

HHS Public Access

Author manuscript *J Org Chem.* Author manuscript; available in PMC 2024 July 21.

Published in final edited form as:

J Org Chem. 2023 July 21; 88(14): 10252–10256. doi:10.1021/acs.joc.3c00700.

Skeletal Editing of Dibenzolactones to Fluorenes via Ni- or Pd-Catalyzed Decarboxylation

Liang-Yu Chen,

Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States

Junqi Li

Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States

Abstract

The skeletal editing of dibenzolactones to fluorenes by Ni- or Pd-catalyzed decarboxylation is reported. In contrast to previously reported intramolecular decarboxylative couplings, inductively electron-withdrawing *ortho* substituents on the aryl carboxylate moiety and metal additives are not required. The decarboxylation reaction proceeds cleanly and can be applied to the skeletal editing of a natural product analogue. Mechanistic observations are consistent with stabilization of the carboxylate-ligated Ni complex over the Ni-carboxylate ion pair, which is the key factor in promoting the challenging decarboxylation step in the catalytic cycle.

Graphical Abstract

Skeletal rearrangements of a molecular framework generate new carbon skeletons with or without the introduction of new functionality, enabling expedited access to polycyclic natural product-like frameworks without the need for *de novo* synthesis.¹ Recent developments in *skeletal editing* aim to make precise changes to the molecular framework.² In this vein, our group recently reported an "atom-swapping" reaction sequence for the net substitution of a CH₂ group with an oxidized O within the molecular framework.³ The key

Corresponding Author Junqi Li – Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States; junqili@iastate.edu.

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.joc.3c00700.

Experimental details, characterization data, and NMR spectra of new compounds and results of optimization reactions for the Pd-catalyzed decarboxylation reaction (PDF)

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.joc.3c00700

The authors declare no competing financial interest.

ASSOCIATED CONTENT

step in this process utilizes a nickel-catalyzed decarbonylation that proceeds via oxidative addition to the C(acyl)–O bond (Scheme 1A). Guided by decarboxylative-intramolecular coupling reactions first described by Tsuji^{4a} and Saegusa^{4b} and their variants^{5–7} (Scheme 1B), we reason that, for lactones such as dibenzo[*c*,*e*]oxepin-5(7*H*)-ones containing a benzyl ester, oxidative addition would instead occur at the benzylic Csp³–O bond.⁸ This would allow for decarboxylation followed by intramolecular cross-coupling to occur (Scheme 1C), thus enabling the skeletal editing of dibenzolactone motifs found in Graphislactone D and related natural products⁹ into fluorenes, which are important substructures in pharmaceuticals,¹⁰ natural products,¹¹ and fluorophores.¹²

A notable feature of the Pd-catalyzed decarboxylative intramolecular coupling of aryl carboxylic esters is that the aryl component typically contains inductively electronwithdrawing groups *ortho* to the carboxyl moiety to promote decarboxylation^{6a,b} in the absence of silver additives (Scheme 1B).^{6c} It is hypothesized that these substituents are needed to stabilize the incipient negative charge in the transition state for decarboxylation.¹³

Metal additives such as silver,¹⁴ copper,¹⁵ or zinc¹⁶ salts have also been used to promote decarboxylative processes. In this Note, we report a nickel- and palladium-catalyzed decarboxylation reaction of dibenzo[c,e]oxepin-5(7H)-ones (Scheme 1C). Ortho electron-withdrawing groups and additives are not required for this reaction.

We began our investigations by identifying the optimal ligand. Using Ni(cod)₂ as the Ni source, dcypf afforded the highest product yield among the ligands tested (Table 1, entry 1, 91%). Changing the cyclohexyl groups in dcypf to phenyl in dppf lowered the yield by 30% (entry 2, 61%). Dcype, with a smaller bite angle, was ineffective (entry 3, <5%). PCy₃, known to achieve C(benzyl)–O oxidative addition in benzylic carbamates,¹⁷ gave a moderate yield (entry 4, 59%). Using dcypf, the temperature can be lowered to 100 °C for full conversion of **1a** within 16 h (entry 5). The reaction also proceeded at 80 °C (entry 6) to give 52% yield after 24 h. In all cases, the reactions proceeded cleanly without formation of side products. The reaction did not proceed without the Ni catalyst at 130 °C (see the Supporting Information for full optimization studies).

With the optimal conditions in hand, we investigated the substrate scope (Scheme 2). The reaction works for both electron-withdrawing (**2b**, 81%; **2c**, 93%) and electron-donating groups (**2d**, 60%) *para* to the carboxyl moiety. Electronic effects were more pronounced for substrates with electron-withdrawing and electron-donating groups on each of the arenes under the standard reaction conditions (**2e**, 31%; **2f**, <5%). However, good yields were obtained for both substrates at a higher temperature of 130 °C for 24 h (**2e**, 73%; **2f**, 88%). Substrates with an electron-withdrawing group at the *para* position relative to the COO moiety and an electron-donating group *para* to the bridging methylene provided **2g** in 70% yield. Switching the electronics of the two aryl groups provided **2g** in 84% yield. Substituents *ortho* to either the COO motif or the bridging methylene were tolerated, generating **2h** in 96% yield when $R^1 = o$ -OMe and $R^2 = H$ and 95% yields when $R^1 = H$ and $R^2 = o$ -OMe. However, decarboxylation of the substrate with two *ortho*-methoxy substituents *ortho* to the COO motif and the bridging methylene led to no conversion (**2i**,

<5%). The reaction was not tolerant toward the MOM and Boc protecting groups (**2j**, 19%; **2k**, 26%). Thiophene-containing **2l** was obtained in 96% yield.

During the course of preparing the lactones for decarboxylation, we utilized a Suzuki– Miyaura cross-coupling reaction between an oxaborole and an aryl halide to give a biaryl product that undergoes *in situ* lactonization to generate the desired lactone. During the synthesis of **1ga** and **1gb**, we isolated fluorene product **2g** in both reactions, indicating that the Pd catalyst used for the cross-coupling reaction was also capable of promoting decarboxylation (Scheme 3A). We optimized the conditions for the decarboxylation of **1a** for palladium catalysis, which required 0.2 equiv of Cs_2CO_3 for good conversion. At 130 °C, the Pd/RuPhos catalyst gave yields similar to that of the Ni(cod)₂/dcypf catalyst for the decarboxylation of **1a** (Table 1, entry 1 vs Scheme 3B, top). However, only the Pd catalyst was able to promote the decarboxylation of **1m**, which has a substituent at the benzylic position (Scheme 3B, bottom). The decarboxylation product was formed in 23% yield, with no conversion observed with Ni(cod)₂/dcypf even at 130 °C.

To test if our decarboxylation protocol can be applied to the skeletal editing of natural product-like structures similar to those in Scheme 1C, we synthesized **1n**, which contains multiple alkoxy substituents typically found in natural products. Decarboxylation under 130 °C for 28 h on a 1.0 mmol scale gave a 79% yield of the desired fluorene product, and benzylic oxidation on a 0.1 mmol scale then gave **5** in 95% yield (Scheme 4). This decarboxylation–oxidation sequence represents a skeletal editing of a lactone to a fluorenone, which are substructures in >60 natural products.¹⁸

Finally, we made some mechanistic observations about the Ni-catalyzed decarboxylation reaction. The putative catalytic cycle is a sequence of oxidative addition, CO_2 deinsertion (decarboxylation), and reductive elimination (Figure 1A). When a 1:1 mixture of Ni(cod)₂, dcypf, and **1b** was heated in C_6D_6 , intermediate species **dcypf-Ni-I** with a signal at -61.96 ppm in ¹⁹F NMR and at 174.8 ppm in ¹³C NMR was observed at 70 °C within 1 h (Figure 1B). At 90 °C, product formation was observed; at 100 °C, **dcypf-Ni-I** and **1b** were fully converted to the product **2b** within 1 h. We synthesized **dcypf-Ni-I** through an independent route. Based on assignment of the key NMR signals, we propose the structure of **dcypf-Ni-I** to be the product of oxidative addition at the C(benzyl)–O bond shown in Figure 1C, top.¹⁹ **Dcypf-Ni-I** can be used as a precatalyst in the decarboxylation reaction (Figure 1C, bottom). The observation of **dcypf-Ni-I** and not **dcypf-Ni-II** is consistent with literature precedent, which suggests that decarboxylation is the challenging step.

Under our standard reaction conditions, 8-membered lactone **10** does not react (Figure 1D). Acyclic substrate **1p** gave only benzoic acid 7 with no products derived from decarboxylation observable by GC and NMR of the crude reaction mixture under stoichiometric conditions at 100 or 130 °C, indicating that oxidative addition occurred but not decarboxylation. Based on our observations and previous DFT studies on the mechanism of decarboxylation, we reason that the decarboxylation of **1b** can occur because the chelating effect stabilizes the carboxylate-ligated Ni complex **dcypf-Ni-I**, which then establishes the *ipso*-interaction between the arene and the Ni center crucial for CO₂ deinsertion.^{13b,20} The weakening or lack of this chelating effect in the more

conformationally flexible **10** and **1p** leads to carboxylate dissociation²¹ to form an ion pair. The free carboxylate can only undergo thermal decarboxylation under more forcing conditions.²² The stabilization of the ion pair by a coordinating solvent may also contribute to the low yield (44%) of the decarboxylation of **1a** when MeCN is used as the solvent.

In conclusion, we have developed a methodology for converting dibenzolactones into the corresponding fluorenes via Ni- or Pd-decarboxylative-intramolecular coupling. The transformation proceeds cleanly without the assistance of metal additives, and inductively electron-withdrawing *ortho* substituents are not required on the substrates. This reaction was applied to the skeletal editing of a highly oxygenated natural product analogue to generate the corresponding fluorenone. The methodology developed in this work extends a class of reactions that previously had severe substrate restrictions into a practical reaction for accessing useful fluorene motifs.

EXPERIMENTAL SECTION

Representative procedure for the Ni-catalyzed decarboxylation of **1a** to **2a**: An oven-dried 2-dram vial was charged with a magnetic stir bar and dibenzolactone (0.1 mmol, 1 equiv). The vial was brought into a glovebox, and dcypf (8.7 mg, 0.015 mmol, 15 mol %), Ni(cod)₂ (2.8 mg, 0.010 mmol, 10 mol %), and toluene (1.0 mL) were added sequentially. The vial was capped and brought out of the glovebox and placed on an aluminum heating block preheated at 100 °C. After stirring for 16 h, the reaction was allowed to cool to rt. The solvent was then removed by using a rotary evaporator. The reaction mixture was then redissolved in CH₂Cl₂, loaded onto a 25 g sample load cartridge prepacked with silica gel, and purified by automated silica gel chromatography (12 g RediSep Gold column, 100% hexanes for 13 CV) to afford **2a** (14.3 mg, 0.0860 mmol, 86%). NMR data match previously reported values. ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 7.4 Hz, 2H), 7.57 (d, *J* = 7.4 Hz, 2H), 7.40 (t, *J* = 6.9 Hz, 2H), 7.32 (td, *J* = 7.4, 1.2 Hz, 2H), 3.92 (s, 2H). ¹³C{1H} NMR (101 MHz, CDCl₃) δ : 143.3, 141.8, 126.9, 126.8, 125.2, 120.0, 37.1.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENTS

This research was supported by National Institutes of Health (R35GM146854) and start-up funds from Iowa State University.

Data Availability Statement

The data underlying this study are available in the published article and its Supporting Information.

REFERENCES

(1). For a recent review on investigations into the cationic rearrangement of terpenoids, see: (a)Quílez del Moral JF; Perez A; Barrero AF. Chemical synthesis of terpenoids with participation of

cyclizations plus rearrangements of carbocations: a current overview. Phytochem Rev. 2020, 19, 559–576. For a review on recent efforts in achieving diversity through skeletal transformations, see:(b)Morrison KC; Hergenrother PJ Natural products as starting points for the synthesis of complex and diverse compounds. Nat. Prod. Rep. 2014, 31, 6–14. [PubMed: 24219884]

- (2). (a)Jurczyk J; Lux M; Adpressa D; Kim SF; Lam Y-H; Yeung CS; Sarpong R Photomediated ring contraction of saturated heterocycles. Science 2021, 373, 1004–1012. For a review on skeletal editing involving single atom changes in heterocycles, see: [PubMed: 34385352] (b)Jurczyk J; Woo J; Kim SF; Dherange BD; Sarpong R; Levin MD Single-atom logic for heterocycle editing. Nature Synthesis 2022, 1, 352–364.
- (3). Luu QH; Li J A C-to-O atom-swapping reaction sequence enabled by Ni-catalyzed decarbonylation of lactones. Chem. Sci. 2022, 13, 1095–1100. [PubMed: 35211275]
- (4). (a)Shimizu I; Yamada T; Tsuji J Palladium-catalyzed rearrangement of allylic esters of acetoacetic acid to give γ , δ -unsaturated methyl ketones. Tetrahedron Lett. 1980, 21, 3199–3202.(b)Tsuda T; Chujo Y; Nishi S; Tawara K; Saegusa K Facile Generation of a Reactive Palladium(II) Enolate Intermediate by the Decarboxylation of Palladium(II) β -Ketocarboxylate and Its Utilization in Allylic Acylation. J. Am. Chem. Soc. 1980, 102, 6381–6384.
- (5). For reviews, see: (a)Weaver JD; Recio A,III; Grenning AJ; Tunge JA. Transition Metal-Catalyzed Decarboxylative Allylation and Benzylation Reactions. Chem. Rev. 2011, 111, 1846–1913.
 [PubMed: 21235271] (b)Tunge JA The Evolution of Decarboxylative Allylation: Overcoming pKa Limitations. Isr. J. Chem. 2020, 60, 351–359.
- (6). (a)Makida Y; Matsumoto Y; Kuwano R Palladium-Catalyzed Decarboxylation of Benzyl Fluorobenzoates. Synlett 2017, 28, 2573–2576.(b)Pfister KF; Grünberg MF; Gooßen LJ Synthesis of Allylarenes via Catalytic Decarboxylation of Allyl Benzoates. Adv. Synth. Catal. 2014, 356, 3302–3306.(c)Hossian A; Singha S; Jana R Palladium (0)-Catalyzed Intramolecular Decarboxylative Allylation of Ortho Nitrobenzoic Esters. Org. Lett. 2014, 16, 3934–3937. [PubMed: 25055344]
- (7). For decarboxylative-intramolecular coupling of esters of propiolic acids, see: (a)Torregrosa RRP; Mendis SN; Davies A; Tunge JA. Palladium-Catalyzed Decarboxylative Benzylation of Acetylides and Enolates. Synthesis 2018, 50, 3205–3216.(b)Mendis SN; Tunge JA Palladium-Catalyzed Stereospecific Decarboxylative Benzylation of Alkynes. Org. Lett. 2015, 17, 5164–5167. [PubMed: 26450113] (c)Rayabarapu DK; Tunge JA Catalytic Decarboxylative sp-sp³ Coupling. J. Am. Chem. Soc. 2005, 127, 13510–13511. [PubMed: 16190710]
- (8). (a)Tollefson EJ; Dawson DD; Osborne CA; Jarvo ER Stereospecific Cross-Coupling Reactions of Aryl-Substituted Tetrahydrofurans, Tetrahydropyrans, and Lactones. J. Am. Chem. Soc. 2014, 136, 14951–14958. [PubMed: 25308512] (b)Xiao J; Chen T; Han L-B Nickel-Ca alyzed Direct C-H/C-O Cross Couplings Generating Fluorobenzenes and Heteroarenes. Org. Lett. 2015, 17, 812–815. [PubMed: 25668487] (c)Michel NWM; Jeanneret ADM; Kim H; Rousseaux SAL Nickel-Catalyzed Cyanation of Benzylic and Allylic Pivalate Esters. J. Org. Chem. 2018, 83, 11860–11872. [PubMed: 30179005] (d)Tsuji H; Hashimoto K; Kawatsura M Nickel-Catalyzed Benzylic Substitution of Benzyl Esters with Malonates as a Soft Carbon Nucleophile. Org. Lett. 2019, 21, 8837–8841. [PubMed: 31638815]
- (9). (a)Tanahashi T; Kuroishi M; Kuwahara A; Nagakura N; Hamada N For Phenolics from the Cultured Lichen Mycobiont of *Graphis scripta var. pulverulenta*. Chem. Pharm. Bull. 1997, 45, 1183–1185.(b)Hamada N; Tanahashi T; Miyagawa H; Miyawaki H Characteristics of Secondary Metabolites from Isolated Lichen Mycobionts. Symbiosis 2001, 31, 23–33.
- (10). Top Pharmaceuticals Poster. https://njardarson.lab.arizona.edu/content/top-pharmaceuticalsposter. (accessed March 29, 2023).
- (11). Shi Y; Gao S Recent advances of synthesis of fluorenone and fluorene containing natural products. Tetrahedron 2016, 72, 1717–1735.
- (12). Shaya J; Corridon PR; Al-Omari B; Aoudi A; Shunnar A; Mohideen MIH; Qurashi A; Michel BY; Burger A Design, photophysical properties, and applications of fluorene-based fluorophores in two-photon fluorescence bioimaging: A review. J. Photochem. Photobiol. C: Photochem. Rev. 2022, 52, 100529.
- (13). (a)Rodríguez N; Goossen LJ Decarboxylative coupling reactions: a modern strategy for C–C-bond formation. Chem. Soc. Rev. 2011, 40, 5030–5048. [PubMed: 21792454] (b)Fromm A;

- (14). For decarboxylative cross-couplings of arylbenzoic acids in the presence of silver salts, see: (a)Reference 6c.(b)Hossian A; Manna K; Das P; Jana R CuI/AgI-Promoted Decarboxylative Alkynylation of ortho-Nitro Benzoic Acids. ChemistrySelect 2018, 3, 4315–4318.(c)Myers AG; Tanaka D; Mannion MR Development of a Decarboxylative Palladation Reaction and Its Use in a Heck-type Olefination of Arene Carboxylates. J. Am. Chem. Soc. 2002, 124, 11250–11251. [PubMed: 12236722]
- (15). For decarboxylative cross-couplings of arylbenzoic acids in the presence of copper salts, see: Goossen LJ; Deng G; Levy LM. Synthesis of Biaryls via Catalytic Decarboxylative Coupling. Science 2006, 313, 662–664. [PubMed: 16888137]
- (16). For decarboxylative cross-couplings of arylbenzoic acids in the presence of zinc salts, see: Chen Q; Wu A; Qin S; Zeng M; Le Z; Yan Z; Zhang H. Ni-Catalyzed Decarboxylative Cross-Coupling of Potassium Polyfluorobenzoates with Unactivated Phenol and Phenylmethanol Derivatives. Adv. Synth. Catal. 2018, 360, 3239–3244.
- (17). Harris MR; Hanna LE; Greene MA; Moore CE; Jarvo ER Retention or Inversion in Stereospecific Nickel-Catalyzed Cross-Coupling of Benzylic Carbamates with Arylboronic Esters: Control of Absolute Stereochemistry with an Achiral Catalyst. J. Am. Chem. Soc. 2013, 135, 3303–3306. [PubMed: 23414579]
- (18). Dictionary of Natural Products. https://dnp.chemnetbase.com/chemical/ChemicalSearch.xhtml? dswid=-7064/ (accessed March 29, 2023).
- (19). For examples of related η¹-benzyl Ni complexes, see: (a)Carmona E; Gutierrez-Puebla E; Marin JM; Monge A; Paneque M; Poveda ML; Ruiz C. Synthesis and x-ray structure of the nickelabenzocyclopentene complex [cyclic](Me3P)2Ni-(CH2CMe2-o-C6H4). Reactivity toward simple, unsaturated molecules and the crystal and molecular structure of the cyclic carboxylate (Me3P)2Ni(CH2CMe2-o-C6H4C(O) O). J. Am. Chem. Soc. 1989, 111, 2883–2891.(b)Albers I; Álvarez E; Cámpora J; Maya CM; Palma P; Sánchez LJ; Passaglia. Cationic η³-benzyl nickel compounds with diphosphine ligands as catalyst precursors for ethylene oligomerization/ polymerization: influence of the diphosphine bite angle. J. Organometall. Chem. 2004, 689, 833–839.
- (20). For DFT studies on decarboxylations from Pd intermediates, see: (a)Rydfjord J; Svensson F; Trejos A; Sjöberg PJR; Sköld C; Sävmarker J; Odell LR; Larhed M. Decarboxylative Palladium(II)-Catalyzed Synthesis of Aryl Amidines from Aryl Carboxylic Acids: Development and Mechanistic Investigation. Chem. Eur. J. 2013, 19, 13803–13810. [PubMed: 23983102]
 (b)Yang Y; Canty AJ; McKay AI; Donnelly PS; O'Hair RAJ Palladium-Mediated CO₂ Extrusion Followed by Insertion of Isocyanates for the Synthesis of Benzamides: Translating Fundamental Mechanistic Studies To Develop a Catalytic Protocol. Organometallics 2020, 39, 453–467.
 (c)Humke JN; Daley RA; Morrenzin AS; Neufeldt SR; Topczewski JJ Combined Experimental and Computational Mechanistic Investigation of the Palladium-Catalyzed Decarboxylative Cross-Coupling of Sodium Benzoates with Chloroarenes. J. Org. Chem. 2021, 86, 11419–11433. [PubMed: 34339213]
- (21). Nishizawa A; Takahira T; Yasui K; Fujimoto H; Iwai T; Sawamura M; Chatani N; Tobisu M Nickel-Catalyzed Decarboxylation of Aryl Carbamates for Converting Phenols into Aromatic Amines. J. Am. Chem. Soc. 2019, 141, 7261–7265. [PubMed: 31017413]
- (22). Acheson RJ; Galwey AK The Thermal Decomposition of Nickel Terephthalate and Nickel Salts of Other Carboxylic Acids. J. Chem. Soc. A 1967, 1174–1178.

Chen and Li

Figure 1.

Proposed mechanism of decarboxylation and experiments to probe the mechanism. ^aThe reaction was run for 1 h at each temperature. ^bThe reaction was run at 130 °C for 1 h. Yields shown are NMR yields.

A) Ni-catalyzed decarbonylation of lactones

B) Pd- or Ni-catalyzed decarboxylation of benzoate esters

C) This work: Ni- and Pd-catalyzed decarboxylation of lactones

Molecular Editing of Esters by Decarbonylation and Decarboxylation (This Work)

Scheme 2.

Substrate Scope of Lactones for Decarboxylation to Fluorenes^a

^{*a*}Reactions were run on a 0.10 mmol scale. Yields shown are isolated yields. ^{*b*}The reaction was run at 130 °C for 24 h. ^{*c*}Average yield of three reactions.

Author Manuscript

With Pd/RuPhos: 23% yield^b

Scheme 3.

Author Manuscript

Scheme 4. Skeletal Editing of Dibenzolactone 1n to Fluorenone 5

 $^a\!\mathrm{Reactions}$ were run on a 0.050 mmol scale. Yields shown are NMR yields.

^b25 mol % of ligand was used.