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Abstract

Systemic Lupus Erythematosus (SLE) is a chronic, multisystem, inflammatory autoimmune 

disease that disproportionately affects women. Trends in SLE prevalence and clinical course 

differ by ancestry, with those of African American ancestry presenting with more active, severe 

and rapidly progressive disease than European Americans. Previous research established altered 

epigenetic signatures in SLE patients compared to controls. However, the contribution of aberrant 

DNA methylation (DNAm) to the risk of SLE by ancestry and differences among patients 

with SLE-associated Lupus Nephritis (LN) has not been well described. We evaluated the 
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DNA methylomes of 87 individuals including 41 SLE patients, with and without LN, and 46 

controls enrolled in an ancestry diverse, well-characterized cohort study of established SLE (41 

SLE patients [20 SLE-LN+, 21 SLE-LN-] and 46 sex-, race- and age-matched controls; 55% 

African American, 45% European American). Participants were genotyped using the Infinium 

Global Diversity Array (GDA), and genetic ancestry was estimated using principal components. 

Genome-wide DNA methylation was initially measured using the Illumina MethylationEPIC 

850K Beadchip array followed by methylation-specific qPCR to validate the methylation status 

at putative loci. Differentially Methylated Positions (DMP) were identified using a case-control 

approach adjusted for ancestry. We identified a total of 51 DMPs in CpGs among SLE patients 

compared to controls. Genes proximal to these CpGs were highly enriched for involvement in 

type I interferon signaling. DMPs among European American SLE patients with LN were similar 

to African American SLE patients with and without LN. Our findings were validated using 

an orthogonal, methyl-specific PCR for three SLE-associated DMPs near or proximal to MX1, 

USP18, and IFITM1. Our study confirms previous reports that DMPs in CpGs associated with 

SLE are enriched in type I interferon genes. However, we show that European American SLE 

patients with LN have similar DNAm patterns to African American SLE patients irrespective of 

LN, suggesting that aberrant DNAm alters activity of type I interferon pathway leading to more 

severe disease independent of ancestry.
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1. Introduction

Systemic Lupus Erythematosus (SLE) is a chronic, multisystem autoimmune disease with 

complex pathogenesis dependent on environmental, genetic, and epigenetic factors. SLE is 

characterized by a loss of self-tolerance in immune cells, the production of autoantibodies 

that target self-antigens, and a formation of immune complexes that results in chronic 

inflammation associated with end organ damage [1–4]. Standardized incidence rates vary 

worldwide, but are consistently higher among ethnic minorities and women [5]. Among 

patients with SLE, persons of African ancestry typically present with severe disease features 

including lupus nephritis (LN) and a more rapid accumulation of organ damage compared to 

SLE patients of European ancestry [6–10]. African American (AA) SLE patients also have 

a higher risk for developing SLE at a younger age [7, 11], and notably higher prevalence 

of renal damage [12] compared to European American (EA) SLE patients. The relative 

risk of death from SLE in AAs is also significantly higher than in other populations [13]. 

Although social determinants of health [14] can play a role in the etiology and natural 

history of SLE [15, 16], the basis of the more aggressive clinical phenotype observed among 

patients of non-European ancestries remains unclear despite genetic studies having identified 

population-specific risk loci that also contribute to differences in the prevalence and severity 

of SLE between ancestral populations [17, 18].
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Evidence from studies of monozygotic twins demonstrate discordance rates for SLE [19], 

suggesting that environmental factors play an important role in this common complex 

disease. Genome-wide DNA methylation (DNAm) analysis of discordant monozygotic 

twins revealed differentially methylated positions (DMP) in genes involved in immune 

regulation among SLE affected twins compared to unaffected siblings [20]. In murine 

models, inducing global DNA hypomethylation in T cells resulted in a lupus-like phenotype 

and MHC-autoreactivity [21]. In a previous report, we found hypomethylation of CpGs 

near interferon genes in CD4+ T cells, CD14+ monocytes, and CD19+ B cells [22] in 

a cohort of SLE patients. Additional exploration of these CpGs in sorted B cells from 

AA and EA SLE patients revealed that most of the interferon CpGs associated with SLE 

were hypomethylated specifically among AA SLE patients. However, neither of these 

investigations included SLE patients with LN nor controlled for proportions of ancestry 

or other potential confounders.

In this study, we conducted a genome-wide DNAm analysis in SLE patients of AA and 

EA ancestry, both with and without LN and age-, race-, and sex- matched controls. Using 

DNAm microarray data spanning the genome, we identified differences and similarities 

between the methylation profiles of EA and AA SLE patients. To confirm these findings, 

we used methylation-specific qPCR assays specific to CpGs near three SLE-associated 

genes (MX1, IFITM1, and USP18). To determine whether ancestry plays a role in the 

observed epigenetic phenotype in SLE, we genotyped cases and controls and performed 

local ancestry estimation. Our study highlights the importance of incorporating ancestry 

analyses in DNAm studies and increasing sample size across multiple populations, which 

is imperative to better understand the differences in methylation that may contribute to the 

severity of SLE in different populations.

2. Methods

2.1 Study population

Using a total of 96 female cases and controls enrolled at the University of Alabma at 

Birmingham in the Genetic Profile Predicting the Phenotype (PROFILE) SLE cohort [23] 

and Integrative Molecular And Genetic Epidemiology (IMAGE) study [24], respectively, we 

evaluated the contribution of DMPs across the genome relative to the risk of SLE, stratified 

by AA and EA ancestry. Approvals by the appropriate Institutional Review Boards were 

obtained prior to study initiation. All participants provided informed consent.

Eligible cases were unrelated AA and EA SLE female patients aged ≥21 years who met 

the revised and updated ACR classification criteria for SLE (1997), or those cases who 

fulfilled the Systemic Lupus International Collaborating Clinics (SLICC) classification 

criteria [25, 26], and with disease duration ≤10 years at enrollment. SLE patients with 

reported drug-induced lupus, or other systemic autoimmune diseases were excluded. 

Controls were randomly selected from the IMAGE study, which includes population-based 

controls enrolled from US Census and Centers for Disease Control population databases 

established from list-assisted random digit dialing methods. Eligible controls were residents 

of the Southeast US, at least 21 years of age, without a self-reported history of SLE, other 
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autoimmune disease or HIV-1 infection. Controls were individually matched to cases based 

on self-reported race (Black, White), female sex and age (±5 years).

2.2 Genotyping, QC, and Local Ancestry Analysis

Genotyping for ancestry assessment was conducted on 96 samples using the Illumina 

Infinium Global Diversity array with enhanced PGx (GDA; Illumina, San Diego, CA, 

USA) with 50ng genomic DNA (gDNA) input extracted from buffy coat using Qiagen 

Puregene DNA Extraction kits (Puregene, Qiagen 158026) according to the manufacturer’s 

instructions and quantitated using a Qubit™ dsDNA BR assay kit (Thermo Q32850). 

Genotypes were called using Illumina Array Analysis Platform GenCall software v1.1.0 

and converted to variant call format files (VCF) using bcftools v1.9 [27]. Standard 

quality control measures were applied in PLINK v2.00 [28]. Samples with poor call 

rates, discordant sex, and abnormal heterzygosity were excluded and SNPs with low 

call rates or Hardy-Weinberg equilibrium p-value < 1 × 10−5 were excluded. Principal 

component analysis (PCA), as implemented in PLINK [28], was used in to evaluate 

population stratification with sample outliers removed (Supplemental Fig. S1). Imputation 

was conducted using the 1000 Genomes Project (Phase 3v5) [29] as the reference panel. 

Missing genotypes were imputed using Minimac4 [30]. SNPs with poor imputation scores 

and with minor allele frequency < 1 percent were excluded, yielding 1.07 million SNPs 

in 92 samples for analysis. The resulting quality-controlled PLINK files were converted to 

VCF format and phased with Beagle v5.4 [31]. Local Ancestry was then estimated for each 

samples using RFmix (v2.03) [32]. Global ancestry was estimated for each sample using 

ADMIXTURE (v1.3.0) [33].

2.3 MethylationEPIC Assays, QC, and Batch Normalization

Genome-wide DNAm was measured using Illumina Infinium MethylationEPIC BeadChip 

in more than 856,187 methylation sites that include CpG sites inside and outside of 

CpG islands, non-CpG and differentially methylated sites, RefSeq genes, ENCODE 

open chromatin and transcription factor binding sites, FANTOM5 enhancers and miRNA 

promoter regions. Genomic DNA (1 μg) was bisulfite-treated using the Zymo EZ DNA 

Methylation™ Kit (Zymo Research, Irvine, CA, USA) and 500ng of bisulfite-converted 

DNA (500ng) was amplified using the Illumina Infinium HD Methylation assay. Raw 

intensity files in the form of idat files were generated for each sample and processed 

using R statistical suite (version 4.2.1) [34]. The methylation data were imported and 

pre-processed using the R package, Minfi (version 1.44.0) [35]. A sample containing more 

than 78% of failed probes (detection p-value > 0.05) was removed prior to normalization. 

Background correction was conducted using Minfi preprocessNoob and normalized using 

the preprocessQuantile function from Minfi. Probes with detection p-values > 0.01 in more 

than 98% of samples, those in close proximity to single nucleotide polymorphisms (SNP) 

(27,069 CpGs), those previously associated with smoking status (816 CpGs) [36], and 

probes that mapped to multiple loci (36,442 CpGs) were removed. Non-autosomal probes 

were included. Methylation samples that did not have genotyping data due to quality control 

or were considered genetic outliers were removed before downstream analysis. The resulting 

quality control measures yielded 704,312 CpGs in 87 samples.
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2.4 Statistical analysis

We examined epigenome-wide DMPs associated with the presence of SLE compared 

to controls, stratified by ancestry. For this disease association model, we incorporated 

a qualitative (presence/absence) and quantitative (level) multivariable approach. After 

normalization, we considered log ratios of the methylation percentage (M-value), a 

homoscedastic measure of methylation [37], as a continuous classifier. We controlled for 

cellular hetergeneity using an algorithm Houseman et al [38] created as implemented 

in refbase from R package, ChAMP [39] to estimate the proportion of CD8+ T, CD4+ 

T, natural killer (NK), B, monocytes, and granulocytes cells using reference methylation 

data. Principal components were calculated to account for cellular heterogeneity across 

samples using the R package, PCAmixdata (v3.1) [40]. The first three principal components 

accounted for 81.5% of the variance and were included as covariates in the regression 

models. We performed linear regressions at each CpG using limma (v3.54.0) [41] to test 

for associations between methylation and disease status while accounting for age, cellular 

proportion principal components 1–3, and ancestry principal components 1–10 as indicated 

in the following model.

Metℎylation Beta β1 * Disease Status + β2 * Age + ∑
i = 3

5
∑

j = 1

3
βi * CellProportionPCj

+ ∑
i = 6

15
∑

j = 1

10
βi * GeneticPCj + ε

The resulting p-values from those models were FDR-corrected using the Benjamini-

Hochberg method. CpGs with an FDR ≤ 0.05 were considered significantly associated with 

disease status.

2.5 Interferon Methylation Score

Twenty-one CpGs passed multiple testing (FDR<0.05) and were differentially methylated 

by at least 10% between cases and controls, and were used as input to calculate a summary 

score of DNAm at these sites. All significantly associated CpGs isolated were found to be 

near interferon (IFN) pathway genes. The IFN methylation score was calculated for each 

sample by finding the median z-score of the beta-values for twenty differentially methylated 

interferon-associated CpGs.

2.6 Validation of MX1, IFITM1, and USP18 DNAm Status using Methylation-Specific qPCR 
Assays

Standard curve-based real-time absolute quantitative PCR was performed using PrimeTime 

qPCR Probe Assays (Integrated DNA Technologies, Coralville, IA, USA) in the 384-well 

QuantStudio 6 Flex Real-Time PCR System (Applied Biosystems, Waltham, MA, USA). 

Each ten-microliter reaction had an annealing temp of 58°C. Ten nanograms of bisulfite-

treated DNA from each sample were used in each reaction. Assays were designed to be 

specific to the methylated and unmethylated CpGs near MX1, USP18, and IFITM1, which 

were cg21549285, cg14293575, and cg23570810 respectively. Probe sequences for each 

assay can be found in (Supplemental Table S1). All target probes were normalized to a 
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stable reference gene, MYOD1. qPCR methylation scores were determined by calculating 

z-scores for each probe per sample. For each sample, the median z-score was used for 

downstream analysis. The z-scores resulting from the methylated probes were adjusted by 

taking the additive inverse to ensure similar directionality as the unmethylated probes.

3. Results

3.1 Participant Characteristics

Demographic characteristics of SLE cases and controls are shown in Table 1. Although 

we included an equal number of controls by ancestry, notably more AA SLE patients with 

LN (16.7%) were included in this investigation than EA SLE patients with LN (6.3%) 

and the median age at diagnosis was significantly younger among SLE patients with LN 

(38 years, range 21 to 63) compared to SLE patients without LN (50.5 years, range 26 to 

70) and among controls (55 years, range 24 to 79; P=0.001), irrespective of ancestry. No 

notable differences were observed by smoking history. On average, there was no significant 

difference in SLEDAI scores between EA and AA SLE cases with and without LN, with 

scores ranging from 2.17±2.04 to 4.38±4.75 (P=0.14) and 2.42±2.61 to 2.93±3.38 (P=0.67), 

respectively. However, the average SDI scores were not significantly different for AA SLE 

cases with and without LN (1.88±2.06 vs 0.857±1.23, P=0.1085), but were significantly 

different between EA and AA cases with LN (0.5±0.548 vs 1.88±2.06, P=0.02), consistent 

with the presence of LN.

3.2 Genome Wide Methylation Suggests SLE-specific CpGs in EA LN and AA SLE 
Patients

The methylation profiles of buffy coat samples isolated from both SLE cases and controls 

were analyzed using the Illumina Infinium MethylationEPIC BeadChip. We identified 

51 CpGs (Table 2) that were significantly associated with SLE compared to controls 

(FDR<0.05) (Figure 1A). As we and others previously reported, many of these CpGs are 

near genes associated with IFN signaling. Hierarchical clustering of 21 CpGs with a change 

in methylation ≥ 10% revealed EA LN cases clustering with AA SLE cases with and without 

LN (Figure 1B). Multidimensional scaling further indicated that methylation status is similar 

at these loci between EA LN and AA SLE without LN (Figure 1C).

3.3 Methylation Module Score using Top Associated IFN CpGs

Further exploring the enrichment of differentially methylated CpGs near IFN pathway 

genes, we found that EA SLE patients with LN have an increased proportion of 

hypomethylated CpGs nearby IFN genes compared to the EA SLE patients without LN. 

To focus on the differences in CpG methylation impacting IFN signaling, we established 

a methylation module score using the median Z-score beta values from the CpGs with a 

differential methylation proportion of at least 10% between cases and controls. Notably, 

all of these CpGs were situated near IFN pathway genes, with many of them positioned 

within 1500 bases of the respective gene’s transcription start site (Table 2). Comparison 

of this score based on disease status and ancestry shows that the IFN methylation score 

distinguishes AA SLE patients, with and without LN, and EA SLE patients with LN from 

AA controls, EA SLE cases without LN, and EA controls (Figure 2) suggesting that EA 
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patients with LN are more similar to the average AA patient with hypomethylation observed 

at IFN-associated CpGs. We did not find any significant differences in the SLE methylation 

score after stratifying by SLE-related treatments (Supplemental Figures S2), disease activity 

(Supplemental Figures S3A), organ damage (Supplemental Figures S3B) or LN histologial 

subtype 1 thorugh VI (Supplemental Figures S3C); however, we did note that longer disease 

duration correlated with less severe DNAm among AA SLE cases (Supplemental Figure 

S3D).

3.4 Altered methylation of MX1, IFITM1, and USP18 loci is validated by methylation-
specific PCR

Using methylation specific PCR, we validated the methylation status of three CpGs, located 

in MX1, IFITM1, and USP18, which were found to be associated with SLE status in our 

study and previously, in other studies of SLE. Methylation-specific qPCR probes were 

designed for cg21549285, cg14293575, and cg23570810, which are CpGs located in the 

5’UTR of MX1, the 5’UTR of USP18, and the gene body of IFITM1, respectively (Figure 

3A). We calculated a normalized methylation score for each sample from the resulting 

probe data. Using these values, we observed the same pattern we saw previously, that 

methylation of interferon-associated CpGs differentiated AA SLE patients with LN and AA 

SLE patients without LN in addition to EA SLE patients with LN from controls and EA 

SLE patients without LN (Figure 3B). The methylation module scores calculated from the 

methylation-specific qPCR probes were highly correlated with the methylation beta score 

derived from the microarray data (R=0.84, p < 2.2 × 10−16 Figure 3C). We observed a higher 

correlation if we considered only samples from AA patients in microarray methylation score 

vs methylation-specific qPCR methylation score (Figure 3D, AA – R=0.89, EA R=0.59). 

The greater correlation among AA participants may be due to the broader variation of 

methylation score values and larger sample size when compared to the small sample size of 

the EA SLE patients with LN. The majority of the EA participants cluster together with a 

higher methylation score.

3.5 Local Ancestry Analysis reveals IFN hypomethylation signature in EA SLE patients 
with LN

Given the association of LN with the methylation status of IFN-associated CpGs and 

the observation that LN is more common among individuals of African ancestry, we 

hypothesized that methylation status at these loci could be explained by common ancestry 

between AA SLE patients and EA SLE patients with LN. To test this hypothesis, we 

genotyped individuals in our study and estimated local ancestry (African, European, or 

East Asian) for windows of the chromosome using RFmix [32] and compared it with 1000 

Genomes populations (Figure 4A). After calculating the local ancestry for each sample, we 

tested whether the windows containing the CpGs found to be hypomethylated in AA SLE 

patients and EA patients with LN had a common ancestry.

We found a significant difference in methylation beta value based on genotype in the SLE 

patient group without LN. SLE patients without LN who were homozygous for EA alleles 

displayed methylation values comparable to controls who were also homozygous for EA 

alleles. However, SLE patients with and without LN containing at least one AA allele 
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exhibited lower methylation proportion compared to those with both EA alleles (Figure 

4B–D). Although we hypothesized that common genetic ancestry in the IFN CpG regions 

contributed to the reduction in methylation proportion among the EA SLE patients with LN, 

no correlation between ancestry at these CpGs and methylation was observed. (Figure 4 

B–D).

To evaluate whether genotypes more frequent in the African population were associated 

with methylation at our SLE-associated CpG sites, we calculated global genetic ancestry 

and tested whether the methylation score and proportion of the genome mapping to 

African ancestry were correlated. All self-reported EAs had less than 20% African ancestry 

(Supplemental Figure S4). Upon stratifying by African proportion across all samples, we 

observed a trend in SLE patients without LN. Those with 0% to 20% African ancestry across 

their genome aligned with controls having 0% to 100% African proportions. However, 

with increasing African ancestry proportion, we found a reduction in the methylation 

score, suggesting a decrease in methylation proportion at many of the interferon CpGs 

constituting the score. SLE patients with LN had consistent SLE methylation scores across 

African proportion ranges, indicating that the decrease in methylation at the IFN CpGs was 

independent of ancestry (Supplemental Figure S5). In addition, we evaluated differences 

in disease activity (SLEDAI) and damage accrual (SDI) with the increasing proportion of 

African ancestry. Although there were no significant differences SLEDAI score among SLE 

patients with and without LN, among SLE patients with LN, SLEDAI score exhibited a 

broader distribution of SLEDAI scores when compared to lower proportions of African 

ancestry (Supplemental Figure S6A). The SDI in SLE patients with and without LN 

increases with the increased proportion of African ancestry, suggesting that with a positive 

association of African ancestry and increasing extent of end organ damage (Supplemental 

Figure S6B).

4. Discussion

In this study, we investigated the association between DMPs from across the genome in SLE 

in patients with and without LN, and differences by AA and EA ancestry. In EA patients 

with LN, we discovered an IFN-associated methylation signature that was independent 

of SLEDAI. By utilizing these CpGs, we established a methylation module score, which 

revealed similar methylation scores between AA SLE patients with and without LN and 

EA SLE patients with LN. We then utilized local ancestry analysis to determine if African 

ancestry could account for the decreased methylation in EA SLE patients with LN, which 

it was found not to. To our knowledge, this study is the first to incorporate local ancestry 

analysis with methylation in a diverse cohort of SLE patients.

In previous studies involving genome-wide DNAm in SLE, CpGs near genes in the IFN 

pathway were found to have a lower methylation proportion in B cells [22, 42, 43], T cells 

[22, 44], and monocytes [22]. The IFN-associated CpGs were utilized in predictive modeling 

to classify the SLE status in AA patient B cells with a specificity of 98%. However, when 

the model was tested on EA patient B cells, it exhibited poor performance in predicting 

SLE status, suggesting that the IFN methylation signature was specific to ancestry [43]. 

To confirm whether the signature was exclusively ancestry-specific, we analyzed DNA 
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methylomes from a larger population that included additional AA and EA SLE patients with 

LN to compare with the methylomes of AA SLE patients in addition to healthy controls. Our 

previous studies did not include EA SLE patients with LN .

In our preliminary DNAm analysis, after correcting for age, ancestry principal components, 

and cellular proportions, 51 CpGs were significantly associated with SLE. Among the 

CpGs significantly associated with SLE were CpGs located in or near MX1, IFI44, PARP9, 
DDX60, and IFIT1 genes. Our DNAm analysis results largely replicate other SLE DNAm 

studies; these CpGs are located in IFN type I pathway genes and exhibit a lower methylation 

proportion in immune cell types than in healthy controls [22, 42, 43, 45, 46].

By establishing a methylation module score (median z-score across significant CpGs that 

showed a 10% decrease in DNAm between cases and controls), we reduced the complexity 

of the data. We showed that, on average, AA SLE patients and EA SLE patients with LN 

were at least one standard deviation below the population mean. Our study is significant 

because it challenges previous findings that reported a correlation between methylation and 

disease activity in EA SLE patients [45, 47]. Specifically, we found that although EA SLE 

patients with LN had lower SDI scores compared to both AA SLE patients with LN, they 

displayed a similar epigenetic phenotype, indicating that disease activity was not correlated 

with methylation status in EA SLE patients with LN. This suggests that the relationship 

between methylation and disease activity may be different in EA SLE patients with LN 

compared to EA SLE patients without LN. Further studies comparing AA SLE patients 

with and without LN and EA SLE patients with LN may elucidate disease pathogenesis 

and explain why clinical manifestations in AA SLE patients, on average, are more severe 

than in EA SLE patients. One possible explanation could be due to an upstream effect 

where progenitor hematopoietic cells are slated to be epigenetically primed to dysregulation 

at IFN signaling CpGs propagating the effect to downstream lymphoid and myeloid cell 

lineages. Another potential mechanism could be a genetic polymorphism affecting levels of 

IFN signaling proteins such as those in the STAT family. A SNP in STAT4 in the context 

of SLE has been reported to be associated with the earlier onset of the disease in addition 

to LN [48]. In addition, Stat4 in murine models has been reported to alter methylation of 

IL-18Rα, an interleukin receptor, during T helper cell (Th1) development [49]. This receptor 

has been associated with IFN-γ production and dysregulation of the receptor could lead 

to increased IFN secretion, which could lead to amplified immune system activation and 

heightened disease severity.

We validated our significant findings from the genome-wide methylation array using 

methylation-specific qPCR for CpGs in MX1, USP18, and IFITM1. The methylation 

score generated from the methylation-specific qPCR data positively correlated with the 

methylation score generated from the microarray data, showing strong agreement between 

the two platforms. Because these data yielded similar results as the methylation array by 

stratifying patients with the IFN hypomethylation signature, the methylation-specific qPCR 

assays could serve as an initial screening tool to identify samples with the epigenetic 

signature for downstream studies and could eventually prove relevant in a clinical setting 

with an improved understanding of the implications of these CpGs for risk of developing 

LN.
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A previous study found that expression of IFN-stimulated genes (ISG) was more tightly 

correlated with African ancestry than with SLE [50], so we investigated the association 

between ancestry and DNAm at CpGs, found to be significantly associated with SLE. 

In several of the CpGs, the genotype of the samples that were found to have the 

hypomethylation signature largely reflected the same findings as the self-reported race. 

Ancestry estimates indicated that all EA SLE patients with LN were homozygous 

European at the windows that contained the disease-associated CpGs. This finding showed 

that ancestry at, or near, the CpGs associated with SLE does not fully explain the 

hypomethylation of IFN genes. Our global ancestry analysis also failed to identify a 

correlation between the global percentage of African ancestry and hypomethylation at these 

interferon associated CpGs.

One limitation of this study is that DNAm data were generated from buffy coat samples. 

DNAm is cell type-specific and by measuring signals from multiple cell types, potentially 

meaningful biology may be lost. In our study we corrected for this using the Houseman et al. 
method [38] to estimate cell type proportions using methylation data and adjusting our data 

to account for cellular heterogeneity, but analyzing DNAm in individual cell types could 

yield additional insights that cannot be observed from deconvoluted bulk interrogations. In 

addition, our findings may be limited by small sample size. Our study consisted of only 

6 EA SLE patients with LN. Although every EA SLE patient with LN showed DNAm 

signatures similar to AA SLE patients, a larger, independent, well-characterized population 

would strengthen future investigations. Local ancestry analysis with a larger population will 

provide greater precision ot define cis- and trans-effects of ancestry on DNAm in the context 

of SLE. Finally, we cannot exclude the possibility that medication use among our SLE 

patients confounded DNAm-disease relationships [51] [52] [53],[54]. Immunosuppressants 

primarily work by restricting the activation and growth of immune cells [55]. As a result, 

the medication can alter the proportion of cells in a patient’s body, leading to changes in 

methylation proportion. To mitigate the impact of medication on methylation proportion, 

we accounted for cellular heterogeneity in our model. Although our findings are consistent 

with prior research, larger and more diverse studies with well-characterized SLE patients 

are necessary to validate this signature independent of immune-modulating medications. To 

this end, we also tested for the potential correlation between the duration of disease and 

the DNAm module score. Our analysis revealed that in African American (AA) SLE cases, 

a longer duration of the disease was associated with a less severe DNAm score, possibly 

indicating a relationship with the duration of their treatment.

Despite these limitations, our study was the largest investigation of DNAm in SLE and 

SLE-associated LN, with a focus on differences in ancestry. Our findings highlight the 

possibility that a common mechanism involving IFN signaling impacts LN risk among 

EAs, which underscores the importance of our study. Additionally, the observation of 

a similar methylation signature in AA SLE patients with and without LN suggests that 

this mechanism could potentially explain why, on average, their disease is more severe 

irrespective of LN status.
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5. CONCLUSIONS

Our genome-wide DNAm study yielded important findings that were validated through an 

orthogonal method. Our results indicate that the IFN hypomethylation signature, previously 

reported by us to be population-specific [19, 34], is also common in EA SLE patients with 

LN. This leads us to conclude that IFN hypomethylation is associated with an increased risk 

of developing LN, rather than ancestry-specific. We found that local and global ancestry 

do not explain the observed differences in methylation signatures between ancestries. 

Additional analyses in larger, well-charcterized, diverse populations as well as mechanistic 

studies aimed at revealing the link between IFN signaling and LN risk are warranted to 

improve our understanding of SLE pathogenesis.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Buffy coats from African American SLE patients and European Americans 

with Lupus Nephritis exhibit similar methylation profiles with an enrichment 

of CpGs near interferon genes.

• Findings were validated using an orthogonal method, methylation-specific 

qPCR designed for three CpGs significant in our study and previous studies, 

those that lie near MX1, IFITM1, and USP18.

• Local ancestry at windows that contain disease-associated CpGs do not 

explain the observed differences in methylation signatures between ancestries.
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Fig 1. 
DNA Methylation was assessed using the MethylationEPIC microarray on 87 buffy coat 

samples (46 controls and 41 SLE patients [20 SLE-LN+, 21 SLE-LN-]) A. Manhattan 

plot from the DNA Methylation Analysis. CpGs above the suggestive line (dotted blue) 

passed FDR<0.1. CpGs above the significance line (solid red) passed FDR<0.05. CpGs near 

interferon genes are highlighted in red. B. Unsupervised hierarchical cluster heatmap of beta 

values of CpGs (CpGs=21, false discovery rate < 0.05 & difference of 10% between cases 

and controls) significantly associated with Systemic Lupus Erythematosus. Each column 

represents an individual sample which is annotated by race (AA – Red, EA – Blue) and 

disease subset (Control, green; lupus without nephritis (LN-), yellow; lupus nephritis (LN+), 

pink) whereas each row represents a CpG with a color gradient based on their methylation 

status (Red – Methylated, Blue – Unmethylated). C. MDS Plot separates control and SLE 

samples, using the top SLE-associated CpGs. EA LN+ clusters with AA cases.
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Fig 2. 
Box plot of methylation score (Median z-score across the 21 IFN CpGs) using the 

MethylationEPIC microarray data. Y-axis is the methylation score, and the x-axis is the 

disease status (Control, green; lupus without nephritis (LN-), yellow; lupus nephritis (LN+), 

pink)

Allen et al. Page 18

J Autoimmun. Author manuscript; available in PMC 2024 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig 3. 
A. CpGs targeted for methylation-specific PCR in MX1, IFITM1, and USP18. B. 
Methylation Score from the MethyLight Assays. X-axis: Sample categories (AA/EA 

Control, AA/EA without lupus nephritis (AA/EA LN-), AA/EA with lupus nephritis 

(AA/EA LN+), Y-axis: SLE qPCR Score as calculated from median z-scores. C. Correlation 

of Methylation Scores between the microarray and qPCR assays. D. Correlation between 

methylation scores between microarray and qPCR assays stratified by race.
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Fig 4. 
A. Table of self-reported race, the proportion of genome calculated to be of African ancestry, 

and karyograms where windows of the genome were assigned ancestry (African, red; 

Eastern Asian, green; European, blue) for a selection of four patients in our cohort. B-D. 
Local Ancestry at windows containing CpG of interest (Methylation Beta Value, y-axis; 

disease subset, x-axis). Genotype was colored by ancestry (Homozygous European, blue; 

Heterozygous, purple; Homozygous African, red)
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