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Abstract

Objective: Arterial wall stiffness can provide valuable information on the proper function of the 

cardiovascular system. Ultrasound elasticity imaging techniques have shown great promise as a 

low-cost and non-invasive tool to enable localized maps of arterial wall stiffness. Such techniques 

rely upon motion detection algorithms that provide arterial wall displacement estimation.

Approach: In this study, we propose an unsupervised deep learning-based approach, originally 

proposed for image registration, in order to enable improved quality arterial wall displacement 

estimation at high temporal and spatial resolutions. The performance of the proposed network was 

assessed through phantom experiments, where various models were trained by using ultrasound 

RF signals, or B-mode images, as well as different loss functions.

Main results: Using the mean square error (MSE) for the training process provided the highest 

signal-to-noise ratio when training on the B-modes images (30.36±1.14 dB) and highest contrast-

to-noise ratio when training on the RF signals (32.84±1.89 dB). In addition, training the model on 

RF signals demonstrated the capability of providing accurate localized pulse wave velocity (PWV) 

maps, with a mean relative error (MREPWV) of 3.32±1.80 % and an R2 of 0.97±0.03. Finally, 

the developed model was tested in human common carotid arteries in-vivo, providing accurate 

tracking of the distension pulse wave propagation, with an MREPWV=3.86±2.69 % and R2=0.95 ± 

0.03.

Significance: In conclusion, a novel displacement estimation approach was presented, showing 

promise in improving vascular elasticity imaging techniques.

Keywords

Arterial wall displacement; vascular elasticity imaging; deep learning; neural network; carotid 
artery disease

1. Introduction

Large artery stiffness has been widely considered as a key parameter in cardiovascular 

disease progression. Stiffening of the arterial wall reflects the process of structural 
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alterations due to the loss of elastin, and cumulation of collagen fibers [1][2][3]. These 

structural alterations are closely related with vascular ageing and chronic hypertension, 

which can potentially damage the circulatory system, leading to cardiovascular events such 

as heart attack and stroke[2][4][5][6].

Changes in large artery mechanics have also been associated with focal vascular diseases 

such as carotid atherosclerosis. This condition involves formation of atherosclerotic plaques 

in the carotid artery wall, obstructing blood flow to the brain. In case of atherosclerotic 

plaque rupture, a blood clot may form and transfer to the cerebral vasculature, causing 

an ischemic stroke [7]. Pre-clinical stages of carotid atherosclerosis have been associated 

with increased wall stiffness and inhomogeneous arterial mechanical properties [8][9]. In 

addition, the stiffness of an atherosclerotic plaque can provide information on its structural 

components, and risk for rupture [10][11].

Ultrasound elasticity imaging techniques have shown great promise as a low-cost, non-

ionizing and non-invasive tool to provide reliable, localized maps of arterial wall stiffness. 

Vascular elastography methods have shown capability of characterizing the mechanical 

properties of the arterial wall, as well as atherosclerotic lesions, by imaging physiologically 

induced arterial strain [12][13][14][15][16]. Acoustic Radiation Force Imaging (ARFI) is 

another approach that applies acoustic radiation force to deform the examined tissue, 

and then measure the resulting deformation. Application of this technique demonstrated 

the feasibility to differentiate between stable and unstable plaque features, validated 

with histological examination of human plaque samples [10]. In addition, Shear Wave 

Elastography (SWE) has been widely utilized for arterial wall and plaque stiffness 

characterization, which estimates tissue elasticity by tracking the ARFI induced shear wave 

propagation [17][18][19].

Pulse Wave Velocity (PWV) is a well-established index of arterial stiffness that has 

been linked with all-cause cardiovascular morbidity and mortality [20][21]. Pulse Wave 

Imaging (PWI) [22][23][24][25][26][27][28] is an ultrasound elasticity imaging technique 

that enables localized maps of PWV, by tracking the propagation of the distension Pulse 

Wave (PW) along an imaged arterial segment. In turn, PWV can be associated, under 

specific assumptions, to the Young’s modulus and compliance of the imaged vessel, through 

the Moens-Korteweg and Bramwell-Hill equations, respectively. PWI has shown great 

promise in diagnosis and monitoring of cardiovascular conditions such as hypertension and 

atherosclerosis [29][30][31][32][33][34].

The aforementioned ultrasound elasticity techniques rely upon motion tracking algorithms, 

in order to image the displacements of the imaged tissue and derive elasticity maps. The 

most commonly used algorithm involves matching 1-D or 2-D kernels among consecutive 

temporal ultrasound RF frames, B-mode images, or spectrograms [23][35][36][37][38]. In 

particular, a reference kernel is defined in a temporal frame, and then compared with 

candidate kernels, within a pre-determined search-range, in subsequent frames. A cost 

function, typically the normalized cross-correlation is evaluated to quantify the similarity 

between kernels. The displacement is derived through the spatial and temporal shift between 

the reference and the best matching kernels. This approach has been the basis of the 
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majority of ultrasound elasticity imaging techniques. However, it entails limitations, such 

as dependency of displacement maps on the kernel size and the search range, as well as 

the rigid shift of the kernel that may ignore complex displacement patterns. In addition, the 

kernel matching technique estimates the displacement of the reference kernel, rather than 

each pixel in the image, which deteriorates the spatial resolution of the displacement maps.

Tissue Doppler Imaging (TDI) is a displacement estimation method that has been 

utilized for arterial elasticity imaging [39][40][41][42]. According to this approach, the 

autocorrelation function is applied on the received RF signals, in order to estimate the 

phase shift induced through moving scatterers. However, TDI is highly dependent on the 

beam-to-flow angle, it is more sensitive to noise, while also a high frame rate is required in 

order to avoid aliasing [43].

Recently, deep learning-based techniques have been investigated for tissue displacement 

estimation. The aim of those techniques is to train models that will learn the displacement 

patterns in ultrasound acquisition sequences. Several approaches have been based on the 

well-known PWC-Net architecture [44][45][46], demonstrating the feasibility to provide 

strain maps in simulated ultrasound data [45], breast phantoms and liver cancer patients 

[46]. The main limitation of those techniques involved high degree of variance in the 

displacement maps compared to conventional methods, due to the lack of a regularization 

factor. In addition, a deep-learning-based approach for ARFI imaging has been proposed 

[47]. The latter displacement estimation model was trained on synthetic data and tested 

both in phantom and in-vivo prostate ARFI data. Moreover, a Siamese neural network 

scheme has been employed to estimate the motion of the carotid artery in simulations 

and experimental data [48]. However, the presented approach limited the displacement 

estimation in single point target in the field of view and did not provide complete 

information on the spatiotemporal variation of the imaged arterial segment.

The aforementioned techniques mainly use supervised learning, i.e., the models are trained 

with known ground-truth displacement maps [45][47]. This fact limits the training process 

on simulation and/or experimental data, which in turn may limit the capability of the 

model to generalize in more complex in-vivo acquisitions. To address such limitations, semi-

supervised [49] and unsupervised [50][51] deep learning approaches have been developed, 

focusing mainly on strain elastography applications. In [50][51], a U-net, combined with 

long-short-term memory units (LSTM) was trained using pairs of ultrasound temporal 

frames for quasi-static elastography, in simulated data and in-vivo acquisitions of the arm 

in healthy volunteers. A regularization factor was included in the loss function to limit the 

variance in the displacement maps. Additional studies have applied unsupervised learning to 

estimate the myocardial motion in canine models in vivo [52][53].

Deep learning has shown great promise in providing accurate displacement maps for various 

ultrasound elasticity imaging applications. However, the capability of unsupervised deep 

learning to reconstruct high spatial and temporal resolution arterial wall displacements, 

induced by the distension pulse wave propagation, has not yet been investigated. In the 

study presented herein, we propose an unsupervised deep learning approach for arterial wall 

displacement estimation. The Voxelmorph [54], a neural network for image registration is 
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trained on high frame rate ultrasound RF and B-mode sequences, in order to learn arterial 

wall motion patterns. The performance of the deep-learning based displacement estimator is 

assessed through vessel phantom experiments in terms of elastographic contrast and signal 

to noise ratio. In addition, the feasibility of the proposed technique to track the propagation 

of the distension pulse wave is evaluated in the same vessel phantom setup, and human 

common carotid arteries in vivo.

2. Methods

2.1 Ultrasound acquisition setup

A Verasonics Vantage 256 research platform (Verasonics, Bothell, WA, USA) was equipped 

with an L7-4 Linear array transducer with 128 elements, center frequency 5 MHz and 50% 

Bandwidth (L7-4, ATL Ultrasound, Bothell, WA, USA). A 3-or 5-plane wave compounding 

acquisition imaging sequence was implemented at transmit angles of either (1°,0°,1°,), or 

(−2°,−1°,0°,1°,2°). A pulse repetition frequency within a range of 9500-10000 Hz was used, 

depending on the depth of each imaged vessel. RF signals were recorded for a time interval 

of 1 s per ultrasound acquisition.

2.2 Phantom Study

Phantom experiments were carried out in two vessel phantoms of different stiffness values, 

similarly as in [55][56][57], to assess the performance of the proposed deep learning-based 

displacement estimator (Figure 1). A polyvinyl alcohol (PVA) mixture was formed by 

mixing distilled water, PVA powder (Sigma-Aldrich, St. Louis, MO, USA), glycerol and 

graphite acoustic scatterers (Sigma-Aldrich, St. Louis, MO, USA) at concentrations of 

78%, 10%, 10% and 3%, respectively. The mixture was initially heated at 90 °C for 

approximately 40 minutes. Subsequently, the mixture was thawed and poured inside two 

separate cylindrical molds. The two molds were subjected to six, and three cycles of 

freezing (12 h at −20 °C) and thawing (12 h at room temperature), respectively, resulting in 

two vessel phantoms with different wall stiffness. The former phantom (training/validation 

phantom) was used to obtain the training/validation dataset, while the latter (test phantom) 

was used to test the generalization capability of the model in a vessel with different wall 

stiffness.

The resulting elastic phantoms were fixed inside two separate plastic containers, which were 

in turn filled with porcine-skin gelatin (Sigma-Aldrich, St. Louis, MO, USA), to serve as 

the surrounding medium. The open ends of the phantoms were attached onto plastic fittings, 

which were connected to a programmable physiological flow pump (Compuflow 1000, 

Shelley Medical Imaging technologies, Ontario, Canada). A pulsatile flow waveform was 

applied in the phantom lumen, with an amplitude of 10 mL/s and a frequency of 0.53 Hz.

The plastic containers were filled with water, and the ultrasound transducer was attached to 

a positioner in order to perform ultrasound scans. N=18, and N=5 acquisitions were carried 

out in the training/validation and test phantoms, respectively, capturing 2-D longitudinal 

images at different locations across the phantoms’ axis. A training/validation split of 13/5 

acquisitions was carried out in the case of the former phantom.
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2.3 In vivo study

All procedures pertinent to the human study were approved by the Human Research 

Protection Office (HRPO) and Institutional Review Boards (IRBs) of Columbia University 

(protocol AAAR0022). The left and right common carotid arteries of N=10 human subjects 

with no prior history of cardiovascular disease were scanned in vivo. (6 Male, 4 Female; 

28.7 ± 4.1 y.o.), resulting in a total of 20 ultrasound acquisitions. A training/validation split 

of 7/3 subjects, corresponding to 14/6 acquisitions, was carried out for the in-vivo study.

2.4 Data pre-processing & training dataset

Data pre-processing was carried out in MATLAB 2017b (MathWorks Inc, Natick, MA, 

USA). The acquired RF signals were beamformed by employing a GPU-accelerated 

implementation of the delay and sum algorithm, by using the respective transmission angle 

on receive for each frame. The beamformed RF frames were coherently summed for each 

set of 5 transmission angles, producing thus compounded RF frames of improved quality 

[58]. The F-number used in the beamforming process was 1.7, and apodization on receive 

was implemented using a Hanning filter. The axial and lateral resolution of the beamforming 

grid was 0.01848 mm and 0.2980 mm, respectively. The frame rate of the resulting image 

sequence after compounding was equal to approximately 1900-2000 Hz. Subsequently, the 

envelope of the compounded RF frames was extracted through the Hilbert transform and the 

output was log-compressed in order to obtain a sequence of B-mode images.

Two separate datasets were formed, by using the compounded RF frames, or the B-mode 

images. Both in the in-vivo and phantom acquisitions, N=13 acquisitions were used as 

the training dataset. Temporal frames Itn xi, yj = Itn  in the training dataset were normalized 

within a range of [0 1], and were resized to 128 samples across the lateral direction (xi) and 

768 samples across the axial direction (yj). Each frame, Itn, was paired with its subsequent 

frame Itn+1, resulting in a total of 24,950 pairs for the training dataset.

2.5 Deep learning-based displacement estimator

The aim is to train a neural network in an unsupervised fashion, in order to learn the 

displacement patterns of a moving object in high frame rate ultrasound image sequences. 

The developed technique is based on the Voxelmorph, a deep learning approach originally 

used to register MRI images of the brain [54]. A pair of consecutive ultrasound temporal 

frames Itn xi, yj = Itn, Itn + 1 xi, yj = Itn + 1  are concatenated into a 2-channel 2-D image. The 

symbols xi, yj, i ∈ 1 128 , j ∈ 1 768 , stand for the lateral and axial positions, respectively. 

The concatenated image is provided as an input to a U-net, which performs spatial 

transformations through an encoding, followed by a decoding stage. The output of the U-net 

is a 2-D Displacement field D xi, yj = D , depicting the relative displacement of each pixel 

in frame Itn + 1, with respect to frame Itn.

2.5.1 Model architecture—The model architecture is depicted in Figure 2. Each layer 

in the encoding stage of the U-net [59] consists of a convolutional layer, characterized by 

either 16, or 32 filters of size 3x3 and stride of 1. Subsequently, a ReLU activation function 
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with a parameter 0.2 is applied, followed by a max pooling operator of size 2x2. Each layer 

in the encoding stage down-samples the output of the previous layer to ½ of its size, and 

extracts progressively higher-level features of the input used to learn the Displacement field, 

D  [54].

In the decoding stage, each layer applies a convolution operator, consisting of 32 filters of 

size 3x3 and stride of 1. The output of the convolution is in turn up-sampled, by a factor 

of 2, in order to obtain the original size of the input volume Itn, Itn + 1 . Skip connections 

are used that concatenate the output features of each layer in the decoder with the features 

of the respective layer in the encoding stage. The skip connections propagate fine-grained 

details learned in the encoding stages, in order to enable precise spatial registration during 

image reconstruction in the decoding part [59]. Following the decoding stage, additional 

convolutional layers are applied to refine the decoded image and produce the displacement 

map, D [54].

2.5.2 Model training—The training process is described in Figure 3. Let T() denote the 

spatial transformation operator that displaces each pixel in Itn + 1 with respect to D , in order to 

provide an approximation of Itn:

Itn = T Itn + 1, D = Itn + 1 xi, yj + D xi,yj (1)

T() was implemented similarly as in [54]. The aim is to provide an optimal displacement 

field D xi, yj , that will accurately depict the relative displacement of each pixel in Itn + 1, with 

respect to Itn. This is equivalent to maximizing the similarity between Itn and Itn. Therefore, 

the described neural network is optimized based on an unsupervised loss function (Lsim ) that 

penalizes differences between Itn and Itn.

Optimizing based solely on the similarity loss function, may entail spatial discontinuities in 

the resulting displacement field, that do not correspond to realistic physiological arterial wall 

motion. In order to encourage spatial continuity in the displacement maps across the arterial 

walls, a regularization factor is also added (Lreg ), which penalizes variations in the spatial 

gradient of D [54]:

Lreg D = ∑
i = 1

Nx

∑
j = 1

Ny

∇ D xi, yj

2
(2)

Therefore, the total loss function (Ltot ) is calculated as:

Ltot Itn, Itn, D = Lsim Itn, Itn + λLreg D (3)
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where λ is a constant that determines the contribution of Lreg  in the total loss function, and 

was set equal to 0.05 [54].

Two different functions were used as Lsim  to train the model:

• The mean squared error, MSE:

MSE Itn, Itn = 1
NxNy

∑
i = 1

Nx

∑
j = 1

Ny
T Itn + 1, D − Itn

2
(4)

• The local normalized cross-correlation, NCC. Given a small region in the image, 

v, consisting of n pixels v1, v2, …, vn , the employed NCC function is given by 

the following formula:

NCC Itn, Itn = ∑
v ∈ Itn

∑i = 1
n Itn vi − Itn v * T Itn + 1, D vi − T Itn + 1, D v

2

∑i = 1
n Itn vi − Itn v 2 * ∑i = 1

n T Itn + 1, D vi − T Itn + 1, D v
2 (5)

where Itn v  denotes the local mean intensity of pixels within a volume v, and n was set equal 

to 9. This version of NCC() has been reported to serve as a more robust marker of image 

similarity index. More detailed description of this metric can be found in [60].

For each loss function, two different models were trained by using the RF signals, or the 

B-mode images. Thus, a total of four models were trained separately for the phantom and 

in vivo acquisitions: (RF-MSE: training on RF signals using MSE loss, RF-NCC: training 

on RF signals using NCC loss, Bm-MSE: training on B-modes using MSE loss, Bm-NCC: 

training on B-modes using NCC loss). The same training dataset, consisting of 24,950 pairs 

was employed for each model.

The model was trained by using the ADAM optimizer, with a learning rate of 10−4, over 

100 epochs. Mini-batch stochastic gradient descent was employed, with a batch size of 

20, resulting in 1248 steps per epoch. Early stopping regularization was also used, with a 

patience of 7 epochs, in order to avoid overfit. All models were based on the Voxelmorph 

Keras [61] implementation described in [54], enabled by Tensorflow [62] version 2.3. 

Training was carried out on an Nvidia Quadro P6000 graphics processing unit (GPU) 

(Nvidia, Santa clara, California, USA).

2.6 Displacement performance assessment

Displacement performance assessment was carried out in terms of elastographic signal-to-

noise and contrast-to-noise ratio, as well as accuracy in distension pulse wave tracking. 

In the case of the phantom study, the 5 validation acquisitions in the training/validation 

phantom were used to evaluate the quality and accuracy of the displacements, based on 

which the best performing model was selected. The same model was inferred on the 

5 acquisitions of the test phantom with different stiffness to assess its generalization 

capabilities. The in-vivo model was trained separately on the human subject acquisitions 
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by using the same training parameters and loss function as the best performing model 

determined through the phantom study.

Given the restricted lateral resolution provided by the employed ultrasound setup, and the 

motion of the artery along the axial direction, performance assessment was performed using 

only the wall axial displacements.

2.6.1 Signal and contrast-to-noise ratio—In the case of the phantom validation 

dataset, the quality of each displacement estimator was evaluated in terms of elastographic 

signal-to-noise (SNRe) and contrast to noise (CNRe) ratio.

Given the parallel orientation of the probe with respect to the phantom’s axis and the axial 

motion of the wall, it can be hypothesized that the axial wall velocities are uniform within 

small axial regions of the phantom wall, yj ∈ ywall, ywall + d . The symbols ywall, d denote the 

position of the proximal wall derived through manual segmentation, and d a small distance 

which was fixed at 0.6 mm based on the physiological range of arterial wall media thickness 

values [63]. Based on this hypothesis, the elastographic signal to noise ratio at a given lateral 

position, xi, and time frame, tn, can be derived as follows:

SNRe xi, tn = AVGyj v xi, yj, tn |yj ∈ ywall, ywall + yd

STDyj v xi, yj, tn |yj ∈ ywall, ywall + yd
(6)

Where AVGyj  and STDyj  denote the average and standard deviation operators across the y 

axis. A single SNR value was obtained, expressed in dB, by averaging SNRe xi, tn  across all 

lateral positions (xi ∈ 0, xend ), at the peak systolic time frame (tPS), as follows:

SNRe dB = 20 log10AVGxi

AVGyj v xi, yj, tPS |yj ∈ ywall, ywall + yd

STDyj v xi, yj, tPS |yj ∈ ywall, ywall + yd xi ∈ 0 xend
(7)

To calculate the elastographic contrast to noise ratio (CNRe), a polygonal region on the 

proximal phantom wall was manually segmented by using the Matlab command roipoly() , 

as well as another region in the anechoic gelatin surrounding medium to serve as 

background, as shown in Figure 4. CNRe was derived through the following formula [64]:

CNRe dB = 20 log10 2 ∗ AVG vtissue − AVG vbackground
2

STD vtissue
2 + STD vbackground

2 (8)

where vtissue and vbackground denote the velocities in the regions of tissue and background, 

respectively.

The SNRe and CNRe were calculated for each acquisition and trained model. In addition, 

the same performance metrics were estimated for a conventional cross-correlation-based 

displacement estimator, to serve as reference. The employed conventional displacement 

estimation technique is described in [35], were a 1-D kernel is applied in a 2-D search to 
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estimate the inter-frame displacement field. A kernel size of 28 samples was used, with an 

overlap of 5% and a maximum search range of 4 axial samples. The displacement maps 

provided by the conventional displacement estimator were filtered in time by using a moving 

average window with a size of 10 temporal samples.

2.6.2 Distension pulse wave tracking—Given that the proposed technique is aimed 

for ultrasound elastography applications, it is important to determine whether it can 

accurately estimate tissue displacements throughout a given ultrasound imaging sequence. 

Therefore, instead of evaluating the accuracy in registration among individual pairs of 

temporal frames, it is more relevant to assess its capability to provide accurate maps of the 

spatiotemporal variation of arterial wall displacements.

An approach to derive such accuracy metrics is to carry out the Pulse Wave Imaging 

(PWI) technique for arterial stiffness characterization, which tracks the propagation of 

the distension pulse wave along an image arterial segment and provides a regional PWV 

estimate. The PWI processing methodology is depicted in Figure 5. The acquired ultrasound 

temporal frames are stacked together (Figure 5–A)), and fed to the U-net in pairs, in order 

to obtain the axial inter-frame displacements at each point location and time frame. The 

interframe displacements are normalized with the frame rate, and therefore are expressed 

in terms of axial velocities (Figure 5–B)). Subsequently, the proximal and distal walls are 

manually segmented (Figure 5–C)), in order to obtain the time waveforms of the axial wall 

velocities at each lateral position, x, of the proximal and distal walls (vprox xi, tn , vdist xi, tn ), 

respectively). Subsequently the velocities of the distal wall are subtracted from the proximal 

wall, in order to obtain a spatiotemporal plot of the arterial wall distension (Figure 5–D)). 

Finally, a linear fit is applied on the time of occurrence of the 50% point among consecutive 

distension waveforms, versus the lateral position, x. The inverse of the slope of the fit yields 

a regional PWV estimate, while the coefficient of determination, R2, of the linear fit yields 

the quality of pulse wave tracking.

The PWI processing methodology was carried out for each acquisition in the validation and 

test datasets. In each case, the relative error (MREPWV) between the PWV provided by the 

deep learning model (PWVDL) and the reference PWV (PWVref) was calculated as follows:

MREPWV = 100 * PWVref − PWVDL

PWVref
% (9)

The PWVref was obtained by using the conventional PWI methodology reported in [58], 

which has been validated in multiple studies in phantoms and in-vivo. In addition, the R2 

was calculated as a performance metric, which quantifies how accurately the displacement 

estimator can reconstruct the phase shift of the distension pulse wave among different spatial 

positions.
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3. Results

3.1 Phantom study

3.1.1 Signal and contrast to noise ratio—Figure 6–A) demonstrates an RF frame 

from the validation dataset. Figure 6–B),C) illustrate the 2-D axial velocity maps resulting 

from the model trained on RF frames by using the MSE (RF-MSE) and CC (RF-CC) loss 

functions, respectively. Figure 6–D) shows the B-mode image corresponding to the RF 

frame in Figure 6–A), while E),F) present the respective velocities using the model trained 

on the B-mode images (Bm-MSE, Bm-CC, respectively).

Using the MSE as a loss function (Figure 6–B),E)) provides more accurate delineation of 

the displacing walls, as compared to NCC (Figure 6–C),F)). On the other hand, it can be 

observed that NCC enhances weaker echoes originating from the blood mimicking fluid 

scatterers in the phantom lumen.

Figure 7–A),B) demonstrates the average and standard deviation of the SNRe and CNRe

values, respectively, obtained by each trained model and the reference conventional 

displacement estimator (N=5 measurements per displacement estimation technique). It can 

be observed that the model trained using MSE, provided higher values for the quality 

metrics both in the case of RF and B-mode training, as compared to the reference technique, 

while the NCC loss function resulted in lower quality of tissue displacement estimation. The 

highest SNRe was observed in the case of Bm-MSE (30.36±1.14 dB), followed by RF-MSE 

(27.12±1.01 dB). In the case of CNRe, Bm-MSE provided higher performance (32.84±1.89 

dB), as compared to BM-MSE (26.46±3.85 dB).

Comparison between the top two performing models was carried out by using an unpaired 

t-test. A significantly higher SNRe was observed in the case Bm-MSE, as compared to 

RF-MSE (30.36±1.14 dB vs 27.12±1.01 dB, p<0.01), while the CNRe was significantly 

lower for Bm-MSE, compared to RF-MSE (26.46±3.85 dB vs 32.84±1.89 dB, p<0.05).

3.1.2 Distension pulse wave tracking—Figure 7–C),D) illustrate the mean and 

standard deviation of MREPWV  and R2 (N=5), respectively, obtained by each trained model 

in the phantom validation acquisitions. The lowest MREPWV  and highest R2 (3.32 ± 1.80 

%, 0.97 ± 0.03, respectively) were provided by the RF-MSE model, followed by Bm-MSE 

(10.27 ± 4.48 %, 0.95 ± 0.03, respectively). Models trained using NCC loss function did not 

provide displacements of adequate quality, in order to enable pulse wave tracking.

Figure 8–A),B),C) show three different time frames of the PWI image sequence derived 

through the RF-MSE model, where the axial wall velocities are color-coded and overlaid 

onto the B-mode image. The yellow arrow indicates the position of the wave-front of the 

pulse wave at each given time-frame. Figure 8–D,E) demonstrate the spatiotemporal map of 

arterial wall distension, as obtained through conventional PWI and RF-MSE, respectively, 

in one validation acquisition. Figure 8–F,G) illustrate the respective conventional PWI 

and RF-MSE spatiotemporal maps in one test acquisition. Excellent similarity can be 

observed between the spatiotemporal maps and PWV values, obtained through the different 

techniques.
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Table I summarizes the PWV and R2 values obtained using conventional PWI and the 

RF-MSE model in the 5 test acquisitions. The test MREPWV was equal to 3.92 ± 2.74 %, 

demonstrating the capability of the trained model to provide accurate displacement maps in 

data that were unseen during the training process.

3.2 In-vivo study

Figure 9 illustrates three examples of the in-vivo validation acquisitions. Figure 9–A),B),C) 

show the axial wall velocities, color-coded and overlaid onto the B-mode image. Sections 

D,E,F) and G),H),I) demonstrate the respective spatiotemporal maps, along with the 

estimated PWV and R2 as obtained through conventional PWI and the RF-MSE model. It is 

noted that only the RF-MSE model was trained for the in-vivo data, given that it provided 

the most accurate pulse wave tracking in the phantom experiments (Section 3.1.2).

TABLE-II summarizes the PWV values and R2, obtained through conventional PWI and RF-

MSE, in each acquisition from the validation dataset. Good agreement was found between 

the PWV values measured with the two techniques, with a MREPWV = 3.86 ±2.69%. In 

addition, it can be observed that the R2 was higher in the case of RF-MSE (0.95 ± 0.03) 

displacement estimator, compared to the conventional PWI (0.92 ± 0.04) suggesting that the 

proposed deep learning approach can potentially provide more robust spatiotemporal maps 

of arterial wall distension and pulse wave tracking.

4. Discussion

In the study presented herein, a deep-learning-based approach for arterial wall displacement 

estimation was presented. The Voxelmorph, a neural network for spatial image registration 

was trained on ultrasound images of the carotid artery, demonstrating the capability to 

provide high-quality pixel-to-pixel displacements of the arterial wall. Four different models 

were trained using either ultrasound RF frames or B-mode images, and two different loss 

functions. The performance of each trained model was assessed in vitro, in a straight vessel 

phantom. Finally, the feasibility of the proposed technique to track the distension pulse wave 

propagation was demonstrated in human common carotid arteries in-vivo.

The proposed technique performs pair-specific optimization, in order to derive the spatial 

transformation that depicts the displacement field between consecutive temporal ultrasound 

frames. This is achieved by minimizing appropriate loss functions that model the similarity 

between a given temporal frame, and a subsequent temporal frame displaced by the spatial 

transformation. Therefore, the model can learn arterial motion patterns without the need to 

use a-priori knowledge of ground-truth displacements, which would be rather challenging 

to obtain in-vivo. A regularization factor is added to the loss function that penalizes large 

spatial gradients in the displacement maps, in order to discourage discontinuities among 

different temporal frames that are not related to physiological arterial wall motion.

Using the MSE as a loss function for the training process out-performed NCC, as 

determined by the employed displacement quality and accuracy metrics. MSE was expected 

to provide higher quality tissue displacement estimates, given that it prioritizes high intensity 

pixels corresponding to bright echoes originating from the arterial walls. On the contrary, 
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NCC is less dependent on pixel intensity, and therefore prioritizes tracking of fast-moving 

scatterers present in the blood, over the slow-moving arterial tissue. This effect is apparent 

in Figures 6–C),F), where the NCC-based models track primarily the motion of the blood 

mimicking fluid. Therefore, NCC may be more relevant when training the model for blood 

flow imaging.

A potential advantage of the presented approach over conventional kernel matching 

displacement estimation methods is the fact that it does not require a-priori determination 

of hyperparameters such as the kernel size, kernel shift and search range, that significantly 

affect the performance of displacement estimation. In addition, the proposed technique 

provided high resolution pixel-by-pixel displacements among consecutive frames. On 

the contrary, kernel matching approaches entail sub-optimal resolution of displacement 

estimates, given that the approximate shift of a kernel consisting of multiple pixels is 

derived, compromising thus information on the exact pixel location of the displacing tissue. 

Furthermore, the employed neural network provided accurate displacement maps directly 

from the RF-signals, or B-mode images, without requiring additional processing steps such 

as cosine interpolation, sub-sampling displacements or low-pass filtering, which are often 

required in conventional displacement estimation techniques [58][65][66].

Training the model on the B-mode images provided higher elastographic signal-to-noise 

ratio, but lower contrast-to-noise ratio as compared to RF-frames. This can be due to the 

fact that given that the B-mode images include the log compressed envelope of the RF 

signals, which are expected to present smaller spatial variation and smoother delineation of 

arterial tissue, reducing thus the SNR. However, the uncompressed RF signals present higher 

variations in intensity, offering better contrast between moving tissue and background. 

Furthermore, using the RF-signals provided more accurate tracking of distension pulse wave 

propagation, as compared to B-mode images. Those results demonstrate the capability of 

RF signals to provide accurate information on the phase of the displacements, which may 

be more appropriate for applications involving wave propagation tracking at high temporal 

resolutions.

In the case of the in-vivo study, good agreement was found between the PWV values 

obtained through the deep learning-based and the conventional PWI methodologies. The 

deep learning displacement estimator provided more spatially homogeneous spatiotemporal 

maps and higher R2, indicating improved quality of pulse wave tracking. This can 

be attributed to the fact that the trained neural network provides the pixel-by-pixel 

displacements among entire frames, enhancing spatial continuity of displacements estimated 

throughout the arterial walls. On the contrary, conventional PWI approach involves stitching 

displacements estimated from small kernels together, in order to form the displacement maps 

throughout the entire frames, which may deteriorate spatial continuity of wall displacements.

A limitation of this study arises from the fact that the developed technique was tested only 

in healthy straight vessel geometries. Atherosclerotic vessels may pose a challenge for the 

employed neural network to learn. In order to extend the technique to such vessels, a broader 

dataset, consisting of a mix of healthy and atherosclerotic vessels should be employed for 

the training process. In addition, pathological arteries with spatial variations in geometry 
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and mechanical properties may require adjustment of the regularization factor in the loss 

function, in order to prevent over-smoothing of the displacement field.

Future efforts involve training a more generalized model that can be inferred in different 

subjects without the need to retrain on specific datasets. Obtaining a model with good 

generalization capabilities is expected to significantly decrease the time needed for tissue 

displacement estimation, showing promise in real-time ultrasound elasticity imaging. A 

preliminary analysis involving comparison of the time efficiency of the presented deep 

learning method against a conventional motion tracking technique can be found in the 

Appendix.

Finally, the proposed displacement estimator was evaluated in terms of axial displacements. 

Given the restricted lateral resolution provided by the employed ultrasound setup, and the 

motion of the artery along the axial direction, performance assessment was carried out only 

in terms of axial displacements. Ongoing work includes assessing the capability of the 

proposed neural network to provide robust 2-D displacement maps.

5. Conclusion

In conclusion, an unsupervised deep learning-based approach was introduced for arterial 

wall displacement estimation. The proposed technique was evaluated in vessel phantom 

experiments and human common carotid arteries in-vivo, showing the feasibility to 

learn arterial motion patterns at high temporal and spatial resolutions. The developed 

method demonstrated the potential to address limitations entailed by conventional 

displacement estimators, improving thus the accuracy of vascular ultrasound elasticity 

imaging techniques.
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Appendix

Time efficiency is a significant benefit of the proposed deep learning-based displacement 

estimation technique. A comparison was carried out between the efficiency of the trained 

model and a conventional displacement estimator in terms of time (τ) taken to derive 

a 2-D displacement map between two consecutive temporal RF frames. The normalized 

cross-correlation technique described in [67] was applied on the filtered RF frames, to track 

arterial wall motion in 2-D. Selection of cross-correlation parameters was based on previous 

PWI implementation [58]. An axial kernel was shifted along the axial and lateral directions 

across adjacent RF frames, using a kernel shift of 1 axial sample (0.01848 mm). The size of 

the kernel was set at 7 axial samples (0.1293 mm). The maximum axial and lateral search 

range was set at 4 axial (0.0739 mm) and 1 lateral sample (0.298 mm), respectively. The 

time, τ, of the conventional cross-correlation method was equal to xx, which was xx times 

higher than the deep learning model.
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Figure 1: 
Vessel phantom experimental setup. A straight vessel phantom is attached onto two 

plastic fittings in a plastic container and embedded in gelatin surrounding medium. A 

programmable pump applies a pulsatile flow waveform in the phantom lumen, and a linear 

array transducer is fixed on top of the container to acquire ultrasound RF data.
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Figure 2: 
U-net architecture used to transform a pair of consecutive temporal ultrasound frames to 

a displacement field. The numbers inside the gray rectangles denote the dimensions of the 

feature maps at each layer of the encoding and decoding stages.
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Figure 3: 
Unsupervised deep learning approach for ultrasound image spatial registration. A pair 

of consecutive temporal ultrasound images, (Itn, Itn + 1), are fed to a U-net, which applies 

appropriate transformations to derive the displacement field, D . D  is subsequently used to 

move temporal frame Itn + 1 using a transformation T(), in order to approximate the frame Itn. 

Appropriate loss functions are calculated to evaluate the similarity between the generated 

image and the original Itn.

Karageorgos et al. Page 21

Phys Med Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: 
Inclusions corresponding to Tissue and Background, for elastographic contrast-to-noise ratio 

(CNEe) calculation.
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Figure 5: 
Adjusted pulse wave imaging (PWI) processing methodology with the deep learning-

based displacement estimator. A) Stack of consecutive temporal ultrasound frames. B) 

Displacement maps depicting the motion of each point location in the stack of temporal 

ultrasound frames. C) Manual wall segmentation of the proximal and distal wall of the 

vessel phantom. D) Spatiotemporal plot of phantom distension expressed in terms of 

velocities. A fit is applied to track the propagation of the distension pulse wave to estimate 

the PWV and the R2.
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Figure 6: 
A) Example RF frame from the validation dataset. B),C) Axial velocity maps resulting from 

the model trained on RF frames by using the MSE and NCC loss functions, respectively. D) 

B-mode image corresponding to the RF frame in Figure 6–A), E),F) Respective velocities 

using the model trained on the B-mode images (MSE, NCC, respectively).
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Figure 7: 
A),B) Average and standard deviation of the SNRe and CNRe values, respectively, obtained 

by each trained model and the reference conventional displacement estimator. C,D) Average 

and standard deviation of MREPWV and R2, respectively, obtained by each trained model.
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Figure 8: 
A-C) Time frames of the PWI image sequence derived through the RF-MSE model, in a 

phantom validation acquisition. The axial wall velocities are color-coded and overlaid onto 

the B-mode image. The yellow arrow indicates the position of the wave-front of the pulse 

wave at each given time-frame. D, E) demonstrate the spatiotemporal map of arterial wall 

distension, as obtained through conventional PWI and RF-MSE in an example validation 

acquisition. F, G) show the respective PWI and RF-MSE spatiotemporal maps in an example 

test acquisition.
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Figure 9: 
A-C) Three in-vivo examples of the validation dataset. The axial wall velocities derived 

through RF-MSE are color-coded and overlaid onto the B-mode image. D-F) Spatiotemporal 

maps, along with the estimated PWV and R2 as obtained through conventional PWI, 

corresponding to images shown in A-C), respectively. G-I) Respective spatiotemporal maps, 

as obtained through the RF-MSE model.
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TABLE I:

Summary of test phantom PWV and R2 values

Conventional PWI RF-MSE

# acquisition PWV (m/s) R2 PWV (m/s) R2

1 2.21 0.99 2.33 0.98

2 2.58 0.98 2.6 0.98

3 2.26 0.99 2.22 0.99

4 2.37 0.99 2.41 0.98

5 1.87 0.97 1.93 0.97
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TABLE II:

Summary of in-vivo PWV and R2 values

Conventional PWI RF-MSE

# acquisition PWV (m/s) R2 PWV (m/s) R2

1 2.42 0.93 2.65 0.96

2 2.97 0.95 3.02 0.99

3 3.83 0.84 3.78 0.9

4 0.57 0.97 3.7 0.98

5 3.65 0.95 3.79 0.95

6 4.69 0.92 4.54 0.94
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