We then performed hierarchical sample-to-sample clustering using Ward’s clustering 

algorithm across all 21,076 genes (Methods S1, section 2). To detect whether samples within 

a given tissue would show profound clustering by age, we finally calculated diffusion maps 

using the R package destiny with default parameters (Figure 1D).

For bar graph visualization of gene expression (e.g. Figure 1E), we used DEseq2-normalized 

counts after calculating factors and dispersion estimates across all regions using the factor 

design ~age + region. Trajectories were smoothed via triangular moving average across the 

interval between 3 and 28 months. This quantification and smoothing was solely used for 

visualization and was not the basis for any statistical testing in this study.

Bulk-seq differential expression—To identify significant differential expression 

changes with age, we used the raw count matrix as recommended for the DEseq2 

standard analysis pipeline. Factors and dispersion estimates were calculated for each region 

separately. We conducted differential expression analysis comparing samples from 3 months 

to each consecutive time point, using sex as covariate. This is consistent with previously 

published differential expression analyses performed across whole organs in mice8. P values 

were adjusted for multiple testing, and genes with an adjusted P value of less than 0.05 

were determined to be statistically significant. Finally, we required a gene to reach statistical 

significance (after multiple testing correction) in at least 2 pairwise comparisons (e.g. 3 

months vs 18 months and 3 months vs 21 months) to be called a differentially expressed 

gene (DEG). We chose this criterion to retain only genes with robust differential expression 
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patterns across age groups. We recognize that this tends to select against genes that are 

differentially expressed very late in life (i.e. 3 months vs 28 months).

To demonstrate the validity of using sex as a model covariate in the differential gene 

expression analysis, we performed gene-wise likelihood-ratio tests (LRT analysis, as 

implemented in DESeq2 7). This assesses the goodness of fit between a ‘complete’ model 

formula ( expr. ~ age + sex + age:sex interaction) and the model formula implemented in 

our study (expr. ~ age + sex). This analysis was run across ages 3 to 21 months, due to the 

lack of female samples for ages 26 and 28 months. If aging trajectories would be reasonably 

similar between sexes, then the LRT would indicate a significantly better goodness of fit for 

the complete model in only very few genes, if any (i.e. the interaction term improves the 

fit). In addition, we repeated the differential expression analysis for the age groups 3 to 21 

months, for which we had data from both sexes. In addition, we repeated the differential 

expression analysis across age groups only in female or male samples, respectively. For the 

males, we further excluded samples of age groups older than 21 months. To demonstrate 

that expression shifts in both sexes were overall strongly associated, we extracted for each 

age comparison relative to 3 months (i.e. 12 vs 3 months, 15 vs 3 months, etc.) the genes 

passing the significance threshold of padj < 0.05 in at least one of the sexes. We plotted the 

respective log2FoldChanges for each sex and counted the number of genes in each of the 

resulting four quadrants. This was used as a 2-by-2 Fisher Matrix and tested for significant 

association using one-sided Fisher’s exact test. We exemplified this with the motor cortex 

and the comparison of 18 vs 3 months (Figure S1D). The resulting p-values (adjusted for 

multiple testing) were visualized on top of a heat map that is colored according to the 

fraction of genes following the same trend in regulation (upper right and lower left quadrant) 

relative to all the plotted genes (all four quadrants combined). We found consistently high, 

statistically significant overlaps in regulation during aging between both sexes (Figure S1E).

Differential expression for the rejuvenation interventions was performed as described for the 

aging cohorts, except that no additional filter of 2 pairwise comparisons was employed.

DEG Gene Ontology functional enrichment—Unless stated otherwise, we performed 

functional enrichment analysis for DEGs using the Biocunductor package topGO as 

described in detail before 8,57. Unless stated otherwise, the set of expressed genes (defined 

as passing the independent filtering criterion of DEseq2 33) was used as background for 

all functional enrichment analyses involving expression data. Top-ranked, representative 

Gene Ontology (GO) terms were selected and visualized using the CellPlot package. The 

full-length GO terms were shortened to fit into the figure format.

Bulk-seq GWAS gene enrichment and expression distribution analysis—We 

analyzed if DEGs of a given region would be enriched for disease-associated genes using 

a previously assembled list of GWAS hits for several neurodegenerative diseases 63. The 

analysis was focused on Alzheimer’s disease and Parkinson’s disease (both age-related 

forms of dementia) and multiple sclerosis as we had observed several white matter-related 

effects in our dataset. We refer to these as ‘disease-associated genes’. Disease-associated 

genes that were expressed in a given region (defined as passing the independent filtering 

criterion of DESeq2 33) were analyzed. To determine if disease-associated genes were 
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enriched among the DEGs of a given region, we used a one-sided hypergeometric test with 

expressed genes as background. Resulting P values were corrected for multiple testing. We 

chose the anterior hippocampus region as representative for the hippocampus, and further 

excluded the entorhinal cortex (too few DEGs) and olfactory bulb. For each disease, we 

plotted the enrichment and the relative composition of disease-associated DEGs with respect 

to their regulation (i.e., up- or down-regulated) using the CellPlot package. We clustered 

regions for using a pairwise Jacquard Distance matrix, so that regions with overlapping 

diseases-associated DEGs will cluster together. Gene overlaps with a Jaccard index ≥ 0.25 

were indicated with an arc.

Additionally, we performed a systematic analysis of expression shifts that could affect a 

given GWAS homologue’s distribution across the brain. To this end, we focused on sets 

of GWAS-DEGs in each region and ranked their mean expression at young (3 months) 

and very old (26 months) age, respectively. For instance, Irf8, one of the GWAS-DEGs 

associated with MS, became differentially regulated in multiple regions, including the 

corpus callosum (Figure S7B). However, the actual rank of the top Irf8-expressing regions 

(caudate putamen, SVZ and corpus callosum) stayed relatively constant. In contrast, the 

expression of Nlrc5, a gene from the same set, was only the 8th-highest in the corpus 

callosum at young age, but became the highest across all tissues with age (Figure S7B). 

Here, the differential regulation with age led to a significant redistribution of where the 

gene is predominantly expressed. Expanding the analysis to all GWAS-DEGs in a given 

tissue/disease set with least 15 genes to focus on (to ensure statistical power), we tested if 

there would be a systematic shift in rank-based expression using paired two-sided Wilcoxon 

rank-sum tests.

Bulk-seq correlation of gene expression with age—For each region separately, 

we probed the expression of each gene (using DEseq2-normalized counts) for positive 

or negative correlation with age using Spearman’s method and tested for significant 

association. P values were adjusted for multiple testing using the Benjamini-Hochberg 

method. Genes with Spearman’s rho ≥ 0.5 or ≤ −0.5, respectively, and padj ≤ 0.05 were 

called as significantly age-correlated in a given region. The total number of age-correlated 

genes was used to evaluate the impact of aging on a given region.

The sex-specific age-correlations in the hypothalamus were performed similarly, by 

subsetting the dataset to the ages 3 to 21 months (for which data of both sexes was 

available). Correlation with age was then calculated for each gene based on the male or 

female samples only. Criterion for age-correlated genes remained the same.

Weighted gene co-expression network analysis (WGCNA)—Network analysis 

was performed with the Weighted Gene Correlation Network Analysis (WGCNA) 82 

package to identify significant modules that were associated with a specific aging 

group and brain region. Modules were independently detected in each brain region. 

For each brain region the soft-thresholding (ß value) was set based on scale-free 

topology (R2>0.8) to construct a correlation adjacency matrix. ß values 18, 10, 

9, 8, 12, 4, 4, 5, 7, 9, 24, 14, 4 and 13 were used for the corpus callosum, 

cerebellum, motor cortex, entorhinal cortex, anterior hippocampus, posterior hippocampus, 
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hypothalamus, medulla, olfactory bulb, choroid plexus, pons, SVZ, thalamus and visual 

cortex respectively. The ‘blockwiseModules’ function was used to construct the network. 

Biweight midcorrelation (‘bicor’) was used to compute the correlation between each pair 

of genes. Network analysis was performed with the “signed” network. The “deepSplit” 

argument value was 2 and a minimum cluster size was 25. (blockwiseModules parameters: 

datExpr=(datExpr), maxBlockSize=22000, networkType=“signed”, corType=“bicor”, 

power=ß, saveTOMFileBase=(file=‘TOM_signed’), minModuleSize=25, deepSplit=2, 

saveTOMs=TRUE). The average linkage hierarchical clustering of the topological overlap 

dissimilarity matrix (1-TOM) was used to generate the network dendrogram. The hybrid 

dynamic tree-cutting method was used to define modules. Modules were summarized 

by their first principal component (ME, module eigengene) and modules with eigengene 

correlations >0.9 were merged.

Module-aging group associations were evaluated using a linear model within each brain 

region. Significance values were corrected for multiple testing using Benjamini-Hochberg 

method. Results from module-eigengene association tests are shown in Table S1. Genes 

within each module were prioritized based on their module membership (kME), defined 

as correlation to the module eigengene. The top ‘hub’ genes for several of the modules 

are shown in supplementary Table S1. Cell type enrichment analyses were performed 

using several mouse derived cell type specific expression datasets 83–85. Enrichment was 

performed for cell type specific marker genes using Fisher’s exact test, followed by 

Benjamini-Hochberg-correction for multiple testing. The WGCNA results were assembled 

in summarizing figures that can be browsed through our interactive shiny app website 

(https://twc-stanford.shinyapps.io/spatiotemporal_brain_map/).

Estimating the variance of the data depending on metadata—To estimate the 

variance in the data depending on age, tissue or gender we made use of principal variance 

component analysis (PVCA) as implemented in the Bioconductor Package pvca and 

described in detail in 8. PVCA combines the strength of principal component analysis and 

variance components analysis (VCA). Originally it was applied to quantify batch effects in 

microarray data. In our case, however, we do not provide experimental batches but rather 

groups of meta data as input

Gene signature generation and score calculation—Gene signatures are used in this 

study to quantify the expression of a gene set, thus representing the aggregated expression of 

multiple genes in a given transcriptome (e.g. a regional bulk-seq transcriptome or a single-

nuclei transcriptome). The resulting value is defined as a score. Throughout the manuscript 

we generated signatures and quantified scores using the VISION (v.3.0) package as detailed 

in the original study 25. Notably, VISION z-normalizes signature scores with random gene 

signatures to account for global sample-level metrics (such as total number of counts/UMIs, 

which can be affected by age 86). While VISION was originally intended for the analysis 

of signatures in single-cell data we found its analysis workflow applicable for bulk, spatial 

and single-cell/-nuclei datasets. We note that due to differences in baseline expression across 

regions or cell types as well as the z-normalization mentioned above, VISION scores can be 

negative. However, our analyses are focused - unless stated otherwise - on the relative score 
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changes (i.e. increase or decrease relative to 3 months) occurring with age in a given region 

or cell type.

Bulk-seq marker genes and score calculation—Seurat’s FindAllMarkers function 

was run using the ‘DESeq2’ test with parameters and Bonferroni correction for multiple 

testing to identify region-specific marker genes (P value of less than 0.05; Methods S1, 

section 3). For each region, we constructed unsigned signatures 25 based on a given 

region’s significant marker genes. For each signature, we calculated scores across a publicly 

available spatial transcriptome dataset from 10X Genomics (https://www.10xgenomics.com/

resources) and compared the patterns to structural annotations in Allen Mouse Brain Atlas.

Bulk-seq Common Aging Score (CAS) calculation and CAS velocity 
comparison—We ranked genes on the basis of their regulation across regions, to 

summarize in how many regions a given gene would be called as a DEG (i.e. reach 

statistical significance in at least two comparisons between samples from 3 months and 

any following age group). We included only the anterior hippocampus region in the selection 

of cross-region DEGs to prevent a potential bias towards aging effects in the hippocampus. 

This led to the identification of 82 genes that were marked as DEG in at least 10 out of 

14 regions (15 regions minus the posterior hippocampus region). We constructed a signed 

gene signature25 based on 75 up- and 7 down-regulated DEGs. We used the signature to 

calculate CAS for each single-region transcriptome. To quantify a region’s score increase 

over time (aging velocity), we constructed a linear model with the design: score ~ age + 

region + age:region (score explained by a two factor model including interaction term) using 

the linear model function in R. We used the lstrends function of the lsmeans package87 that 

utilizes least-square means to estimate and compare the slopes of fitted lines for each region. 

We subsequently used Tukey’s range test across all possible region-to-region comparisons 

to assess which regions exhibited statistically significant (P value < 0.05) slope differences. 

In addition, we repeated the analysis resolved for sex-specific effects across the 3, 12, 15, 

18 and 21 months groups (for which we had both male and female samples). We assessed if 

there was a differential aging velocity between sexes across all regions (Figure 2I), for which 

analyzed a linear model with the design: score ~ age + sex + age:sex + region. We further 

performed the same analysis iteratively for each region individually (Figure S1D) using a 

model with the design: score ~ age + sex + age:sex. We corrected the resulting P values for 

each region-wise analysis using the Benjamini-Hochberg method.

Comparing CAS velocity with STARmap single-cell composition—We obtained 

meta data from Shi et al. 41 via the Single Cell Portal where the authors had quantified 

spatial distribution of major cell types across the entire mouse brain using their previously 

published, imaging-based STARmap method88. This atlas contains data on 422,766 single 

cells of 27 major cell types quantified across 73 brain structures and several sagittal 

sections. We aggregated the 73 reported brain structures into 10 regions that we considered 

meaningful equivalents of regions profiled in our Bulk-seq study (e.g. data from CA1, 

CA2, CA3, dentate gyrus etc. were grouped together into a ‘hippocampus’ region). We 

calculated for each of the 10 regions the relative abundance of each of the 27 cell types and 

then correlated these with the regions’ respective CAS slopes. If, for example, the relative 

Hahn et al. Page 22

Cell. Author manuscript; available in PMC 2024 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.10xgenomics.com/resources
https://www.10xgenomics.com/resources


abundance of microglia across brain regions at young age was responsible for the observed 

differences in CAS slopes, then we would assume a significant correlation between those 

two metrics across the analyzed brain regions. We did not find any significant relationship 

(as tested with spearman correlation and linear regression) between relative cell abundance 

and CAS increase over time for any of the investigated cell types (Figure 2J, Methods S2, 

section 1).

Microarray analysis of microglia—We obtained annotated and pre-processed 

microarray data from 52 (GSE62420) using limma89, GEOquery90 and GEO’s online 

GEO2R tool (https://www.ncbi.nlm.nih.gov/geo/info/geo2r.html). Pairwise-differential 

testing between age groups of the same region was performed using empirical bayes 

moderation as implemented in limma with multiple testing correction.

Organ-specific aging signature identification and velocity comparison—To 

explore the feasibility of detecting gene expression patterns with organ-specific regulation 

during aging, we re-analyzed a previously published bulk RNA-seq dataset of 17 mouse 

tissues profiled across ten age groups (n = 4 males; aged 1, 3, 6, 9, 12, 15, 18, 21, 

24 and 27 months; n = 2 females; aged 1, 3, 6, 9, 12, 15, 18 and 21 months)8. The 

dataset comprised the following organs: bone, brain, brown adipose tissue (BAT), gonadal 

adipose tissue (GAT), heart, kidney, limb muscle (muscle), liver, lung, bone marrow 

(marrow), mesenteric adipose tissue (MAT), pancreas, skin, small intestine (intestine), 

spleen, subcutaneous adipose tissue (SCAT), and white blood cells (WBC). We obtained 

pre-processed data as described in the original study and performed differential expression 

analysis accordingly8. We identified age-related DEGs in the same manner as described for 

the bulk-seq data: we used the raw count matrix as recommended for the DEseq2 standard 

analysis pipeline. Factors and dispersion estimates were calculated for each tissue separately. 

We conducted differential expression analysis comparing samples from 3-months-old mice 

to each consecutive time point, using age and sex as covariates. P values were adjusted 

for multiple testing, and genes with an adjusted P value of less than 0.05 were determined 

to be statistically significant. Finally, we required a gene to reach statistical significance 

(after multiple testing correction) in at least 2 pairwise comparisons (e.g. 3-months-old vs 

12 months-old and 3-months-old vs 21 months-old) to be called a differentially expressed 

gene (DEG). We analyzed age groups that would be comparable to the age groups profiled 

in our study (3, 12, 15, 18, 21, 24 and 27 months). We ranked genes on the basis of their 

regulation across organs, to summarize in how many organs a given gene would be called 

as a DEG (i.e. reach statistical significance in at least two comparisons between samples 

from 3-months-old mice and any following age group). DEGs that were only detected in 

a single organ were assembled into signed, organ-specific aging signatures using VISION 
25, comparable to the CAS (Methods S3, section 1). For organs that exhibited fewer than 

25 unique DEGs we did not construct a signature. For each organ-specific signature, we 

performed the following analysis: We first tested for each organ separately, if the respective 

signature would show a significant correlation with age using linear models with the design: 

score ~ age. Organs that showed no significant (P val < 0.05, t-test) association with the age 

were excluded. Next, we constructed a linear model with the design: score ~ age + organ 

+ age:organ (organ-specific score explained by a two factor model including interaction 
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term) using the linear model function in R. We used the lstrends function of the lsmeans 

package87 that utilizes least-square means to estimate and compare the slopes of fitted lines 

for each organ. We subsequently used Tukey’s range test across all possible organ-to-organ 

comparisons to assess which organs exhibited statistically significant (P value < 0.05) 

slope differences. Notably, we asked if the organ where the signature was identified (the 

‘reference’ organ) would show a significantly higher slope compared to all other organs. The 

summarized results are displayed in the heatmap in Methods S3, section 1.

Bulk-seq region-specific aging signature identification and velocity 
comparison—We ranked genes on the basis of their regulation across regions, to 

summarize in how many regions a given gene would be called as a DEG (i.e. reach statistical 

significance in at least two comparisons between samples from 3-months-old mice and any 

following age group). DEGs that were only detected in a single region were assembled 

into signed, region-specific aging signatures using VISION 25, comparable to the CAS 

(Methods S3, section 2). We excluded the posterior hippocampus region in the selection of 

region-specific DEGs. Further, there were less than 20 unique DEGs found for the entorhinal 

cortex, which we considered too small to construct a signature. For each region-specific 

signature, we performed the following analysis: We first tested for each region separately, if 

the respective signature would show a significant correlation with age using linear models 

with the design: score ~ age. Regions that showed no significant (P val < 0.05, t-test) 

association with age were excluded. Next, we constructed a linear model with the design: 

score ~ age + region + age:region (region-specific score explained by a two factor model 

including interaction term) using the linear model function in R. We used the lstrends 

function of the lsmeans package87 that utilizes least-square means to estimate and compare 

the slopes of fitted lines for each region. We subsequently used Tukey’s range test across 

all possible region-to-region comparisons to assess which regions exhibited statistically 

significant (P value < 0.05) slope differences. Notably, we asked if the region where the 

signature was identified (the ‘reference region’) would show a significantly higher slope 

compared to all other regions. The summarized results are displayed in the heatmap in 

(Methods S3, section 2).

10X Visium mapping, embedding, clustering and region identification—Space 

Ranger analysis pipelines were utilized to align image and FASTQ files, detect tissue and 

fiducial frames, count barcodes/UMIs. Throughout the manuscript we refer to the barcoded 

areas from a given dataset as ‘spots’. Spots with less than 5 UMIs were removed as well 

as all spots at the outline of the tissue as these can be affected by RNA diffusion. We 

integrated all six sample-wise datasets (two from 6 months, two from 18 months and two 

from 21 months), using Seurat’s built-in SCTransform and integration workflow81, with 

2000 genes set as integration features. Integrated datasets were then used as input for spot 

embedding and clustering. A shared-nearest-neighbors graph was constructed using the first 

30 PC dimensions before clustering spots using Seurat’s built-in FindClusters function with 

a resolution of 0.8 and default parameters. Umaps and tSNEs were calculated using Seurat’s 

built-in functions, based on the first 30 PC dimensions. Count data was subsequently 

normalized and scaled using SCTransform across all spots to allow for visualization of 

expression values and differential gene expression analysis.
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We chose a data-driven approach to group spots and map them to anatomical structures 

of the brain (Figure S4A): Transcriptional clustering yielded 29 clusters and we used 

Seurat’s FindAllMarkers function (parameters: min.pct=0.1, thresh.use=0.1 assay=‘SCT’, 

only.pos=TRUE) to identify cluster markers. We compared the expression of marker 

genes to in-situ hybridization (ISH) data from the Allen Mouse Brain Atlas26 and visual 

landmarks from the H&E microscopy images (e.g. cornu Ammonis and dentate gyrus of the 

hippocampus; cell-sparse structure of the white matter fiber tracts). To enable comparisons 

with the regions isolated for Bulk-seq, we additionally grouped annotated clusters into 

meaningful region-level sets, guided by their anatomical location and the hierarchical 

ordering of structures in the Allen Mouse Brain Atlas. Ontology and nomenclature of 

clusters is indicated in Figure S4B.

10X Visium differential expression analysis and comparison with Bulk-seq 
data—Given comparable representation of clusters across all samples and age groups, 

we considered differential expression analysis across age groups feasible. We analyzed 

differential expression in the white matter and cortex cluster as we considered them 

comparable to the corpus callosum (high CAS velocity) and motor cortex (low CAS 

velocity) region from the bulk-seq dataset. Differential gene expression of genes comparing 

10X Visium data from 6 months to 21 months was done using the ‘DESeq2’ algorithm 

implemented in Seurat on Spatial count data. Seurat natural log(fold change).>.0.2 (absolute 

value), adjusted P value (Benjamini-Hochberg correction).<.0.05, and expression in greater 

than 10% of spots in both comparison groups were required to consider a gene differentially 

expressed. To test for a potential association between gene-expression changes measured in 

10X Visium and bulk-seq data, we considered only genes that changed significantly in both 

datasets. For both regions, we confirmed significant overlap between the DEGs found in 

Bulk-seq and 10X Visium dataset (Fisher’s exact test, P Value < 0.05). Next, we plotted log2 

fold expression changes during aging as measured via Visium versus log2 fold expression 

changes on the bulk-seq level. The distribution of genes among the four resulting quadrants 

was tested for directionality using Fisher’s exact test.

Visium CAS calculation—Calculation of CAS and CAS velocities for Visium data 

was carried out in a similar manner as described above for bulk-seq data: CAS for 

each Visium spot were calculated and score increase over time was calculated for region 

clusters with equivalent Bulk-seq regions: White matter (compared to corpus callosum), 

cortex (compared to motor cortex), striatum (compared to caudate putamen), hippocampus, 

hypothalamus, choroid plexus and thalamus. To quantify a region’s score increase over time 

(aging velocity), we constructed a linear model with the design: score ~ age + region + 

age:region and carried out slope estimation and differential analysis as described above. We 

acknowledge that this analysis does not account for biological replicates but treats each spot 

belonging to the same region as replicate. We therefore visualized CAS in Visium for each 

replicate, to demonstrate that age-related changes in CAS supersede the intra-replicate CAS 

differences.

Nuc-seq mapping, embedding, clustering, sample demultiplexing and cell 
type identification—Cell Ranger (v.6.1.2) analysis pipelines were utilized to align reads 
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to mm10 reference genome and count barcodes/UMIs. To account for unspliced nuclear 

transcripts, reads mapping to pre-mRNA were counted. Throughout the manuscript we use 

nuclei and ‘cells’ synonymously. Outliers with a high ratio of mitochondrial (more than 5%, 

fewer than 400 features) relative to endogenous RNAs and homotypic doublets (more than 

6,000 features in hippocampus; more than 7,000 features in caudate putamen) were removed 

in Seurat81. We integrated all sample-wise datasets, using Seurat’s built-in SCTransform and 

integration workflow81, with 500 genes set as integration features. Integrated datasets were 

then used as input for cell embedding and clustering. A shared-nearest-neighbors graph was 

constructed using the first 12 PC dimensions before clustering spots using Seurat’s built-in 

FindClusters function with a resolution of 0.4 and default parameters. Umaps and tSNEs 

were calculated using Seurat’s built-in functions, based on the first 12 PC dimensions. 

A given nuc-seq sample represented nuclei from a male and female animal (of the same 

age) that were pooled in equal numbers during the nuclei isolation steps. To demultiplex 

a sample by sex, we calculated the ratio of counts belonging to female- (Xist, Tsix) and 

male-specific (Ddx3y, Eif2s3y, Uty, Kdm5d) genes, and identified nuclei with a log2 cutoff 

of 1 and −1 as female- and male-derived nuclei, respectively. Ambiguous nuclei, which 

had reads from both female and male nuclei, were removed from the analysis. Count data 

was subsequently normalized and scaled to allow for visualization of expression values 

and differential gene expression analysis. Seurat’s FindAllMarkers function (parameters: 

min.pct=0.15, thresh.use=0.15 assay=‘SCT’) was run to identify cluster markers. Clusters 

were annotated based on marker genes. Finally, nuclei were manually inspected using 

known cell type-specific marker genes and nuclei expressing more than one cell type-

specific marker were defined as doublets and removed91.

Publicly available scRNA-seq data embedding—We re-analyzed two previously 

published single-cell RNA-seq datasets: (1) Droplet-based scRNA-seq of freshly dissected 

SVZ at young and old age (n = 3 males per age; aged 3 and 28 months; all C57BL/6JN 

strain)27; (2) Smart-seq2-based 49 scRNA-seq of freshly isolated cells from the myeloid 

and non-myeloid fraction of the striatum, cerebellum, hippocampus and cortex at young 

and old age (n = 4 males per age; aged 3 and 24 months; all C57BL/6JN strain) 19. For 

the SVZ data, we obtained and analyzed pre-processed count matrices. For visualization 

purposes, we integrated all sample-wise datasets, using Seurat’s built-in SCTransform and 

integration workflow81, with 2000 genes set as integration features. Integrated datasets were 

then used as input for cell embedding. Umaps and tSNEs were calculated using Seurat’s 

built-in functions, based on the first 12 PC dimensions. Cell annotations were transferred 

from the original study. Count data was subsequently normalized and scaled to allow 

for visualization of expression values. For the second dataset, we obtained and analyzed 

pre-processed count matrices. We followed previous analyses on the same dataset73. For 

visualization purposes, we integrated all sample-wise datasets, using Seurat’s built-in 

SCTransform workflow81. Integrated datasets were then used as input for cell embedding. 

Umaps and tSNEs were calculated using Seurat’s built-in functions, based on the first 12 

PC dimensions. Cell annotations were transferred from the original study. Count data was 

subsequently normalized and scaled to allow for visualization of expression values.
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Differential expression in scRNA- and Nuc-seq data—Differential gene expression 

of genes comparing young and old samples was done using the MAST92 algorithm, 

which implements a two-part hurdle model. Random effects accounting for individual 

brain samples were not included in the mixed model. Seurat natural log(fold change).>.0.2 

(absolute value), adjusted P value (Benjamini-Hochberg correction).<.0.05, and expression 

in greater than 10% of cells in both comparison young and old samples. We acknowledge 

that due to the omission of a dedicated replication-sensitive analysis, an impact of pseudo-

replication effects on differential expression results cannot be excluded.

Signature calculations in scRNA- and Nuc-seq data—Calculation of CAS and CAS 

velocities for scRNA- and Nuc-seq data was carried out in a similar manner as described 

above for 10X Visium data: CAS for each cell were calculated and CAS increase over 

time was calculated for cell types. To quantify a cell type’s score increase over time (aging 

velocity), we constructed a linear model with the design: score ~ age + cell type + age:cell 

type and carried out slope estimation and differential analysis as described above. We 

acknowledge that this analysis does not account for biological replicates but treats each cell 

belonging to the same cell type as replicate. To account for this, we further calculated the 

cell type-median CAS for each biological replicate and tested for differential CAS regulation 

with two-tailed t-test on per-replicate median of CAS. For the comparison of CAS increase 

with age across microglia from different brain regions (Figure 4A–C), we used two-sided 

Wilcoxon rank-sum tests to test for CAS differences between microglia from the same age 

group.

For region-specific signatures, we performed a per-cell type slope quantifications as detailed 

for the CAS and clustered the resulting slope estimates using hierarchical clustering (Figure 

5H,K).

Single-nuclei dispersion score—We employed a previously published strategy to 

quantify if a given DEG detected in bulk data would be expressed in a specific cell 

type8. For each gene in each brain region, we selected cells expressing the gene (log-CPM 

expression > 0). Next, we assigned to the cells the log-CPM expression values of the gene 

as weights. Based on these, we calculated the weighted center of the cells in the single-cell 

landscape defined by the UMAP embeddings. We defined the ‘single-cell dispersion’ of the 

gene as the weighted mean distance of the cells from their weighted center. Finally, we 

introduced region specific factors to account for differences between brain region specific 

embeddings. Per region, we set pseudo log-CPM count 1 to all cells and calculated the 

dispersion of them. We normalized the dispersion scores by these region-specific factors.

ADDITIONAL RESOURCES—We created an web application app to provide interactive 

access to the processed bulk-seq and Visium data. The app can be accessed via: https://

twc-stanford.shinyapps.io/spatiotemporal_brain_map/.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights for CELL-D-22–02981 “Atlas of the aging mouse brain reveals 
white matter as vulnerable foci“

• Brain-wide gene signature of aging in glial cells, with spatially defined 

changes

• Glial cell aging is accelerated in white matter

• Rejuvenation interventions have region-specific effects on gene expression

• Genes implicated in neurodegenerative diseases show regional aging patterns
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Figure 1. Brain regions exhibit distinct transcriptional patterns of aging.
(A) Cohort overview. Whole brains were collected from male (n = 3–5, 3–28 months) 

and female (n = 5, 3–21 months) C57BL/6JN mice. (B) Study outline. 15 brain regions 

were isolated and analyzed using Bulk-seq. (C) UMAP representation of brain region 

transcriptomes. (D) Diffusion maps of region transcriptomes from selected areas. (E) C4b 
expression in selected regions. Black lines indicate smoothed gene expression. Differential 

expression compared to 3 months group is indicated. Mean ± s.e.m. Two-sided Wald test. 

(F) Smoothed line plot displaying DEGs for pairwise comparisons. Positive (negative) 
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values represent up-regulated (down-regulated) genes. DEGs that reached significance in 

≥ 2 pairwise comparisons were included. (G) Heat map of data in (F). (H) Number of 

age-correlated genes, colored by regulation. (I) Networks of the most connected genes 

(‘eigengenes’) in selected regions. (J) Chord diagram of genes shared in age-associated 

modules across regions. Modules and associated genes are listed in Table S1.
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Figure 2. Common gene signature identifies regions with accelerated aging.
(A) Bar graph indicating the number of regions in which a DEG was detected (Table S1). 

(B) Region-wise expression changes for genes with shifts in 10 of 15 collected regions.

(C) Representative GO analysis of 82 genes forming the CAS. Lengths of bars represent 

negative ln-transformed Padj using Fisher’s exact test. Colors indicate gene-wise log2 fold-

changes in the corpus callosum. Table S1 contains full results list. (D) CAS trajectories 

selected regions. Insert indicates trajectories for male and females in the hypothalamus. (E) 

CAS trajectories of all regions approximated via LOESS and linear regression (F) Offset 

and slope comparison for linear models. (G) Slope of linear regressions in (D), colored 

by slope. Mean ± 95% confidence intervals. Two-sided Tukey’s HSD test. Bolded regions 

are highlighted in the following panel. (H) Mouse brain cross-section, with regions colored 

by CAS linear slopes.. (I) Slope of linear regression across all brain regions, colored by 

sex. Mean ± 95% confidence intervals. Two-sided Tukey’s HSD test. The highest (least 

significant) Pval is indicated. (J) Correlation of the abundance of major glia cell types 

(as measured in 41) with the regions’ respective CAS slopes. Significance tested through 

spearman correlation and linear regression.
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Figure 3. Spatially-resolved CAS detects accelerated aging in white matter tracts.
(A) 10X Visium experiment overview. Brain tissue was collected from an independent male 

C57BL/6J mouse cohort (n = 2 mice; 6, 18 and 21 months). (B) Spatial transcriptome 

data, colored by cluster-based annotation. Labels represent region-level annotation. Labels 

represent region-level annotation according to Figure S4. Complete data description and 

abbreviations are in Figure S4. (C) Comparison of Bulk-seq and Visium differential 

expression results in selected regions. DEGs found in both datasets are shown, with CAS 

genes highlighted.The number of overlapping DEGs in each quadrant is indicated in blue. 

(D) Spatially-resolved expression of Trem2 across age. Violin plots represent expression in 

white matter- and cortex-associated spots, split by replicates. (E) Spatial representation of 

CAS. Spots with values ≥ 0 are shown. (F) CAS across spatial clusters of selected regions. 

Red line indicates linear regression fit. (G) Comparison of CAS slopes for linear models in 

Bulk-seq and Visium data, colored by region. Corpus callosum, caudate putamen and motor 

cortex regions were chosen to represent white matter, striatum and cortex, respectively.
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Figure 4. Aging in glia and endothelial cells is the major contributor to CAS increase.
(A) Nuc-seq experiment overview. Nuc-seq of anterior hippocampus from same mice used 

for bulk RNA-seq (n = 4; 3, 21 months). UMAP of nuclei populations (n = 36,339). 

(B) CAS across hippocampal cell types. P values from two-tailed t-test on per-replicate 

median of CAS. (C) CAS slope of linear regressions in (B). Two-sided Tukey’s HSD 

test. The highest (least significant) Pval is indicated. (D) Expression of CAS genes Gfap, 

C4b, Gpr17, H2-Q7. Additional details in Methods S2, section 2 and 3. (E) Meta-analysis 

of scRNA-seq data from 19 of microglia from different brain regions. UMAP of all cell 

populations (n = 6,373). (F,G) CAS and Trem2 expression across microglia from different 

brain regions. (MAST, Benjamini–Hochberg correction; false discovery rate (FDR).<.0.05 

and logFC.>.0.2).
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Figure 5. Neuronal transcripts encode region-specific expression shifts. (A) UpSet plot showing 
regional specificity of DEGs.
Unique gene sets were used to construct region-specific aging signatures. (B) Trajectories 

of caudate putamen-specific aging score in selected regions. (C) Slope of linear regressions 

in (B), colored by slope. Mean ± 95% confidence intervals. (D) Score changes for region-

specific signatures relative to 3 months. Statistical analysis in Methods S3, section 2. (E) 

Representative GO enrichment for 177 DEGs unique to caudate putamen. Table S1 contains 

full results list. (F) Nuc-seq experiment overview of left-hemisphere regions from same 

mice used for bulk RNA-seq (n = 4; 3, 21 months). (G) Single-nuclei dispersion scores 
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vs. log2-transformed expression ratios for different regions. Region-specific score genes 

are highlighted. (H) Slope of cell type-wise changes with age for caudate putamen-specific 

signature. D1 and D2 Medium spiny neuron populations (MSN) are highlighted. (I,J) Bulk 

and cell type-wise and expression changes for Chrm3. (K) Slope of cell type-wise changes 

with age for hippocampus-specific signature. (L-M) Bulk and cell type-wise and expression 

changes for Unc5d. Additional details in Methods S3, section 2.
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Figure 6. Young plasma injection and acute dietary restriction trigger distinct spatial gene 
expression changes in the aged brain.
(A) Experiment overview. Aged female mice (n = 4–5) either underwent acute dietary 

restriction (aDR) for five weeks or continued with ad libitum (AL) feeding before brain 

collection and bulk-seq analysis on 15 regions. (B) The number of DEGs, split by region 

and regulation. (C) Bar graph showing the regions where a particular DEG was detected. 

Refer to Table S1 for the list of DEGs (D) CAS shifts in response to aDR across selected 

regions. One-tailed t-test. (E) Experiment overview. Aged male mice (n – 3–4) were injected 

with either young mouse plasma (YMP) or PBS over four weeks. (F-H) Similar to (B-D) 
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for YMP experiments. (I) Representative GO analysis of DEGs with shifts in cerebellum 

due to aDR. Table S1 contains full results list. (J) Region-wise expression changes in aDR 

for 24 genes with shifts in at least four of the collected regions. (K) Experiment overview. 

Nuc-seq of whole hippocampus from female C3B6F1 mice undergoing AL-to-aDR dietary 

switch at 20 months. UMAP representation of all nuclei is depicted (n=69,253) (L) Boxplot 

representation of common aDR scores in four cell types. two-tailed t-test on per-replicate 

median. (M) Similar to (I) but for YMP-induced DEGs in SVZ. (N) UMAP representation 

of single-cell SVZ data with scores for YMP signature. Cells are colored with scores for 

YMP signature (representing DEGs up-regulated in response to YMP). Histogram of score 

distribution is depicted on the right-hand side. Signature genes can be found in Table S1. 

(O) Composition of cell types and age groups in cells showing the highest YMP scores. 

(P) YMP score slope of linear regressions against age, colored by cell type. Mean ± 95% 

confidence intervals. (Q) Boxplot representation of scores for aNSC aging in SVZ and 

hippocampus in YMP- or PBS-injected mice. Two-tailed t-test on per-replicate median of 

score
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Figure 7. Interplay of region and age determines expression of disease variant homologues.
(A-D) Bulk expression for (A) Apoe, (B) Trem2, (C) Scna (α-synuclein) and (D) Plcg2 
at 3 and 26 months of age, represented with only male samples. Regions are arranged 

by descending order of mean expression at young age. Mean ± s.e.m. (E-G) Enrichment 

analysis of region-resolved DEGs for human GWAS variants for AD, PD, and MS, with 

associated genes listed in Table S1. Fold enrichment and relative composition of disease-

associated DEGs with respect to their regulation are indicated. One-sided Fisher’s exact test 

with hypergeometric distribution. Order of regions results from hierarchical clustering on a 
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pairwise Jacquard Distance matrix. Overlaps with a Jaccard index ≥ 0.25 are indicated with 

an arc. One-sided Fisher’s exact test. (H-J) Number of DEGs per region that are homologues 

of human GWAS variant for AD, PD, and MS. Colors group the genes into CAS DEGs, 

region-specific DEGs, or other (DEG in 2 or more but fewer than 10 regions).
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

2,2,2-Tribromoethanol (Avertin) Sigma Aldrich Cat# T48402-100G

UltraPure™ 0.5M EDTA, pH 8.0 Thermo Fisher Scientific Cat# 15575020

PBS, pH 7.4 Thermo Fisher Scientific Cat# 10010049

Slide-A-Lyzer™ Dialysis Cassettes, 10K MWCO, 3 mL Thermo Fisher Scientific Cat# 66380

VWR brand, razor blades, 0.009” VWR Cat# 55411-050

Miltex® Disposable Biopsy Punches with Plunger System 
1.5mm

AliMed Cat# 98PUN6-2

Miltex® Disposable Biopsy Punches with Plunger System 
2mm

AliMed Cat# 98PUN6-3

0.1% sodium dodecyl sulfate Teknova Cat# S0180

EZ Prep lysis buffer Sigma Aldrich Cat# NUC-101

UltraPure™ BSA Thermo Fisher Scientific Cat# AM2618

Hoechst 33342, 10 mg/mL Solution in Water Thermo Fisher Scientific Cat# H3570

Recombinant RNase Inhibitor Takara Cat# 2313B

Critical Commercial Assays

RNeasy 96 Kit Qiagen Cat# 74181

Qubit™ 1X dsDNA HS Assay Kit Thermo Fisher Scientific Cat# Q33231

Quant-iT™ dsDNA Assay Kit, high sensitivity Thermo Fisher Scientific Cat# Q33120

Illumina Tagment DNA Enzyme and Buffer large Kit Illumina Cat# 20034198

Agencourt AMPure XP, 60 mL Beckman Coulter Cat# A63881

SMARTScribe™ Reverse Transcriptase Takara Cat# 639538

KAPA HiFi HotStart ReadyMix PCR Kit Roche Cat# 07958935001

Visium Spatial Tissue Optimization Reagents Kit 10X Genomics Cat# 1000193

Visium Spatial Gene Expression Reagent Kit 10X Genomics Cat# 1000184

Chromium Single Cell 3’ GEM & Gel Bead Kit v3.1 10X Genomics Cat# 1000121

Chromium Single Cell 3’ Library Construction Kit 10X Genomics Cat# 1000121

Deposited Data

scRNA-seq of SVZ Dulken et al.,27 Bioproject:PRJNA450425

10X Sagittal Visium Dataset Anterior https://www.10xgenomics.com/
resources/datasets/mouse-
brain-serial-section-1-sagittal-
anterior-1-standard-1-0-0

10xgenomics.com: 
V1_Mouse_Brain_Sagittal_Anterior

10X Sagittal Visium Dataset Posterior https://www.10xgenomics.com/
resources/datasets/mouse-
brain-serial-section-1-sagittal-
posterior-1-standard-1-0-0

10xgenomics.com: 
V1_Mouse_Brain_Sagittal_Posterior

10X Coronal Visium Dataset https://www.10xgenomics.com/
resources/datasets/mouse-
brain-section-coronal-1-
standard-1-0-0

10xgenomics.com: 
V1_Adult_Mouse_Brain

SS2 scRNA-seq of grey/white matter microglia Safaiyan et al.,51 GEO:GSE166548
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REAGENT or RESOURCE SOURCE IDENTIFIER

Bulk-RNA microarray of microglia from various regions Grabert et al.,52 GEO:GSE62420

SS2 scRNA-seq of microglia from various regions Tabula Muris Consortium et 
al.,19

GEO:GSE109774

Bulk-seq of brain regions (aging) This paper GEO:GSE212336

Nuc-seq of the mouse hippocampus and caudate putamen at 
young and old age

This paper GEO:GSE212576

Spatial transcriptomics of the mouse brain across three age 
groups

This paper GEO:GSE212903

Bulk-seq of brain regions (rejuvenation) This paper GEO:GSE227689

Nuc-seq of the mouse hippocampus under dietary restriction This paper GEO:GSE227515

Experimental Models: Organisms/Strains

C57BL/6JN NIA N/A

C57BL/6J Jackson Laboratory 000664

C3B6F1 Max-Planck-Institute for 
Biology of Ageing

N/A

Oligonucleotides

SS2 Oligo-dT30VN: 
AAGCAGTGGTATCAACGCAGAGTACTTT 
TTTTTTTTTTTTTTTTTTTTTTTTTTTTVN

Integrated DNA Technologies N/A

Software and Algorithms

Custom analysis software This paper https://github.com/OliInTheValley/
SpatioTemporal_Analysis

Cell. Author manuscript; available in PMC 2024 September 14.

https://github.com/OliInTheValley/SpatioTemporal_Analysis
https://github.com/OliInTheValley/SpatioTemporal_Analysis

	Summary:
	In Brief:
	Graphical Abstract
	Introduction
	Results
	Spatiotemporal quantification of age-related gene expression across the mouse brain
	Region identity is linked to expression dynamics during aging
	A minimal gene set forms a common fingerprint of brain aging
	Fiber tracts are foci of accelerated brain aging
	Heterogeneous velocity of CAS is encoded by glial transcripts
	Transcriptional aging of microglia is region-dependent
	Neuronal transcripts encode region-specific expression patterns
	Rejuvenating interventions act on distinct regions and cell types affected during normal aging
	Aging results in region-specific expression changes of genes associated with human diseases

	Discussion
	Limitations of this study

	STAR METHODS
	RESOURCE AVAILABILITY
	Lead Contact
	Materials availability
	Data and Code Availability

	EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS
	Animal husbandry and organ collection

	METHOD DETAILS
	Processing and administration of plasma
	Brain region dissection
	Bulk-seq preparation and sequencing
	10X Visium preparation and sequencing
	Nuc-seq preparation and sequencing

	QUANTIFICATION AND STATISTICAL ANALYSIS
	Bulk-seq quantification, quality control
	Bulk-seq differential expression
	DEG Gene Ontology functional enrichment
	Bulk-seq GWAS gene enrichment and expression distribution analysis
	Bulk-seq correlation of gene expression with age
	Weighted gene co-expression network analysis WGCNA
	Estimating the variance of the data depending on metadata
	Gene signature generation and score calculation
	Bulk-seq marker genes and score calculation
	Bulk-seq Common Aging Score CAS calculation and CAS velocity comparison
	Comparing CAS velocity with STARmap single-cell composition
	Microarray analysis of microglia
	Organ-specific aging signature identification and velocity comparison
	Bulk-seq region-specific aging signature identification and velocity comparison
	10X Visium mapping, embedding, clustering and region identification
	10X Visium differential expression analysis and comparison with Bulk-seq data
	Visium CAS calculation
	Nuc-seq mapping, embedding, clustering, sample demultiplexing and cell type identification
	Publicly available scRNA-seq data embedding
	Differential expression in scRNA- and Nuc-seq data
	Signature calculations in scRNA- and Nuc-seq data
	Single-nuclei dispersion score
	ADDITIONAL RESOURCES


	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	KEY RESOURCES TABLE

