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Abstract

Modern toxicology’s throughput has dramatically increased due to alternative models, laboratory 

automation, and machine learning. This has enabled comparative studies across species and assays 

to prioritize chemical hazard potential and to understand how different model systems might 

complement one another. However, such comparative studies of high-throughput data are still 

in their infancy, with more groundwork needed to firmly establish the approach. Therefore, this 

study aimed to compare the bioactivity of the NIEHS Division of Translational Toxicology’s 

(DTT) 87-compound developmental neurotoxicant (DNT) library in zebrafish and an in vitro high-

throughput cell culture system. The early life-stage zebrafish provided a whole animal approach 

to developmental toxicity assessment. Chemical hits for abnormalities in embryonic zebrafish 

morphology, mortality, and behavior (ZBEscreen™) were compared with chemicals classified as 

high-risk by the Cell Health Index (CHI™), which is an outcome class probability from a machine 

learning classifier using 12 parameters from the SYSTEMETRIC® Cell Health Screen (CHS). 

The CHS was developed to assess human toxicity risk using supervised machine learning to 

classify acute cell stress phenotypes in a human leukemia cell line (HL60 cells) following a 4-h 

exposure to a chemical of interest. Due to the design of the screen, the zebrafish assays were 

more exhaustive, yielding 86 total bioactive hits, whereas the SYSTEMETRIC® CHS focusing 
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on acute toxicity identified 20 chemicals as potentially toxic. The zebrafish embryonic and larval 

photomotor response assays (EPR and LPR, respectively) detected 40 of the 47 chemicals not 

found by the zebrafish morphological screen and CHS. Collectively, these results illustrate the 

advantages of using two alternative models in tandem for rapid hazard assessment and chemical 

prioritization and the effectiveness of CHI™ in identifying toxicity within a single multiparametric 

assay.
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Hazard assessment; alternative models; high-throughput; comparative analyses; developmental 
neurotoxicity

INTRODUCTION

The U.S. National Research Council’s (NRC) conception of “Toxicity Testing in the 21st 

Century” urged a paradigm shift to increase the use of in vitro approaches and reduce the 

cost and time of chemical risk assessments. HTS in vitro studies have yielded expansive 

amounts of data providing valuable new knowledge (Burgoon et al., 2017; Villeneuve 

et al., 2019; Zhu et al., 2014). With the continued advancement of automation and data 

science, HTS assays can generate robust data more efficiently than the NRC anticipated 

in 2007, particularly for cross-species comparisons. (LaLone et al., 2018). HTS cross-

species comparative analyses have gained more attention as an efficient and comprehensive 

chemical hazard and risk assessment strategy (Darde et al., 2018; George et al., 2011; 

LaLone et al., 2018). Integrating different model systems and comparative screenings 

provide greater weight of evidence for chemical prioritization and hazard assessments as 

response to a chemical exposure shared, or even distinct, across species provides valuable 

information during the decision-making process (Bell et al., 2018; Hagstrom et al., 2019; 

Krewski et al., 2020). Many HTS assays are unidimensional and cannot account for whole-

system responses to chemical exposure nor address the complexity of chemical bioactivity 

across species, particularly due to metabolic inactivity within in vitro assays (Bell et al., 

2018; Bieberich et al., 2021). A robust and time/resource-efficient approach to chemical 

screening is needed to keep pace with the production and release of novel chemicals in 

consumer products, pharmaceuticals, industrial processes, and the environment.

In 2019, the National Institute of Environmental Health Sciences (NIEHS), National 

Toxicology Program (NTP) now known as the Division of Translation Toxicology 

(DTT), identified the limitations of traditional toxicity assessments, specifically regarding 

developmental neurotoxicity (DNT) (Behl et al., 2019). To address this limitation, the NTP 

curated a chemical library composed of either known or suspected DNT chemicals as a 

first attempt to establish collaborations between different labs that screen chemicals using 

alternative models (Behl et al., 2019; Hagstrom et al., 2019). This collaboration among 

40 different labs resulted in the production of extensive in vitro and in vivo datasets that 

permitted cross-system comparative analyses. Comparing developmental zebrafish and a 

freshwater planarian screen of the DNT library revealed that the zebrafish model was 

more sensitive. Nonetheless, the endpoint coverage of the multiple systems provided a 
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more exhaustive method for assessing developmental neurotoxicity (Hagstrom et al., 2019). 

Other screening studies included in the NTP’s DNT library screenings demonstrated that 

cross-system comparative analyses are powerful in that each system has unique endpoint(s) 

indicative of developmental neurotoxicity or bioactivity that would be missed if only one 

system was screened (Crofton et al., 2022). In agreement with this reasoning, this study 

compares the bioactivity of the NTP’s DNT library in a high-throughput live-cell system and 

the developmental zebrafish.

AsedaSciences SYSTEMETRIC® Cell Health Screen (CHS) applies a data processing 

pipeline that automates the detection of predictive features within multiparametric readouts 

gathered through an established flow cytometry analysis enhanced with proprietary feature 

extraction techniques based on distances between readout distributions (Edwards et al., 

2004,1999; Robinson et al., 2013, 2012; Bernas et al., 2008). In this case, the term 

“predictive feature” has a mathematical meaning and does not simply designate a biological 

characteristic. However, the biological characteristics driving these extracted features can 

briefly be listed as cell morphology, cell membrane integrity, reactive oxygen species 

(mostly mitochondrial superoxide), glutathione depletion, nuclear membrane integrity, cell 

cycle, and mitochondrial membrane polarization. The methodology of CHS has been 

previously described (Bieberich et al., 2021, 2022). The CHS quantifies and utilizes 

statistical modifications in multivariate distributions created by biological measures of 

single cells’ characteristics obtained through a multiparametric flow cytometry (FC) system. 

The resulting biological response vectors (population change trajectories) can be formed 

by extracting descriptors of cell population changes (inter-distribution divergences) that 

emerge during exposure to increasing concentrations of test compounds. These vectors of 

divergences are utilized to train an elastic-net logistic regression model, which leverages a 

database of carefully curated known compound characteristics. For this study, the classifier 

used a 300-compound training set comprising on-market drugs, withdrawn drugs, and 

research compounds. During training, the compounds were assigned to either a “high 

toxicity risk” or “low toxicity risk” class for human use based upon an extensive review of 

curated literature. However, when evaluating the risk of unknown compounds, a continuous 

value indicating the probability of class membership is provided. These values, ranging 

from 0 to 1, are defined as cell health indices (CHI™), which forecast the human-use risk 

associated with the tested compounds. The basic premise of the assay is that compounds 

with similar risk characteristics are likely to induce similar population-wide cell-response 

trajectories in the context of the associated FC assay. The assay used in the system has been 

designed to reveal immediate cell toxicity by using the above-listed biological characteristics 

as proxyies. Thus, the CHI™ primarily assesses the danger to humans posed by compounds 

that may potentially exhibit these important mechanisms of toxicity (Will and Dykens, 

2014). The raw underlying FC parameters utilized with acute cell stress are shown in Table 

S1.

The CHS is unique in that, rather than reporting only a series of unidimensional assessments 

associated with each of the FC-measured biomarkers, it also provides the CHI™, which is a 

single summary predictor based on a multidimensional classifier. Additionally, none of the 

employed FC data processing pathways require manually-executed tasks such as cytometry 

gating (Bieberich et al., 2022, 2021). The CHI™, along with other machine learning 
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assigned endpoint scores produced by sparser versions of the model, are collected in the 

AsedaSciences cloud-based SaaS platform, where further comparisons to other chemicals/

structures can be made. The SYSTEMETRIC® CHS is a novel approach for integrating flow 

cytometry into HTS studies cost-effectively and comprehensively.The zebrafish embryo is 

an excellent whole-animal model, particularly in developmental and neurotoxicity research 

(d’Amora and Giordani, 2018). The zebrafish is particularly powerful in that it can be used 

in HTS studies due to its external fertilization, small size, and rapid development while 

sharing similar and trackable developmental physiology with humans which includes brain 

and central nervous system development (Tal et al., 2014; Truong et al., 2014). Embryonic 

and larval zebrafish assays provide the added dimension of quantitative behaviors that are 

incorporated into HTS and produce robust endpoints for toxicants below the threshold of 

morphological effects ( Truong et al., 2013; Tal et al., 2014; Basnet et al., 2019; Shen et 

al., 2020; Zhang et al., 2021). The Tanguay laboratory’s ZBEscreen™ combines mortality, 

morphological, and behavioral endpoints to produce multidimensional data outputs for 

chemical hazard assessments.

Zebrafish exposures began at 6 hours post fertilization (hpf) and animals were assessed 

for chemical effects at 24 and 120 hpf in order to assess different stages of central 

nervous system development, as well as exploit the sensitivity of larval behavior assays 

(Truong et al., 2013). HL60 cell exposures, on the other hand, lasted 4 hours, and CHS 

was conducted immediately after. In this study, the zebrafish identified 86 of the 87 

DNT chemicals as bioactive, while the CHS detected 20 bioactives, according to CHI™. 

Comparisons made to available in vitro data collected through TOXcast and TOX21 screens 

revealed severe data gaps but also interesting correlations (and lack thereof) between CHI™, 

ZBEscreen™, and 42 endpoint readouts across the 1,385 assays curated on the EPA’s 

CompTox Dashboard. The integration of AsedaSciences SYSTEMETRIC® Cell Health and 

ZBE™ screens provided a rigorous and comprehensive evaluation of developmental and 

acute toxicity, with each assay yielding distinct and unique information.

MATERIALS AND METHODS

DNT Library Acquisition

Table S2 lists the chemicals, CASRN, and chemical class within the NTP’s 87-compound 

DNT library consisting of drugs, industrial chemicals, flame retardants, polycyclic aromatic 

hydrocarbons (PAHs), and pesticides. NTP’s DNT library was chosen due to its size and 

scope, covering 6 different chemical classes for a more rigorous interrogation of both model 

systems’ ability to detect bioactivity. All chemical stocks were 20 mM concentrations in 

dimethyl sulfoxide (DMSO). Further information about the DNT library can be found in 

Behl et al. (2019).

AsedaSciences SYSTEMTRIC® Cell Health Screen

HL60 cells were produced in suspension cultures in non-treated 850 cm2 roller bottles 

with vented caps in RPMI 1640 without glucose, supplemented with 10 mM galactose 

and 10% dialyzed heat-inactivated FBS, at 1 RPM, 5% CO2, and 37°C. In a 384-well 

platform, HL60 cells were exposed to a 10-step, 3X dilution series of each chemical (5 
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nM-100μM) for 4 h at 37°C with 5% CO2. Prior to cell deposition, assay plates containing 

chemicals were sealed and stored at room temperature in the dark for 2 h in order to allow 

binding equilibrium between serum components and exposure chemicals. Following the 4 h 

chemical exposures, the assay plates were removed and cells were gently pelleted at 300 xg 
for 2 min. A Biomek NXP was then used to aspirate 20 μL of each well volume, after which 

20 μL of fluorescent dye mix was deposited, plate sealed, and shaken 2X at 2,200 RPM 

for 5 s each time. Chemical formatting, cell deposition, and dye application were performed 

robotically, where final assay conditions comprised 100,000 cells in 40 μL volumes. Flow 

cytometry data were acquired with a CyAn™ ADP flow cytometer (Beckman Coulter) with 

automated sampling performed by a HyperCyt® autosampler (Intellicyt). Well-specific flow 

cytometry data files combined with a map of well contents were then moved to cloud 

infrastructure where the automated algorithm for quality control and machine learning 

classification is triggered. A complete description of the CHS can be found in the SI 

material.

ZBEscreen™

Tropical 5D wildtype adult zebrafish were housed at Oregon State University, Sinnhuber 

Aquatic Research Laboratory (SARL) in a standard 14h light/10 h dark-light cycle at 

28°C. Embryos were collected, cleaned, and staged prior to dechorionation at 4 hours post 

fertilization (hpf). The chorions were enzymatically removed, and at 6 hpf, 1 embryo was 

placed in each well of round bottom 96-well plates prefilled will 100 μL of embryo media. 

The chemicals were digitally dispensed directly from the 20 mM stocks into the test wells 

using a Hewlett Packard D300e, with all wells normalized to 0.64% DMSO (vol/vol). Up 

to 1% DMSO has no adverse effects on developing zebrafish (Maes et al., 2012). Each 

chemical was tested at 0, 1, 2, 4.5, 9, 18, 34, and 67 μM, sealed with parafilm to minimize 

evaporation, and shaken gently overnight at 235 rpm (Truong et al., 2016). Embryos were 

not exposed to visible light until 24 hpf assessments, after which they were again placed 

in the dark until the final 120 hpf assessments. Mortality and behavioral assessments were 

performed at 24 hpf using the Tanguay Lab’s zebrafish acquisition and analysis program 

(ZAAP) to record mortality, and embryo photomotor response (EPR) was assessed using the 

Photo-motor Response Assessment Tool (Reif et al., 2016; Hagstrom et al., 2019). At 120 

hpf, morphological assessments included 9 morphological endpoints recorded using ZAAP 

(following euthanasia using tricaine methanesulfonate), and behavioral assessments were 

done through larval photomotor response (LPR) using Viewpoint LifeScience Zebraboxes 

(Truong et al., 2014; Zhang et al., 2021). The EPR test consisted of 30 s darkness; first, 1 

s VIS light pulse, 9 s darkness; second, 1 s VIS light pulse; 10 s darkness (Truong et al., 

2014). Statistical significance was calculated for each interval using a Kolmogorov-Smirnov 

test (K-S) with a threshold of p < 0.01. LPR was performed prior to 120 hpf morphological 

evaluations, which consisted of 4 total light cycles; each cycle was 3 min of alternating light 

and dark. Malformed or dead animals were excluded from subsequent analyses. Statistical 

significance was determined using a K-S test (p < 0.01) and a relative ratio of >10% or 

<10%. All analyses were performed using custom R scripts previously described (R Core 

Team, 2022). The ZBEscreen™ exposure paradigm is described in more detail in Hagstrom 

et al. (2019).
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Individual System and Comparative Analyses

The ZBEscreen™ provides whole systems approach, while the CHS assesses human safety 

risk by applying a machine learning classifier to multidimensional cellular stress phenotype 

vectors, resulting in an overall probability that the chemical will or will not be toxic (CHI™). 

Hit calls were initially compared for either system, regardless of individual endpoint and/or 

assay, as it was impossible to compare individual endpoints between the zebrafish and 

HL60 cells due to their functional and biological differences (Table 1). The lowest effect 

levels (LELs) for each endpoint screened were identified in the zebrafish when there 

were 2 consecutive concentration hits for an endpoint. In contrast, individual endpoint 

scores and CHI™ were collected to assess the bioactivity of the DNT chemical library 

using CHS (Table S3). CHS analyses examined scores assigned to CHI™ (bioactive) and 

non-CHI™ (nonbioactive) chemicals to identify patterns and chemical concordance with 

zebrafish. CHI™ scores of ≥ 0.5 for chemicals were assigned as “bioactive” in line with 

the classifier training set of chemicals (Table S2). The concentration range chosen in the 

CHS was based upon previous investigations that utilized flow cytometry-based screening 

techniques (Bieberich et al., 2022; Robinson, et al., 2012). It’s essential to note that the 

concentrations used in the assay were set to obtain informative trajectories rather than to 

replicate the physiologically relevant concentrations observed in vivo. Consequently, it can 

be inferred that low-risk (low CHI) would mostly pertain to compounds that don’t exhibit 

cytotoxic characteristics even in high concentrations during human use. Aberrant endpoints 

(i.e., abnormal zebrafish morphology) identified in the ZBEscreen™ and CHI™ chemicals 

identified by the CHS were considered “bioactive,” regardless of the concentration in which 

it occurred. Due to the different ranges of concentrations tested in both systems and the 

disparities in system characteristics, a direct comparison of concentration in the tested 

assays was not considered (i.e., whole model vs. in vitro, short vs. prolonged exposure, 

different identifiable endpoints). Accordingly, ZBEscreen™ LEL data were converted to 

binary representation: bioactive or nonbioactive (any chemical with LEL value is considered 

bioactive).

System analyses began with chemical classifications (drug, flame retardant, industrial, PAH, 

pesticide negative) as defined by the NTP to identify chemical classes in which either 

system/system assay was most sensitive. Available in vitro data from EPA’s CompTOX 

Dashboard was batch exported for hit calls (binary) for all 87 chemicals and AC50 values. 

It is important to note that AC50s were averaged per assay endpoint as multiple assays 

assessed the same endpoint(s), sometimes in different in vitro systems, and correlation 

tests/calculations could not be run on assay endpoints with multiple values. The data was 

processed using custom R scripts to identify bioactivity and correlations with CHS across 

1385 assays and 46 endpoints (Table S4).

The medians for the provided endpoints were used to impute the missing CompTOX data 

entries. CompTOX assay values were log-transformed, whereas the ZBEscreen™ assay 

readouts were transformed using hyperbolic arcsine transformation. The entries on the (0,1) 

scale of the CHS were transformed using the inverse logit transformation. The transformed 

data were used to compute pairwise correlation matrix. Subsequently, the resultant matrix 

was employed as an adjacency matrix for an undirected graph built using the igraph library 
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(Csardi and Nepusz, 2006). The edges associated with correlations with absolute values 

lower than 0.5 were removed from network for clarity. R-package bootnet and mgm were 

used to calculate the adjacency matrix representing the mixed graphical model (Epskamp 

et al., 2018; Haslbeck and Waldorp, 2020). The communities of nodes representing clusters 

of connected readouts were identified by the walktrap algorithm included in the igraph 
package. This approach uses random walks to locate communities in large networks. 

Using these random walks, the distance between nodes is then determined. Nodes are 

then assigned to groups with smaller intra-community distances and bigger inter-community 

distances using bottom-up hierarchical clustering (Pons and Latapy, 2005). We conducted 

such analyses to demonstrate the relationships between executed assays, and to visualize the 

existence or lack thereof of causal links between simple high-throughput assays, and tests 

performed with a whole organism, the ZBEscreen™.

The simplest method for analyzing the similarities between the tested screens was to 

compare their binary prediction results directly. In this regard, as previously discussed, 

the ZBEscreen™ detected bioactivity in a greater number of compounds than the CHS, 

which provided a more comprehensive coverage of the library. However, the ground 

truth is uncertain due to zebrafish sensitivity to various routes of toxicity, not only 

neurotoxicity (i.e., the bioactivity of the DNT library’s curated subset of negatives found 

in the ZBEscreen™). Therefore, it is impossible to estimate statistical specificity, negative 

predictive values, and likelihood ratio for the employed screens (Rajwa, 2017; Shreffler and 

Huecker, 2022; Behl et al., 2019).

RESULTS AND DISCUSSION

Bioactivity Across the SYSTEMETRIC® Cell Health Screen and ZBEScreen™

Between both model systems, 86 out of 87 chemicals in the DNT chemical library 

were identified as bioactive. The CHS identified 20 chemicals by binarizing the CHI™ 

produced by the machine learning classifier using multiple flow cytometry-based readouts 

characterizing changes in a population of single HL-60 cells. The ZBEscreen™ identified 38 

chemicals through mortality/morphological assessments and 86 chemicals through different 

behavioral assessments (Figure 1). The chemical classes identified by CHI™ spanned 

industrial, flame retardants, pesticides, and drugs, while ZBEscreen™ bioactivity occurred 

across all chemical classes, including NTP-categorized negatives. The high sensitivity of 

zebrafish to other forms of toxicity likely accounts for the detected bioactivity of the four 

chemicals classified by NTP as negative for DNT. CHI™ classification and morphological 

assessments within the ZBEscreen™ revealed the greatest pesticide sensitivity, with 7 of 

16 and 13 of 16 pesticides identified as bioactive, respectively (Table S5). Behavioral 

evaluations within the ZBEscreen™ demonstrated that all 16 pesticides were bioactive (in 

either EPR or LPR assays). The higher number of pesticides identified in both systems 

suggests that the pesticides likely induced additional forms of toxicity besides DNT, as 

seen in studies that showed different pesticide classes produced specific forms of toxicity 

(carcinogenicity, metabolic toxicity etc.) (Gonςalves et al., 2020).

ZBEscreen™ behavioral assessments were the most sensitive endpoint(s) among all assays 

performed between the two systems. LPR alone identified 42% of the total DNT chemical 
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library as bioactive in the zebrafish (Figure 1, C). LPR-related atypical behavior is 

determined through the quantification of hyperactivity and hypoactivity in both light and 

dark (infrared) cycles in 120 hpf larvae compared to controls. LPR has become a common 

endpoint in many pharmacological, toxicological, and developmental studies using zebrafish 

(Basnet et al., 2019; Maeda et al., 2021; Shen et al., 2020; Zhang et al., 2021). EPR had 

the most concordance with atypical morphological endpoints, with 35 chemical overlaps 

with morphology (Figure 1, C). Route of exposure, chemical uptake, and metabolic activity 

(HL60 cells are not metabolically active) are key differences that could alter the detection 

of chemical bioactivity between the assay systems. It is important to note that in the current 

analyses, there was no value judgment regarding specific atypical endpoints; only bioactivity 

was identified.

Complementarity Between SYSTEMETRIC® Cell Health Screen and the ZBEscreen™

There were 20 bioactive chemicals identified by CHI™ within the CHS and 86 

bioactives identified by the ZBEscreen™, which resulted in 20 concordant chemicals 

between the two systems (Figure 2, A). The 86 chemicals identified as bioactive in the 

ZBEscreen™ were active in either one or both of the behavioral assays. One chemical, 

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), was detected only through abnormal zebrafish 

morphology (Figure 2, B). Additionally, 16 of 20 CHI™ bioactives caused significant 

atypical morphologies in the ZBEscreen™, but 4 of 20 CHI™ bioactives were identified 

by at least one ZBEscreen™ behavior assay (Table S6, S7). These results demonstrate the 

enhanced sensitivity of the behavioral assays within the ZBEscreen™ where EPR and LPR 

can recognize chemical effects that morphological assessments would miss.

ZBEscreen™ EPR-related bioactivity correlated more with CHI™ bioactive chemicals (17 of 

20) than LPR (9 of 20). Berberine chloride, clofenotane. and heptachlor were the 3 CHI™ 

chemicals not bioactive in the EPR assay but were identified in the LPR assay. Additionally, 

34 DNT chemicals were identified by LPR alone among the CHS, ZBEscreen™ EPR 

and morphological assessments. The ZBEscreen™ behavioral assessments can identify 

DNT chemicals that produce gross morphological changes, while the CHI™ classification 

combines acute cellular stress endpoints to identify cytotoxicity. These observations, 

collectively, demonstrate the comprehensive power of combining the SYSTEMETRIC® 

CHS and ZBEscreen™.

SYSTEMETRIC® Cell Health Screen Compared to Available Data from EPA CompTox 
Chemical Dashboard

Across the 87-chemical library, there were 56,669 total hit calls across 1,385 assays 

and 48 endpoint readouts curated by CompTOX; 9,043 bioactive hit calls, and 47,626 

non-bioactive hit calls. (Figure 3, Table S8). The US EPA CompTOX Dashboard contains 

data for 906,511 different chemicals, which includes the 87 chemicals present in NTP’s 

DNT chemical library (https://comptox.epa.gov/dashboard/). There were stark differences in 

the number and types of assay endpoints found in CompTOX across the DNT chemicals, 

revealing data gaps. For example, bisphenol A (BPA) is the most well-tested chemical 

in the library, with 1,205 total conclusive assays (180 untested assays). Valinomycin, 

Firemaster 550, and 1-methyl-4-phenyl pyridinium iodide were the least tested chemicals, 
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with 36 conclusive assays performed, leaving 1,349 assays untested for each chemical (Table 

S8). BPA is a well-known endocrine disruptor with considerable downstream effects that 

result in reproductive, immune, developmental, hepatic and renal damage, and potentially 

carcinogenic and mutagenic activity (Ma et al., 2019). BPA was not bioactive in 946 of the 

1205 assays tested in CompTOX, and the CHI™ classifier did not classify BPA as bioactive. 

Moreover, 22 of 46 neurodevelopment assay readouts were bioactive (approximately 48%) 

within CompTOX. In contrast, nuclear receptor assays composed the highest number of 

bioactive hit calls, with 87 out of the 250 total nuclear receptor assays tested (257 total in 

CompTOX). In comparison, cell cycle-related assays had the second most hit calls, with 26 

bioactives out of the 176 assays tested (185 total cell cycle assays in CompTOX) (Table S9). 

However, each ZBEscreen™ assay identified bioactivity caused by BPA exposure (mortality, 

morphology, EPR, and LPR). The least tested chemicals within CompTOX, Firemaster 550 

and valinomycin, were bioactive in the CHS and the ZBEscreen™. Although CompTOX 

provides exceptionally curated, high-quality data, limitations exist in the form of missing 

information and inconclusive hit calls. For instance, the bioactivity identified in 87 of 250 

nuclear receptor assays did not provide enough information to estimate or determine the 

toxicological risk of BPA. Moreover, this begs the question; which assay endpoint(s) among 

the 48 within CompTOX are the most accurate indicators of toxicity? The CompTOX 

Dashboard data, while extensive, are not exhaustive, and thus no single assay of the 1,385 

was capable of estimating chemical hazard.

The CHS data and the CHI™ classification generated from this assay are based on a different 

set of assumptions than CompTOX screens. The CHS collects and classifies phenotypic 

signatures of analyzed compounds instead of utilizing a large number of individual assays 

based on preconceived mechanistic models covering multiple different aspects of toxicity. 

Consequently, the accuracy of the CHS is based on the premise that a set of compounds 

that produces similar patterns of response in tested cell populations (population phenotype) 

will elicit corresponding responses when used within a more complex system. However, the 

responses in the model system do not need to resemble the responses in the test system. 

Additionally, it is essential to note that the phenotypic patterns observed in the model 

system need not be identical or similar for the compounds to be classified as belonging 

to the same classification (i.e., bioactive, non-bioactive). The “bioactive” group may be 

highly multimodal. In other words, the only condition is that two compounds classified 

as functionally similar in the screened environment are likely to be functionally similar 

in humans. The classification is performed on the basis of training a statistical model 

rather than a mechanistic biological model. Therefore, even though elastic net regression 

is ante hoc explainable (one can examine the model’s coefficients to determine why a 

particular compound was assigned to a particular class), statistical explainability does not 

imply mechanistic explainability. The CHS may help formulate the hypothesis regarding 

the mechanism of action, but only a comprehensive follow-up study would reveal why a 

specific population phenotype indicates a high probability of toxicity. Given that the CHS 

is intended to detect relatively rapidly occurring acute responses, it should be viewed as a 

low-cost, rapid, and reliable pre-selection step, complementing more comprehensive, costly, 

and time-consuming assays such as the ZBEscreen™.
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Corrleation analyses of CHS, ZBEscreen™, and CompTOX assays formed distinct groups 

that are only distantly related (Figure 4). This demonstrated that the underlying assay 

readouts are orthogonal and capture complementary data which emphasizes the advantages 

of pairing an organism-based assay with a much simpler, but rapid pre-screening step 

utilizing singe cell phenotypes.

In the next stage we attempted to reconstruct a graphical model network which could 

be used to suggest hypotheses on the potential representation of causal links between 

distinct physiological subsystems tested by particular experiments (Figure 5). The employed 

graphical model allows us to infer dependencies between test endpoints by calculating 

the conditional dependence structure between readouts (Altenbuchinger et al., 2020). This 

differs from the correlation analysis mentioned above, which solely analyzes the strength 

of linear connections between pairs of assay readouts without accounting for the impact of 

additional readouts or biological characteristics. In order to promote sparsity, the employed 

method used ℓ1 (LASSO) regularization. The result demonstrates once more that the results 

of the three comparative assays capture essentially distinct aspects of physiology and are 

therefore likely to detect distinct toxicity characteristics.

Future research evaluating, comparing, and expanding the described screening approaches 

should include a more thorough cross-validation performed within the context of the 

employed downstream machine learning tools, which ingest the raw readouts characterizing 

biological endpoints and link them via a statistical model to an estimate of the risk 

associated with a tested compound. This may necessitate the creation of a specialized 

validation library, which will include not only drugs with known toxicities and recognized 

mechanisms of action, but also a vast selection of inert compounds that are well-tolerated by 

humans.

CONCLUSIONS

The analysis of the binary classification of the DNT chemical library revealed that the 

ZBEscreen™ is more sensitive than the AsedaSciences SYSTEMETRIC® CHS in detecting 

bioactivity potentially associated with neurotoxicity. The ZBEscreen™ included a greater 

number and variety of endpoints, providing greater weight of evidence regarding the 

comprehensive chemical hazard evaluation. More specifically, the behavioral assessments 

within the ZBEscreen™ demonstrated the highest sensitivity to chemical exposure but it 

is important to add that these behavioral readouts are not restricted to DNT chemicals 

or responses. In contrast, the CHS encompassed more specific cellular stress endpoints 

associated with acute cell stress. The CHS, conceived as a quick pre-screening technique, 

was tailored for high specificity and was not designed to identify specific classes of 

toxicants that generate cumulative effects or effects depending on fully functional metabolic 

pathways. Subsequently, the use of both systems, in combination or a tiered approach, 

would result in more informed decision-making during the drug discovery and development 

process.

Although none of these assays alone can provide definitive evidence regarding particular 

mechanisms of action, when combined with modern data analysis (causal inference, 

Mary et al. Page 10

Toxicol Appl Pharmacol. Author manuscript; available in PMC 2024 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



explainable artificial intelligence) they could be utilized in the future to elucidate 

mechanisms by which certain bioactive chemicals act through.

The chemicals comprising the NTP’s DNT chemical library were well-characterized by the 

EPA’s CompTOX Dashboard’s curated in vitro data; however, the coverage was limited, 

and huge knowledge gaps still existed across the 1,385 assays. Additionally, the reliance 

on a high number of endpoints raises the issue of the subsequent classification approach 

that would be employed with CompTOX. These data could be used to train, test, and 

possibly validate a number of different classifiers optimized to detect various mechanisms 

of toxicity. Regardless of the potential outcome, it is evident that CompTOX and our 

tested assays, approach hazard prediction in radically different ways. CHS is narrow in 

scope and focuses on acute responses. ZBEscreen™ has a broader target, and it is driven 

by phenotypic outcomes. In contrast, the single end-point assays in CompTOX attempt to 

cover the broadest range of possible known responses. However, combining a basic and 

rapid cell-based model (CHS) with a comprehensive phenotypic organism-based system 

(ZBEscreen™) may be more efficient and cost-effective, allowing for a higher throughput 

and a broader coverage of chemicals for hazard assessment.

Although our work shed some light on the sensitivity of the tested assays (defined as 

the ability to detect subtle changes in phenotype that may be indicative of toxicity or 

other effects), the limited scope of the employed chemical library and the sparsity of 

the CompTOX database prevent us from comparing the robustness andreproducibilityof 

single-readout assays in CompTOX versus ZBEscreen™ and CHS. The executed comparison 

demonstrates the usefulness of combining several screening techniques, and assays 

developed to address distinct toxicity features which would ultimately reduce the cost and 

use of mammal models for hazard assessments in the future.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Bioactivity across the SYSTEMETRIC® Cell Health Screen and the ZBEscreen™.
Bar plots of DNT chemical library bioactivity as identified by A) ZBEscreen™ mortality/

morphological assessments and B) CHI™ categorized by chemical class C) Venn diagram of 

bioactivity across the morphological and behavioral (EPR and LPR) assessments of the DNT 

chemical library in the ZBEscreen™.
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Figure 2. Concordance between the SYSTEMETRIC® Cell Health Screen and ZBEscreen™.
A) Venn diagram showing the number of bioactive chemicals between the ZBEscreen™ 

and SYSTEMETRIC® CHS B) Distribution of CHI™ bioactives and ZBEscreen™ endpoints 

across the 87 DNT chemical library where the zebrafish endpoints were separated by 

mortality, morphology, and the behavioral assessments EPR and LPR (green indicates 

bioactivity identified by CHI, blue indicates bioactivity identified by any of the 4 zebrafish 

readouts). Likewise, DNT chemicals not identified through the CHI™ classification were 

detected by the ZBEscreen™, demonstrating the complementarity between the systems used 

in tandem.
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Figure 3. Hit call distribution of 87-DNT chemical library among 1,365 in vitro assays from the 
EPA CompTox Dashboard.
The black dashed line indicates the average number of untested assays across all 87 

chemicals, and the green stars indicate CHI™ bioactive chemicals. Among available in 
vitro data, 9 CHI™ chemicals were undertested (49 of the chemical library), and 11 CHI™ 

chemicals were thoroughly tested (36 of the chemical library).
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Figure 4. Correlation network representation of assay endpoints from CHS, ZBEscreen™, and 
the EPA’s CompTOX dashboard.
Correlation analyses and clustering of the network vertices showed the formation of distinct 

groups of assay endpoints. Blue points are assay endpoints curated within CompTOX, red 

and green points represent endpoint readouts from the ZBEscreen™ and CHS, respectively. 

The edges indicating correlations with absolute value less than 0.5 are not shown.
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Figure 5. Links between the distinct physiological subsystems tested.
The graphical network model shows each assay readout as a node in a graph, and edges 

between nodes represent conditional dependencies between assays’ endpoints. The presence 

and line thickness show the strength of these dependencies (a thicker line indicates stronger 

association). For the sake of clarity, readouts without corresponding edges are omitted from 

the network. The blue points indicate CompTOX-curated assay endpoints, whereas the red 

and green points represent ZBEscreen™ and CHS endpoint readouts, respectively.
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Table 1.

Endpoint classes used in SYSTEMETRIC® Cell Health Screen and the ZBEscreen™.

Classes of endpoints used in in vitro (SYSTEMETRIC®) and in vivo (zebrafish) systems

Endpoint Class Zebrafish Endpoints SYSTEMETRIC® Endpoints

Mortality Mortality (24 hpf, 120 hpf)

Morphology Craniofacial malformation
Curved/bent axis
Yolk/heart edema
Muscular malformation
Lateral trunk malformation
Brain malformation or necrosis
Hyper/hypo pigmentation
Notochord distortion
Abnormal touch response

Behavior Embryo photomotor response (EPR: 24 hpf)
Larval photomotor response (LPR: 120 hpf)

Cytotoxicity Cell morphology
Cell membrane integrity
ROS superoxide
Glutathione depletion
Nuclear membrane integrity 1
Cell cycle
Nuclear membrane integrity 2 Mitochondrial membrane potential
CHI probability
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