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Abstract

Purpose of review: Platelet mitochondrial dysfunction is both caused by, as well as a source of 

oxidative stress. Oxidative stress is a key hallmark of metabolic disorders such as dyslipidemia and 

diabetes which are known to have higher risks for thrombotic complications.

Recent findings: Increasing evidence supports a critical role for platelet mitochondria beyond 

energy production and apoptosis. Mitochondria are key regulators of reactive oxygen species and 

procoagulant platelets, which both contribute to pathological thrombosis. Studies targeting platelet 

mitochondrial pathways have reported promising results suggesting anti-thrombotic effects with 

limited impact on hemostasis in animal models.

Summary: Targeting platelet mitochondria holds promise for the reduction of thrombotic 

complications in patients with metabolic disorders. Future studies should aim at validating these 

preclinical findings and translate them to the clinic.
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Introduction

Textbooks commonly describe mitochondria as the powerhouse of the cell, and this 

holds true for platelets as well(1,2). This is due to the fact that mitochondria are 

responsible for important energy processes, including the tricarboxylic acid (TCA) cycle 

and oxidative phosphorylation (OXPHOS), which are crucial for the generation of adenosine 

triphosphate (ATP)(3,4). Mitochondria are double membrane organelles, composed of 

an outer mitochondrial membrane (OMM) and an inner mitochondrial membrane (IMM)
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(5,6). These two membranes separate the mitochondria into two different spaces, the 

intermembrane space and the mitochondrial matrix(3,5). The OMM is composed of various 

porins allowing the diffusion of diverse molecules into the intermembrane space(5). The 

intermembrane space houses proteins that execute important functions in apoptosis and 

maintaining proper mitochondrial dynamics(7). Unlike the OMM, the IMM is highly 

impermeable thus, requiring various protein transporters for molecules to enter the 

matrix(4,5). More importantly, the IMM contains the electron transport chain (ETC) 

enzymes which are critical for energy production(6). The most inner compartment of the 

mitochondria is the matrix. The matrix contains all necessary components for the TCA, as 

well as molecules that regulate mitochondria antioxidative capacity(3,8).

Studies in the past 20 years have revealed a greater than expected complexity and 

versatility of mitochondrial activities(9). In addition to their primary role in ATP production, 

mitochondria are involved in other critical processes that contribute to platelet function 

and signaling, including reactive oxygen species (ROS) generation, Ca2+ homeostasis, and 

apoptosis(1,10). Platelets have relatively low mitochondrial counts (4-8 mitochondria per 

platelet), and are unable to replenish mitochondrial proteins encoded by nuclear DNA, 

because they lack a nucleus. This suggests that minimal alterations in platelet mitochondrial 

dynamics can have a significant impact on platelet function and hemostasis(1,11). An 

increasing number of studies are now investigating specific mitochondrial functions as 

potential therapeutic targets to prevent excessive platelet activation in cardiovascular 

disease(1,12). In this article, we will review the state of art regarding the role of platelet 

mitochondria in health and disease.

Fueling Platelets

Platelets are metabolically very active and need to maintain their high energy demand in 

order to preserve normal platelet function(13). Platelets respond to vascular tissue injury by 

clumping together (aggregating) and supporting the generation of fibrin to stabilize growing 

thrombi. Platelets generate energy by combining glycolysis and mitochondrial OXPHOS, 

with glycolysis being the predominant provider of cellular ATP (Figure 1)(14-16). To 

fully inhibit platelet function, mitochondrial OXPHOS and glycolysis need to be inhibited 

simultaneously(17). This is because platelets have a unique metabolic flexibility that allows 

them to utilize glycolysis or fatty acid catabolism instead of OXPHOS, or vice versa, 

depending on the situation and/or location they are in(18,19). This flexibility ensures 

platelets can function in a wide range of environments, where nutrients and oxygen may 

be limited, including within a growing thrombus.

While platelets operate at a relatively low metabolic rate while in the circulation, they can 

respond quickly to situations that require higher energy. Platelet glucose uptake increases in 

response to external stimuli and follows a distinct pattern during platelet activation(16,20). 

Platelet activation increases the glycolytic rate approximately two-fold compared to 

resting state (21,22). Importantly, platelets do this while preserving mitochondrial function 

regardless of fuel availability(18). Upon activation, platelets adopt an aerobic glycolytic 

phenotype which is less efficient than OXPHOS, but is faster, and necessary for platelets 

to quickly respond to external triggers(23). Glucose is abundant and readily available for 
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platelets; it is continuously taken up and is needed for normal function in both resting 

and activated platelets(24). Glucose enters platelets via the facilitative glucose transporter 

1 (GLUT1) and glucose transporter 3 (GLUT3). Murine studies have demonstrated that 

GLUT1 and GLUT3 exhibit overlapping, as well as unique functions(25,26). While 

GLUT1 is continuously present on the plasma membrane, GLUT3 is predominantly located 

on α-granule membranes with only ±15% localized in the plasma membrane(20,26). 

During platelet activation, GLUT3 translocates to the plasma membrane and mediates 

the increased glucose uptake following activation. Additionally, GLUT3 drives glucose 

uptake in α-granules which allows for intragranular glycolysis and is essential for proper 

degranulation(26). Interestingly, deletion of GLUT1 alone does not alter glucose uptake, 

indicating that GLUT3 may compensate for GLUT1(27). In contrast, deletion of GLUT3 

only slightly decreased basal glucose uptake, but completely abolished agonist-mediated 

glucose uptake(26).

The preference for aerobic glycolysis in activated platelets is evident when cellular oxygen 

consumption is measured during platelet activation(28). Initially, post-activation, there 

is a short-lived but sharp rise in cellular oxygen consumption which rapidly declines 

before platelets reach full activation, and while they are still consuming ATP. This is a 

highly coordinated process, achieved by blocking pyruvate from oxidization in the TCA 

cycle, leading to a decline in mitochondrial respiration and an accompanying rise in 

lactic acid(2,28)(29). The metabolic checkpoint which determines whether glucose will 

be catabolized to lactate is the enzymatic activity of pyruvate kinase which generates 

pyruvate and the enzyme pyruvate dehydrogenase (PDH), which converts pyruvate to acetyl-

CoA(30). The activity of PDH is inhibited in activated platelets by pyruvate dehydrogenase 

kinase (PDK), which restricts flux of pyruvate into the TCA cycle to favor aerobic 

glycolysis(2,28). Pyruvate kinases catalyze the final step of glycolysis, which involves 

the irreversible transphosphorylation of phosphoenolpyruvate to produce pyruvate and 

ATP(31). While platelets express two isoforms of pyruvate kinase (PKM1 and PKM2), 

PKM2 expression was found to be higher compared to PKM1. Currently little is known 

on the role of PKM1 in platelets(2). Conversely, activation of platelets induces PKM2 

dimerization, which is associated with enhanced catalytic activity, increasing glucose uptake 

and lactate production(32-34). Elegant inhibitor and platelet-specific knockout (KO) studies 

have reported on a critical role for the dimeric PKM2 isoform in regulating platelet integrin 

activation, aggregation, clot retraction, and thrombus formation under arterial shear in 

mice(2,28). In contrast to the potent anti-thrombotic effects of PKM2 inhibition, bleeding 

times were unaltered. Of note, ablation of platelet glucose uptake impaired both thrombosis 

and hemostasis, prolonging bleeding times in a similar model of hemostasis(27). Combined, 

these studies suggests that regulation of pyruvate rather than glucose, is an attractive target 

to develop a safe anti-thrombotic agent. However, more studies are needed towards this end.

Regulation of Mitochondrial Calcium

Mitochondrial calcium regulates ATP production, oxygen consumption and mitochondrial 

cell death by regulating various mitochondrial complexes, dehydrogenases and the formation 

of the mitochondrial permeability transition pore (mPTP)(8,28,35-37). In resting cells, 

mitochondrial Ca2+ levels are very similar to those in the cytoplasm. However, upon 
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activation, mitochondria can store up to 20-fold more Ca2+ (38). Mitochondria can take 

up these high amounts of Ca2+ because of their structure, which allows for several direct 

contact sites with Ca2+ stores and the presence of a highly selective Ca2+ channel located at 

the IMM(39-42).

Mitochondrial Ca2+ uptake is driven by a membrane potential difference, which is tightly 

linked to the ETC. Initially, Ca2+ is transported across the OMM through voltage-dependent 

anion selective channel proteins (VDACs). VDACs are highly specific for Ca2+ and 

allow Ca2+ transfer irrespective of their conformation. While, three VDAC isoforms are 

abundantly expressed in platelets (VDAC1, VDAC2 and VDAC3), little is known of their 

function(43). After passing through the OMM, Ca2+ crosses the IMM mainly through 

the mitochondrial calcium uniporter (MCU) complex found in the IMM (Figure 2). This 

transmembrane multimeric protein complex is composed of the pore-forming MCU subunit, 

the Ca2+ dependent regulating proteins mitochondrial calcium uptake 1 (MICU1) and 

MICU2, and the single pass membrane non-Ca2+ dependent regulatory protein essential 

MCU regulator (EMRE)(44,45). Dimerized MICU1 and MICU2 act as gatekeepers, limiting 

mitochondrial Ca2+ uptake in situations where cytosolic Ca2+ is significantly increased(46). 

Furthermore, Ca2+ uptake through MCU is negatively regulated by oligomerization of 

MCUb with MCU, decreasing mitochondrial Ca2+ flux(44,47,48). In platelets, MCU is a 

key regulator of procoagulant platelet formation(40). During robust platelet activation, high 

cytosolic Ca2+ will increase mitochondrial calcium uptake through MCU, ultimately leading 

to the opening of the mPTP(37,40). Furthermore, high mitochondrial Ca2+ flux can also lead 

to platelet apoptosis through the release of cytochrome C and the activation of caspases(49). 

Recently, a role for mitochondrial calcium was found in regulating platelet activation and 

arterial thrombosis. Platelets from MCUb global KO mice had altered cytoplasmic and 

mitochondrial Ca2+ flux, impaired ROS formation, reduced platelet aggregation, glucose 

uptake and bioenergetics(48). Combined, this resulted in an anti-thrombotic phenotype with 

delayed thrombus formation in several models of arterial thrombosis without prolonging 

tail-clip bleeding times(48). These results uncover a novel role for mitochondrial calcium 

that extend beyond procoagulant platelet formation or platelet apoptosis. However, the 

specific mechanisms of how mitochondrial calcium regulates platelet activation are yet to be 

described.

Critically, ablation of MCU does not completely abolish mitochondrial Ca2+ uptake in other 

cell types(38). Alternative Ca2+uptake mechanisms that have been reported are the transient 

receptor potential channel 3 (TRPC3), mitochondrial uncoupling protein 2 (UCP2) and 3 

(UCP3)(38). However, of these, only UCP2 is abundantly expressed in platelets(43).

Platelet Mitochondria Contribute to Thrombosis, Hemostasis and Beyond

As mitochondria fuel platelets, it is not unexpected that impairment of platelet mitochondrial 

functionality greatly impacts platelet thrombus formation. However, platelet mitochondria 

themselves also impact thrombus formation, independent of their energetic function. They 

accomplish this through procoagulant platelet formation and mitochondrial ROS formation 

(Figure 2)(37,50).
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Procoagulant platelet formation, often referred to as platelet necrosis, occurs when cytosolic 

Ca2+ levels remain elevated due to strong platelet activation(51). These sustained high 

cytosolic Ca2+ levels result in mitochondria storing increasing amounts of Ca2+(52,53). 

Whenever a critical mitochondrial calcium threshold is reached, the mitochondrial 

membranes depolarize, initiating the opening of the mPTP(36,54). The opening of the 

mPTP further increases cytosolic Ca2+, activating the scramblase TMEM16F(55). At the 

same time, mitochondria will depolarize, depleting ATP and inhibiting flippases(49). These 

processes ultimately result in translocation of negatively charged phosphatidylserine (PS) 

from the inner to the outer membrane of the platelet lipid bilayer. This allows coagulation 

factors to bind to the negatively charged PS on the platelet surface and initiate thrombin 

generation(55).

Similarly, during platelet activation, mitochondria will generate ROS as a byproduct 

from increased ATP production(56). Mitochondrial redox homeostasis is regulated by 

antioxidant enzymes, of which superoxide dismutase 2 (SOD2) is the most important 

in platelets(57). Mitochondrial ROS can further activate platelet signaling, creating an 

activation amplification loop which contributes to thrombotic complications in diabetes and 

sickle cell disease(58-60). While not yet fully elucidated, ROS have been found to alter 

platelet receptor activity, platelet secretion events, bioavailability of platelet agonists and 

inhibitors, and ROS have also been reported to directly induce platelet signaling(61-66). 

Whether this is specifically dependent on cytoplasmic or mitochondrial ROS remains 

unclear. Lastly, mitochondrial ROS levels are also regulated by the mitochondrial membrane 

potential and therefore involved in procoagulant platelet formation(52). Importantly, the 

prothrombotic effects of mitochondrial ROS are more pronounced in aged individuals, 

where thrombotic risk is elevated(67).

Another remarkable feature of activated platelets is their ability to release their mitochondria 

as part of extracellular vesicles(68). Extracellular mitochondria are potent triggers for 

neutrophil migration and neutrophil extracellular trap formation, and have been associated 

with adverse transfusion reactions(68-71). Likewise, extracellular platelet mitochondria were 

found inside neutrophils isolated from the joints of arthritic patients(72). Finally, in systemic 

lupus erythematosus patients, extracellular mitochondrial DNA originating from platelets 

was found to be a potent source for autoantibodies. In contrast to these findings, free platelet 

mitochondria also have been reported to improve the regenerative capacity of mesenchymal 

stem cells by stimulating fatty acid synthesis(73,74).

Pathologic Mitochondrial Function in Platelets

Co-morbidities such as diabetes and obesity greatly impact thrombotic risk, and this 

is partially attributed to their impact on platelet function. In particular, oxidative 

stress is known to contribute to diabetes and obesity by exposing platelets to a 

prothrombotic environment and by lowering the threshold to form the mPTP and depolarize 

mitochondria(75,76). Hyperpolarization of the mitochondrial membrane will increase 

mitochondrial ROS production, amplifying oxidative stress(58,77).
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Diabetes Mellitus is an independent risk factor for atherosclerosis and thrombosis after 

vascular interventions. Platelet hyperreactivity is commonly associated with diabetes and is 

a key contributing factor to the prothrombotic conditions observed in diabetic patients(78). 

Specific mechanisms leading to increased platelet reactivity have not fully been elucidated, 

but include increased platelet receptor density, increased Ca2+ signaling and hyperreactivity 

to platelet agonists(79-81). Recent work linked platelet mitochondrial impairment to the 

dysregulation in platelet function observed in diabetes(82,83). Mitochondrial stress tests, 

which calculate mitochondrial efficiency in various metabolic processes, have shown 

that resting platelets from diabetic patients have lower maximal respiration compared 

to non-diabetic patients(82-84). Activation of diabetic platelets with thrombin further 

accentuated differences in maximal respiration, while also demonstrating a decrease in basal 

oxygen rate consumption (OCR) and ATP production(82). Furthermore, these deficiencies 

in mitochondrial function were further exacerbated in diabetic patients with thrombotic 

complications(82,85). In addition to alterations in mitochondrial respiration, platelets from 

diabetic patients with thrombotic complications showed further alterations in mitochondrial 

complex I, and had an increase in mitochondrial ROS, P-selectin surface expression and 

aggregation(82). Interestingly, this phenotype could be reversed by inhibiting complex I with 

metformin(82,83).

Most of the effects of diabetes on platelet function have been attributed to hyperglycemia, 

suggesting control of blood glucose levels is critical for the prevention of thrombotic 

complications in diabetic patients(86). Increasing glucose excretion and lowering blood 

glucose levels with sodium glucose cotransporter-2 inhibitors for example, greatly improves 

cardiovascular outcomes in patients with diabetes(87,88). In vitro and murine studies 

have found hyperglycemia, independently from diabetes, increases platelet activation, 

platelet clearance and contributes to in vivo thrombosis(76). Moreover, hyperglycemic 

mice are more potent at generating procoagulant platelets and produce more mitochondrial 

ROS(89). These observations are congruent with the altered mitochondrial respiration 

and dynamics observed in mice with diabetes. Importantly, deletion of the main platelet 

glucose transporters GLUT 1 and 3 reversed this phenotype, normalizing platelet respiration, 

activation and platelet induced arterial and pulmonary thrombosis(76). Conversely, in 

the setting of ischemic stroke, alteration in platelet glucose metabolism did not reduce 

hyperglycemia induced exacerbation of stroke(89). These results imply a more complex role 

for hyperglycemia in ischemic stroke.

Mechanistically, hyperglycemia induces aldose reductase activation(90), resulting in ROS 

production to induce phosphorylation of p53. Phosphorylated p53 then induces a loss 

of mitochondrial membrane potential(91). Platelets attempt to compensate for this loss 

in mitochondrial membrane potential by upregulating mitophagy, as increased mitophagy 

reduced mitochondrial stress and diabetes associated thrombosis in mice(92). Additionally, 

several studies hint to the possibility of mitochondrial calcium playing an important role in 

platelet activation in diabetes. Indeed, studies have demonstrated complex I regulates the 

turnover of MCU, increasing mitochondrial Ca2+ levels(93,94).

Dyslipidemia is characterized by abnormal levels of cholesterol, triglycerides, and dietary 

fatty acids. There is strong evidence supporting an association between dyslipidemia and 
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a lower threshold for platelet activation, particularly in patients with heart attack and 

stroke(95,96). Furthermore, recent evidence also points towards an association between 

dyslipidemia and the risk of venous thrombotic events(97,98). In dyslipidemia, platelets are 

sensitized to activation by oxidized phospholipids found in low-density lipoprotein particles 

(oxLDL), which are abundantly found in plasma of coronary artery disease patients(58,99). 

OxLDL activates platelets by interacting with the platelet receptor CD36(100). CD36 

induces platelet activation through amplification of glycoprotein VI (GPVI) downstream 

signaling, ROS production through NADPH oxidase, and by desensitizing the inhibitory 

cGMP / platelet protein kinase G pathway(101,102).

Mechanistically, CD36 generates ROS through NADPH oxidase activates ERK5 and induces 

platelet aggregation and coagulation, through PS exposure on the platelet surface(103). The 

latter is distinct from PS exposure mediated by the formation of the mPTP (procoagulant 

platelet) or platelet apoptosis(104). CD36- and ERK5-mediated PS exposure requires Src 

family kinases, hydrogen peroxide, and apoptotic caspases(103). Importantly, CD36-ERK5-

caspase signaling needs to cooperate with the GPVI pathway for the externalization of PS, 

as oxLDL alone was not sufficient in supporting thrombin generation and fibrin formation. 

This implies a unique way for platelets to expose PS under metabolic stress that combines 

both features of procoagulant platelets and apoptosis(105).

Besides CD36, other scavenging receptors involved in dyslipidemia associated thrombosis 

include Lectin-like Oxidized Low-Density Receptor 1 (LOX1), Scavenger Receptor A1 (SR-

A1) and several toll-like receptors (TLRs) (106). However, the signaling effectors associated 

with these receptors do not involve mitochondrial platelet dysfunction.

Conclusion

Increasing evidence supports a critical role for platelet mitochondria beyond energy 

production and apoptosis. Generation of ROS and the formation of procoagulant platelets 

contribute to pathological thrombosis and are increased in metabolic disorders. Preclinical 

studies targeting platelet mitochondrial pathways have yielded promising thrombo-protective 

results with limited impact on hemostasis. Future studies should aim at validating these 

findings and translate them to the clinic.
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Key Points

• Platelets are metabolically flexible and switch energy source depending on the 

situation they are in.

• Regulation of pyruvate, rather than glucose, is an attractive safe anti-

thrombotic target.

• Platelet mitochondria contribute to thrombosis through the formation of 

procoagulant platelets and mitochondrial ROS.

• Mitochondrial stress is increased in diabetes and dyslipidemia and contributes 

to increased thrombosis.
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Figure 1. Fueling platelets with glucose is mediated by GLUT1 and GLUT3.
(1) Under basal conditions, GLUT1 (Glucose transporter 1) is the primary glucose 

transporter on platelets. (2) Upon platelet activation, GLUT3 translocates to the plasma 

membrane and mediates increased glucose uptake. (3) Additionally, GLUT3 drives glucose 

uptake in α-granules which allows for proper degranulation. (4) Platelets generate energy by 

combining glycolysis and mitochondrial OXPHOS (oxidative phosphorylation), with aerobic 

glycolysis being the predominant provider of cellular ATP. (5) Platelets achieve this by 

inhibiting the oxidation of pyruvate, which is mediated by PDK (pyruvate dehydrogenase 

kinase) blocking PDH (pyruvate dehydrogenase)-mediated catabolization of pyruvate. This 

blocks pyruvate from entering the TCA (tricarboxylic acid cycle) cycle preventing a decline 

in mitochondrial respiration and increases production of lactate.
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Figure 2. Platelet activation induces the formation of mitochondrial ROS and the formation of 
procoagulant platelets.
(1) Platelet activation triggers the opening of intracellular Ca2+ stores. (2) This results 

in mitochondrial Ca2+ uptake through the MCU (mitochondrial calcium uniporter) 

complex. Platelet activation requires ATP generation. In the process of producing ATP 

mitochondrial ROS is generated as a byproduct, which can potentiate platelet activation. 

(3) When mitochondrial Ca2+ levels reach a critical threshold, mitochondria will form 

the mitochondrial permeability transition pore (mPTP) resulting in procoagulant platelet 

formation.
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