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Abstract

Introduction: Acute mortality from carbon monoxide poisonings is 1-3%. The long-term 

mortality risk of survivors of carbon monoxide poisoning is doubled compared to age matched 

controls. Cardiac involvement also increases mortality risk. We built a clinical risk score to 

identify carbon monoxide poisoned patients at risk for acute and long-term mortality.

Methods: We performed retrospective analysis. We identified 811 adult carbon monoxide 

poisoned patients in the derivation cohort, and 462 adult patients in the validation cohort. 

We utilized baseline demographics, laboratory values, hospital charge transactions, discharge 

disposition, clinical charting information in the electronic medical record in Stepwise Akaike’s 

Information Criteria with Firth logistic regression to determine optimal parameters.

Results: In the derivation cohort , 5% had inpatient or 1-year mortality. Three variables 

following final Firth logistic regression minimized Stepwise Akaike’s Information Criteria: altered 

mental status, age, and cardiac complications. The following predict inpatient or 1-year mortality: 

age > 67, age > 37 with cardiac complications, age > 47 with altered mental status, or any age 

with cardiac complications and altered mental status. The sensitivity of the score was 82% (95% 

CI: 65-92%), the specificity was 80% (95% CI 77-83%), negative predictive value was 99% (95% 

CI 98-100%), positive predictive value 17% (95% CI 12-23%), and the area under the receiver 

operating curve was 0.81 (95% CI: 0.74-0.87). A score above the cut-off point of −2.9 was 

associated with an odds ratio of 18 (95% CI: 8-40). In the validation cohort (462 patients), 4% 

had inpatient death or 1-year mortality. The score performed similarly in the validation cohort: 
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sensitivity was 72% (95% CI 47-90%), specificity was 69% (95% CI 63-73%), negative predictive 

value was 98% (95% CI 96-99%), positive predictive value was 9% (95% CI 5-15%) and and the 

area under the receiver operating curve was 0.70 (95% CI: 60%-81%).

Conclusions: We developed and validated a simple, clinical-based scoring system, the Heart-

Brain 346-7 Score, based on the following: age > 67, age > 37 with cardiac complications, age 

> 47 with altered mental status, or any age with cardiac complications and altered mental status. 

With further validation, this score will aid decision making to identify carbon monoxide poisoned 

patients with higher mortality risk.
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Introduction:

Over 50,000 carbon monoxide (CO) poisoning cases occur in the United States yearly [1]. 

Normobaric oxygen, hyperbaric oxygen therapy (HBOT), and supportive care are the main 

treatments [1–4]. The reported case fatality rate is 1-3% [1,2]. Characteristics associated 

with mortality include fire as CO source, age, syncope, Glasgow Coma Scale, endotracheal 

intubation, myocardial injury, carboxyhemoglobin level, white blood cell count, serum 

sodium, creatinine, and pH less than 7.20 [5–8].

Survivors of acute CO poisoning have increased long-term mortality [5,6,9], especially those 

with intentional exposure [6]. Major causes of death include alcohol use disorder, motor 

vehicle collisions, and intentional self-harm [3]. Patients with cardiovascular complications 

also have increased mortality compared to those without [5,10]. The quality of life for 

survivors is severely affected [9] and care should involve close outpatient follow up [2].

Beyond mortality, CO poisoned patients develop neurological and cardiovascular 

complications [1,5,11]. Between 15% and 40% of survivors of CO poisoning suffer 

from permanent neurocognitive and affective deficits [5,11,12]. Ventricular dysfunction, 

myocardial infarction, and dysrhythmias occur in patients with moderate to severe 

poisonings and are associated with increased mortality [5,6]. High carboxyhemoglobin 

levels are associated with both acute and future myocardial infarction [5,6]. In one 

study, over half of moderately to severely CO-poisoned patients developed left ventricular 

dysfunction [9].

While CO poisoning is a major cause morbidity and mortality, there is no universal 

mortality prediction score. Existing scores such as the poison severity score (PSS) [13], 

sequential organ failure assessment (SOFA) [14], the APACHE-II score [15], and Charlson 

Comorbidity Index [16] have imperfect capacity to identify CO poisoning patients at high-

risk of acute or long-term mortality. A proposed score for carbon monoxide poisoning can 

identify high risk patients for: 1) inpatient assessment, and 2) close outpatient follow-up.
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Rose et al. [4] previously reported a retrospective cohort of CO poisoning patients to identify 

and define patients receive who HBOT in clinical practice and characterize their acute and 

long-term mortality.

In this study, we have utilized the medical record database of a large regional health system 

to generate an initial cohort from 2000 to 2014 to develop a prediction score for combined 

in-hospital and 1-year mortality in CO poisoning utilizing deep learning techniques. We then 

generated a second cohort, from 2014 to 2018, to validate the prediction algorithm.

Methods

Study Design and identifying CO poisoned patients for the derivation and validation 
cohorts

We included the TRIPOD (Transparent Reporting of a multivariable prediction model 

for Individual Prognosis Or Diagnosis) Statement for this study in the Supplemental 

Information.

Data from the electronic medical records of CO poisoned patient were used. For the 

derivation cohort, as previously reported [4], patients aged greater than or equal to 18 

years with a CO poisoning diagnosis at hospital discharge between January 2000 to 

April 2014 were identified using International Classification of Diseases, Ninth Revision, 

Clinical Modification (ICD9-CM) codes. Patients included in this study had ICD9-CM 

diagnosis codes 986, E868.3, E868.8, E868.9, E982.1, E982.1, E868.2, or E982.0. Patients 

were identified through an electronic medical record data repository that contains full-text 

medical records and integrates information from central transcription, laboratory, pharmacy, 

finance, administrative, and other departmental databases [17]. For the derivation cohort, 

we identified 2,825 encounters for 1,289 unique patients in 15 hospitals between January 

2000 and April 2014 with defined ICD9-CM diagnosis codes. After excluding pediatric 

patients (190), we identified 1,099 unique adult patients with CO poisoning. Due to previous 

findings that HBOT significantly lowers both acute and 1-year mortality [4], we built the 

derivation algorithm from 811 of 1,099 patients who had no HBOT treatment documented as 

a method to minimize confounders (Table 1).

For the validation cohort, patients aged greater than or equal to 18 years with a CO 

poisoning diagnosis at hospital discharge between May 2014 to April 2018 were identified 

using both the ICD9-CM codes or International Classification of Diseases, Tenth Revision, 

Clinical Modification (ICD10-CM) codes. Database based research findings utilizing ICD-9 

codes are consistent with ICD-10 codes across various disciplines [18–20]. Patients 

included in this study had ICD9-CM diagnosis codes above or ICD10-CM diagnosis codes 

of: T58.2X1A-4A, T58.8X1A-4A, T58.91XA-94XA, T58.01XA-04XA, T58.11XA-14XA, 

T58.0-04, T58.1-14, T58.2, T58.2X-2X4, T58.8, T58.8X-8X4, and T58.9-94. Excluding 

pediatric patients, we identified 462 adult patients with CO poisoning in the validation 

cohort in 35 hospitals between May 2014 and April 2018 (Table 1). The validation cohort 

contained both patients who did and who did not receive HBOT therapy.
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To maintain patient confidentiality, data were de-identified using De-ID Software through 

the use of an honest broker system [21]. The index hospitalization was defined as the first 

admission meeting all inclusion criteria for patients with multiple admissions.

Data collection

Baseline demographics, laboratory values, hospital charge transactions, emergency room 

physician documentation, and medical record discharge data were obtained from the 

electronic medical data repository. Two academic internal medicine physicians reviewed 

the de-identified emergency department reports to record the mechanism of poisoning, 

symptoms, cardiac involvement and carboxyhemoglobin levels in both derivation and 

validation cohorts. Acute mortality was determined by hospital discharge disposition. To 

determine 1-year mortality, we censored patients who died in-hospital, then examined 

patients with a health encounter greater than 1 year from the discharge date of the index CO 

poisoning. Patients who did not have a visit greater than 1 year from initial CO poisoning 

were compared with the United States Social Security Death Index to determine death.

We created the composite variable “cardiac complication” for any of the following recorded 

in the electronic medical record data repository [17] on the initial patient encounter: cardiac 

arrest, shock, dysrhythmia or myocardial infarction mentioned in clinical chart review, 

elevated serum troponin > 0.10 ng/mL, or shock requiring vasopressors or ionotropes.

Study Variables and Definitions

We used variables with minimal historical information to develop a model that would 

be readily available. These 10 variables were assessed: altered mental status, chest pain, 

syncope, shortness of breath, fire exposure, motor vehicle exposure, carboxyhemoglobin 

levels, sex, presence of any cardiac complication (described above), and age. We did not 

identify patients with domestic fuel exposure as the source of CO in the derivation cohort. 

We combined acute mortality and 1-year mortality as the primary outcome measure due to 

low rate of acute mortality alone and goal of identifying high risk patients.

Charlson Comorbidity Index

We used ICD-9 and ICD-10 codes of each patient to determine medical comorbidities. We 

assigned a Charlson Comorbidity Index score derived from comorbidities [22].

Statistical Analysis

Results were expressed as median and inter-quartile ranges (continuous variables) or as 

percentages (categorical variables). We compared variable distribution using Student’s 

t-tests or Wilcoxon rank sum tests, as appropriate, for continuous variables, and using 

chi-square tests for categorical variables. All statistical analyses were performed with Stata 

17.0 (StataCorp LP, College Station, TX, USA).

Model derivation and comparison to the Charlson Comorbidity Index

We used deep learning to identify a desirable model from the data set with Stepwise 

Akaike’s Information Criterion with backward model selection [23]. We calibrated for 

outliers and separation in the final model with Firth logistic regression [24]. The model 
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was compared to the Charlson Comorbidity Index using chi square binomial test to assess 

sensitivity, specificity, positive predictive value, and negative predictive value. Likelihood 

ratio test was used to compare odds ratios.

Model validation

By the TRIPOD guidelines, we conducted internal validation of the score using a 

bootstrapping method in validation cohort utilizing (Supplementary Table 1) [25].

Results

Patient characteristics in derivation and validation cohorts

For the derivation cohort, we identified 2825 encounters for 1,289 unique patients in 15 

hospitals between January 2000 and April 2014 with defined ICD9-CM diagnosis codes. 

After excluding pediatric patients (190), we identified 1,099 unique adult patients with CO 

poisoning. Due to previous findings that HBOT significantly lowers both acute and 1-year 

mortality [4], we built the derivation algorithm from 811 of 1,099 patients who had no 

HBOT treatment documentation to minimize confounders. Excluding pediatric patients, we 

identified 462 adult patients with CO poisoning in the validation cohort in 35 hospitals 

between May 2014 and April 2018 (Table 1). The validation cohort contained both patients 

who did and who did not receive HBOT therapy.

In the derivation cohort of 811 patients, the median age was 43 years, 51% were female 

sex, 69% were Caucasian, 24% African American, and 7% other race. Eighteen percent 

were admitted to the hospital, 6% required intensive care unit (ICU) level care, and 5% 

were transferred from outside or University of Pittsburgh Medical Center (UPMC) affiliated 

hospital. For predictors of interest, 18% had altered mental status, 12% had chest pain, 13% 

had syncope, 14% had shortness of breath, 9% had a carboxyhemoglobin level > 25%, and 

7% had a cardiac complication. Twelve of 811 (1.5%) patients died while inpatients, and 

amongst survivors of initial CO poisoning, 3.2% (26 of 811) patients died within 1 year for a 

combined 38 fatalities (4.7%) (Table 1).

For the validation cohort, we identified 462 unique patients. The median age was 49 years, 

33% were female sex, 75 % Caucasian, 17% African American, and 7% other race. 28% 

were admitted inpatient, 28% required ICU level care, and 10% were directly transferred 

from outside or University of Pittsburgh Medical Center (UPMC) affiliated hospital. For 

predictors of interest, 24% had altered mental status, 10% had chest pain, 23% had syncope, 

21% had shortness of breath, 16% had a carboxyhemoglobin level > 25%, and 14% had 

a cardiac complication. Eight of 462 (1.7%) patients died will inpatients, and amongst 

survivors of initial CO poisoning, 2.4% (11 of 462) patients died within 1 year, for a 

combined 19 (4.1%) fatalities . Thirty-five of 141 patients (25%) were known to receive 

HBOT (Table 1).

Deriving a model to predict inpatient or 1-year mortality

Ten variables that would be immediately available to an accepting triage provider, with 

no laboratory results other than the reported carboxyhemoglobin level or potentially point 
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of care troponin level, were included in model selection: altered mental status, chest pain, 

syncope, shortness of breath, fire exposure source of CO, motor vehicle exposure of CO, 

carboxyhemoglobin level, sex, presence of cardiac complication, and age. Through stepwise 

model selection, four variables were selected to minimize the Akaike’s Information Criteria: 

syncope, age, altered mental status, and cardiac complications. To calibrate the model using 

firth logistic regression and control for separation, three variables were selected: altered 

mental status, age, and cardiac complications. The final regression model is described in 

Table 2 with the “constant” parameter, or intercept, representing the output of the derived 

equation when all independent variables are equal to zero.

The optimal cut-point for the regression to predict combined inpatient or 1-year mortality 

was −2.9. The following combinations of age (integer cut-off’s) and symptoms produced 

regression output greater than −2.9, to predict that a patient would be at risk for acute or 

1-year mortality: age > 68 without other features, age > 37 with cardiac complication, age > 

47 with altered mental status, and both cardiac complication and altered mental status at any 

age. For ease of use, functionally, the cut-off of age > 68 was changed to age > 67 to create 

the “Heart Brain 346-7 Score”. This simple age-category definition of the score was what 

we tested for performance as it is what would be used clinically. We termed the score “Heart 

Brain 346-7 Score” as it involves assessing if a given patient for cardiac manifestations, a 

neurocognitive complaint (altered mental status), and age at given cut-off points (37, 47, 

and 67 years old). To determine if a patient is at risk for inpatient or 1-year mortality, the 

three variables are input into the logistic regression to determine if the output is greater 

than the optimized cut-point of −2.9. For example, a 55-year-old patient with altered mental 

status and no cardiac complication has an output of −2.5, thus increased risk of death. 

Using this score, the following scenarios would be examples of a positive Heart Brain 346-7 

Score: All adults with altered mental status and cardiac complication, age > 37 with cardiac 

complication, age > 47 with altered mental status, and all adults ages > 67. The distribution 

of the Heart-Brain 346-7 Score in the derivation cohort is shown in Supplementary Figure 1.

The performance of the Heart-Brain Score was assessed in the derivation cohort. The 

sensitivity was 82% (95% CI: 66-92%), specificity 80% (95% CI: 77-83%), and area 

under the receiver operating curve (AUC ROC) was 0.81 (95% CI: .74-.87). The positive 

predictive value (PPV) was 17% (12-23%) and the negative predictive value (NPV) was 99% 

(98-99%). A Heart Brain 346-7 Score greater than the cut-off point has an odds ratio of 18 

(7.8-40) for inpatient or 1-year mortality (Table 3).

Comparing the Heart Brain 346-7 Score to the Charlson Comorbidity Index in the 
derivation cohort

We compared the performance of the Heart Brain 346-7 Score to a commonly used 

prognostic tool, the Charlson Comorbidity Index. The Charlson Comorbidity Index is 

validated for predicting 1-year or in-hospital mortality [26,27]. The Charlson Comorbidity 

Index was easily obtainable with retrospective, EMR based data (e.g. ICD-9 or ICD-10 

codes) [26]. We determined the cut-off of a Charlson Comorbidity Index of 2 has the highest 

AUC ROC to predict inpatient or 1-year death in this cohort. 791 patients in the derivation 

cohort have a Charlson Comorbidity Index of 2. The Charlson Comorbidity Index of 2 
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was associated with a sensitivity was 25% (95% CI: 12-42%), specificity 96% (95% CI: 

94-97%), PPV 21% (10-36%), and NPV 96% (95-98%). A CCI of 2 has an odds ratio of 

7.1 (3.1-16) for the combined outcome measure. The Heart Brain 346-7 Score was superior 

to a Charlson Comorbidity Index of 2 for sensitivity (P < 0.0001), NPV (P = 0.003), and 

diagnostic odds ratio (P < 0.001) (Table 3). The Heart Brain 346-7 Score was inferior to 

the Charlson Comorbidity Index for specificity (P < 0.0001) and similar in PPV (p=0.51) 

(Figure 1).

Heart Brain 346-7 Score performance in the validation cohort

In the validation cohort of 462 patients, 19 (4.1%) experienced the combined inpatient 

death or death within 1 year of CO poisoning. The Heart-Brain 346-7 Score was able to be 

calculated in 431 patients. Due to missing retrospective chart review data, the Heart-Brain 

346-7 Score could not be calculated in one survivor of inpatient hospitalization who died 

within 1 year and 30 patients who survived to 1 year and thus were not included in the 

analysis. One hundred forty-three of the 431 patients had a positive Heart-Brain 346-7 Score 

(33%). Of those 143 patients with a positive Heart-Brain 346-7 Score, 13 (9.1%) had the 

combined outcome of inpatient or 1-year mortality. Patients with a negative Heart-Brain 

346-7 Score (5 of 288) had a 1.7% combined outcome. The distribution of the Heart-Brain 

346-7 Score in the validation cohort is shown in Supplementary Figure 2.The performance 

of the score in the validation cohort consisted the following: sensitivity 72% (95% CI: 

47-90%), specificity 69% (95% CI 64-73%), PPV 9.0% (95% CI: 5.0-15%), NPV 98% 

(95% CI: 96-99%), odds ratio 5.7 (95% CI 2.0-16), and AUC ROC 0.70 (95% CI 60%-81%) 

(Table 4).

As a sensitivity analysis, we evaluated Heart Brain 346-7 score’s performance on acute, 

one-year, and three-year mortality separately in the validation cohort. We censored acute 

mortality when evaluating one-year and three-year morality. When evaluating for inpatient 

mortality alone, the Heart-Brain 346-7 Score performed similarly as combined acute and 

one-year mortality, sensitivity 100% (63-100%), specificity 68% (63-73%), PPV 5.6% 

(2.5-11%), NPV 100% (99-100%) (Supplementary Table 2). When evaluating for one-year 

mortality, the Heart-Brain 346-7 Score had higher specificity while retaining high NPV 

compared to the combined outcome, sensitivity 50% (19-81%), specificity 97% (95-99%), 

PPV 29% (10-56%), NPV 99% (97-100%) (Supplementary Table 3). When evaluating for 

three-year mortality alone, the Heart-Brain 346-7 Score had higher specificity and PPV 

while retaining high NPV compared to the combined outcome, sensitivity 65% (44-83%), 

specificity 100% (99-100%), PPV 100% (81-100%), NPV 98% (96-99%) (Supplementary 

Table 4).

Charlson Comorbidity Index performance in the validation cohort

We compared the performance of Heart Brain 346-7 Score in the validation cohort to 

the Charlson Comorbidity Index. We determined the Charlson Comorbidity Indexfor 431 

patients. We determined the cut-off of CCI of 2 has the highest AUC ROC to predict 

inpatient or 1-year death. The CCI of 2 had the following performance: sensitivity 39% 

(95% CI: 16-62%), specificity 85% (95% CI: 82-89%), PPV 10% (95% CI: 4-20%), NPV 

97% (95% CI: 95-98%), and odds ratio of 5.74. The Heart Brain 346-7 Score was superior 
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to a CCI of 2 for sensitivity (P < 0.05) and odds ratio (P < 0.02) (Figure 2), similar for PPV 

(P =0.81) and NPV (P = 0.29), and inferior for specificity (P < 0.001) (Figure 2).

Discussion:

We developed a novel mortality prediction score utilizing machine learning termed the 

Heart-Brain 346-7 Score. This score utilizes altered mental status, age, and cardiac 

complications, to predict inpatient or 1-year mortality. The score performed similarly 

across two different derivation and validation populations. The Heart-Brain Score performed 

“good” in the derivation cohort and “fair” in the validation cohort when examining the ROC 

score [28,29]. Diagnostic tools generated from machine learning have limitations in real-

world validation [30,31]. The Heart-Brain 346-7 Score’s similar performance in a separate, 

real-world data validation cohort demonstrates its potential usefulness for an AI-derived 

diagnostic tool. We also demonstrated the score is a useful tool when assessing acute, 1-year, 

and 3-year mortality independently (not acute and long-term mortality combined) in the 

derivation cohort. While the negative predictive value is high and the positive predictive 

value is low, one would potentially accept this level of performance as this is a tool to guide 

triage, observation, and follow-up decisions.

Both derivation and validation cohorts enrolled diverse patients with varying age, race, and 

hospital disposition. The validation cohort was older, more male dominant, and had more 

Caucasians compared to the derivation cohort. The validation cohort had more severe CO 

poisoning patients with higher proportion of outside hospital transfer, hospital admission, 

ICU admission. Another critical difference between the cohorts was whether they received 

HBOT. Timely administration of HBOT is associated with improved acute and inpatient 

mortality [4]. We excluded patients who received HBOT in the derivation cohort due to 

this known effect in the cohort [4]. The addition of patients who eventual received HBOT 

could factor into the lower sensitivity and specificity of the Heart-Brain 346-7 score in the 

validation cohort. In both cohorts, the Heart-Brain 346-7 score had high negative predictive 

value, which speaks to this unique score to differentiate CO poisoning patients at low vs. 

high risk.

The Heart-Brain-346-7 score has advantages over other validated scores, albeit in different 

populations. The poison severity score (PSS) is a 5 grade severity grading system based in 

12 organ systems with features requiring laboratory values (e.g., musculoskeletal requires 

CPK concentrations) [13,32]. The sequential organ failure assessment (SOFA) and the 

Acute Physiology and Chronic Health disease Classification System II (APACHE-II) score 

predicts ICU mortality using laboratory results and clinical data [14,15,33]. The Heart-Brain 

346-7 score does not require laboratory results that are necessary for the PSS, APACHE-II, 

and SOFA [15,33]. The Charlson Comorbidity Index was developed from inpatients to 

predict long-term mortality [16]. Co-morbidities from ICD-9 codes are prerequisites for the 

Charlson Comorbidity Index [16,34]. This is not readily available at clinical presentation 

when many CO-poisoned patients present with acute mental status changes and have non-

reliable histories. The Charlson Comorbidity Index is also not validated in CO poisoning 

[16]. In contrast, the Heart Brain 346-7 Score is specifically designed for CO poisoning 

patients. In this study, we demonstrated that the Heart-Brain-346-7 score is superior to the 
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Charlson Comorbidity Index in terms of sensitivity and odds ratio. Finally, the Heart Brain 

346-7 score is more easily implemented due to its simplicity similar to other mortality 

prediction scores[35] [36]. The Heart Brain 346-7 only requires three clinical inputs that 

should be readily available to even a triaging initial provider without needing laboratory 

criteria and thus has the potential to have widespread use.

The Heart Brain 346-7 Score utilizes age, cardiac complication, and altered mental status 

as the main mortality predictors. Heart-Brain Score specifically defines age cutoffs of less 

than 37, 37 to 47, and more than 67 years old for mortality risk that may become more 

accepted with further validation. Additionally, the score suggests cardiac and neurological 

involvement in CO poisoning correlates with poor outcomes. Prior investigation has similar 

findings. For a 1 mg/m3 increase of average environmental carbon monoxide concentration 

on the present day versus previous day, there was a significant increase in daily mortality 

from cardiovascular disease, from coronary artery disease, and from stroke. = [37]. A 

low initial Glasgow Coma Scale is associated with delayed neurological sequelae [38]. 

Additionally, CO poisoning mortality proportionally correlates with age and peaks in 

patients older than 80 years old [39]. However, age may be confounding as it is correlated 

with poorer cardiovascular health and neurological comorbidities [40,41]. Nevertheless, it 

suggests that laboratory values such as carboxyhemoglobin, a well-established test for CO 

poisoning, may not have a simple linear relationship with mortality.

Rose et al. [4] found a significant impact of receiving HBOT on mortality, we could 

not derive the score from those patients that received HBOT in the derivation cohort. To 

make the score have broader generalizability in all patients presenting to the emergency 

department with CO poisoning, the validation cohort included patients who would and 

would not receive HBOT. This could have impacted the performance of the score. The 

Heart Brain 346-7 Score differentiates only mortality risk with limited stratification. Thus, 

it would be valuable as a screening mortality tool rather than a sophisticated mortality 

prognosticator. Significant morbidities of CO poisoning stem from neurocognitive deficits 

[11,12]. We did not assess neurocognitive impact, in regard to survivor function or 

healthcare utilization. The score was developed and validated in a state-wide health system. 

This could diminish global applicability of the score. We did not record intention on patients 

due to lack of reliable data. Intentional poisonings have been reported to have higher 

mortality than non-intentional poisonings [3,42].

Conclusions:

We developed and validated a simple scoring system to risk stratify carbon monoxide 

poisoned patients. Further validation of this score at other sites would help in evaluating 

its performance. The Heart-Brain 346-7 score can be used to triage high risk carbon 

monoxide poisoned patients at initial presentation and identify high risk survivors upon 

hospital discharge

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Comparison of the Heart Brain 346-7 Score with the Charlson Comorbidity Index of 2 in 

the Derivation cohort. A Charlson Comorbidity Index of 2 has the highest performance 

to predict inpatient or 1-year death in this cohort. The sensitivity, specificity, negative 

predictive value, positive predictive value expressed in percentage and odds ratio expressed 

as unitless. PPV = positive predictive value: NPV = negative predictive value; OR = 

diagnostic odds ratio. * = P value < 0.01
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Figure 2: 
Comparison of the Heart Brain 346-7 Score with the Charlson Index of 2 in the Validation 

cohort. A Charlson Comorbidity Index of 2 has the highest performance to predict inpatient 

or 1-year death in this cohort. The sensitivity, specificity, negative predictive value, positive 

predictive value expressed in percentage and odds ratio expressed as unitless. PPV = positive 

predictive value: NPV = negative predictive value; OR = diagnostic odds ratio. * = P value < 

0.01
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Table 1:

Characteristics of the derivation cohort and validation cohort populations

Derivation cohort Validation cohort P valuea

n Results n Results

Demographics

Age* 811 43 (30-56) 462 49 (35-60) 0.003b

Female 811 417 (51%) 462 94 (33%) < 0.001

Race 793 462 0.013

White 547 (69%) 348 (75%)

African American 194 (24%) 80 (17%)

Other 52 (7%) 34 (7%)

Admit charge 811 148 (18%) 462 127 (28%) 0.001

Intensive care unit charge 811 50 (6%) 141 39 (28%) < 0.001

Outside hospital transfer 810 46 (5%) 462 48 (10%) 0.002

Predictors* *

Altered metal status 811 145 (18%) 431 105 (24%) 0.007

Chest pain 811 101 (12%) 431 42 (10%) 0.25

Syncope 811 102 (13%) 431 101 (23%) < 0.001

Shortness of breath 811 113 (14%) 431 90 (21%) 0.002

High carboxyhemoglobin (>25%) 811 71 (9%) 385 60 (16%) < 0.001

Cardiac complication 811 57 (7%) 431 62 (14%) < 0.001

Outcomes:

Inpatient death 811 12 (1.5%) 462 8 (1.7%) 0.73

1-year mortality*** 811 26 (3.2%) 462 11 (2.4%) 0.57

Miscellaneous:

Received hyperbaric oxygen therapy**** 811 0 (0%) 141 35 (25%) < 0.001

*
Median (IQR)

**
female gender as a predictor is included in demographics

***
inpatient mortality was excluded from 1-year mortality

****
patients receiving HBOT were excluded from derivation cohort, included in validation cohort due to the significant effect of HBOT on 

mortality as previously reported (19)
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a
= chi square test for categorical variables except for age unless otherwise stated:

b
= Student’s t test for continuous variables.
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Table 2:

Final regression of the Heart-Brain 346-7 Score determined from the derivation cohort using Stepwise Akaike 

Information Criterion (AIC) with backward model selection, calibrated with Firth Logistic Regression to an 

optimized bet cut-point of −2.9.

Coefficient Standard error Z P value 95% Confidence interval

Age 0.0528 0.00989 5.34 0.00 0.0334 to 0.0722

Altered mental status 1.11 0.371 2.93 0.003 0.369 to 1.86

Cardiac complications 1.64 0.399 4.10 0.000 0.855 to 2.42

Constant −6.53 0.682 −9.57 0.000 −7.87 to −5.19
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Table 3:

Performance of the Heart-Brain 346-7 Score in the derivation cohort to predict inpatient death or 1-year 

mortality

Heart-Brain 346-7 Score positive (n) Heart-Brain 346-7 Score negative (n) Total (n)

Inpatient or 1-year mortality (n) 31 7 38

No mortality (n) 155 618 773

Total (n) 186 625 811

Sensitivity
(95% CI)

Specificity
(95% CI)

PPV
(95% CI)

NPV
(95% CI)

OR
(95% CI)

AUC ROC
(95%CI)

82%
(66-92%)

80%
(77-83%)

17%
(12-23%)

99%
(98-99%)

18
(7.8-40)

0.81
(0.71-0.87)

CI = confidence interval: PPV = positive predictive value: NPV = negative predictive value: OR = odds ratio: AUC ROC = Area under curve for 
receiver operating characteristic curve.
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Table 4:

Performance of the Heart-Brain 346-7 Score in the validation cohort to predict inpatient death or 1-year 

mortality

Heart-Brain 346-7 Score positive (n) Heart-Brain 346-7 Score negative (n) Total (n)

Inpatient or 1-year mortality (n) 13 5 18

No mortality (n) 130 283 413

Total (n) 143 288 431

Sensitivity
(95% CI)

Specificity
(95% CI)

PPV
(95% CI)

NPV
(95% CI)

OR
(95% CI)

AUC ROC
(95%CI)

72%
(47-90%)

69%
(64-73%)

9.0%
(5.0-15%)

98%
(96-99%)

5.7
(2.0-16)

0.70
(0.60-0.81)

CI = confidence interval: PPV = positive predictive value: NPV = negative predictive value: OR = odds ratio: AUC ROC = Area under curve for 
receiver operating characteristic curve.

Clin Toxicol (Phila). Author manuscript; available in PMC 2024 July 07.


	Abstract
	Introduction:
	Methods
	Study Design and identifying CO poisoned patients for the derivation and validation cohorts
	Data collection
	Study Variables and Definitions
	Charlson Comorbidity Index
	Statistical Analysis
	Model derivation and comparison to the Charlson Comorbidity Index
	Model validation

	Results
	Patient characteristics in derivation and validation cohorts
	Deriving a model to predict inpatient or 1-year mortality
	Comparing the Heart Brain 346-7 Score to the Charlson Comorbidity Index in the derivation cohort
	Heart Brain 346-7 Score performance in the validation cohort
	Charlson Comorbidity Index performance in the validation cohort

	Discussion:
	Conclusions:
	References
	Figure 1:
	Figure 2:
	Table 1:
	Table 2:
	Table 3:
	Table 4:

