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Abstract

This longitudinal study examines the association between bedroom nighttime temperature and 

sleep quality in a sample of community dwelling older adults. Using wearable sleep monitors and 

environmental sensors, we assessed sleep duration, efficiency, and restlessness over an extended 

period within participants’ homes while controlling for potential confounders and covariates. 

Our findings demonstrated that sleep was most efficient and restful when nighttime ambient 

temperature ranged between 20–25°C, with a clinically relevant 5–10% drop in sleep efficiency 

when the temperature increased from 25°C to 30°C. The associations were primarily nonlinear, 

and substantial between-subject variations were observed. These results highlight the potential to 

enhance sleep quality in older adults by optimizing home thermal environments and emphasize the 

importance of personalized temperature adjustments based on individual needs and circumstances. 

Additionally, our study underscores the potential impact of climate change on sleep quality in 

older adults, particularly those with lower socioeconomic status, and supports increasing their 

adaptive capacity in the face of a changing climate.
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INTRODUCTION

Background/rationale

Older adults often experience inadequate, restless, and disrupted sleep (henceforth, poor 

sleep) which in turn influences many outcomes related to their health and wellbeing such 

as cognitive and physical function, mood and affect, irritability and reaction to stress, 

productivity, diabetes management, and risk of cardiovascular diseases1–12. Indeed, poor 

sleep is disproportionately more common among older adults4,13. Meanwhile, research on 

its causes has been mostly focused on physiological and behavioral factors despite evidence 

suggesting that the environment the person sleeps in can be as influential. As a result, while 
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numerous medical and behavioral interventions have been developed to improve outcomes 

related to sleep, the potential of environmental interventions have been largely overlooked.

Within this context, the link between home ambient temperature and sleep within older 

adults is a potential target for improving sleep. In laboratory-based studies, the ambient 

thermal environment has been shown to exert a strong causal relationship to the timing 

and quality of sleep14–16. Although establishing a causal relationship is challenging outside 

the lab, evidence suggests that naturally occurring changes in ambient temperature also 

impact sleep, especially when the built environment does not adequately protect individuals 

from variations in outdoor temperature. For example, Yetish et al. investigated sleep in 

three preindustrial societies and reported ambient temperature as a “major regulator” of 

sleep duration and timing 17. Within a modern built environment, housing and its heating 

and cooling systems can, at least in theory, decouple indoor temperature from that of 

the outdoor thermal environment. However, the extent to which one can maintain a 

comfortable and sleep-promoting home temperature depends on the housing itself 18–24, 

ability to afford heating and cooling 25–27, ability to perceive a thermal discomfort 28,29, 

and adequate physical and cognitive function to take adaptive measures (e.g., changing 

thermostat setpoint, opening windows), all of which can decline with age30–32. As a result, 

even within a modern built environment, there exist correlations between sleep and outdoor 

temperature 33,34. Meanwhile, climate change can contribute to poor sleep by increasing 

the frequency and intensity of both hot and cold weather events 35,36. Therefore, if it 

is established that natural variations in home temperature have a meaningful impact on 

sleep within community-dwelling older adults, environmental interventions can be used to 

improve their sleep and perhaps make them more resilient to a changing climate. With 

the rapid growth in use of smart home thermostats and health tracking wearable devices, 

technology now enables large-scale longitudinal studies on the relationships between home 

ambient temperature and sleep, as well as environmental interventions such as cloud-to-

home optimization of ambient temperature to promote sleep 37. Unfortunately, this potential 

has been mostly overlooked because it is not clear whether, and to what extent, ambient 

temperature within older adults’ own homes, which unlike lab settings is controlled and 

selected by the individual, impacts their sleep. Past observational studies demonstrate a 

relationship between home ambient temperature and outcomes related to sleep among older 

adults38–42. However, these studies often monitor subjects for short periods of time and 

do not capture factors related to subjects’ physiology, physical and cognitive function, 

and socioeconomic status that are potential confounders and covariates. As a result, while 

they provide invaluable insight into the potential impact of home ambient temperature 

on sleep in older adults, they do not establish a link that is independent from other 

environmental, physiological, socioeconomic, or functional factors. For example, it is not 

clear to what extent the observed associations are due to differences in socioeconomic status, 

which is a potential confounder. Further, past studies have not considered the potential 

between-individual differences in sleep due to differences in physiology, behavior, and 

adaptive capacity. Addressing these knowledge gaps, which is the main goal of the present 

study, requires observing the individual over a longer term and a comprehensive baseline 

characterization of their health and function.
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Our objective was to investigate whether nighttime ambient temperature influences sleep 

in community-dwelling older adults living within a modern built environment. We 

hypothesized that there exist relationships between bedroom nighttime ambient temperature 

and time-synced outcomes related to quality and duration of sleep (namely, sleep efficiency, 

total sleep time, and number of movements during sleep) that are independent of 

other influential environmental, physiological, and functional factors. Further, we aimed 

to conduct a within-subject analysis to investigate between-person differences in these 

relationships.

METHODS

Study Design

We conducted a longitudinal observational study with rolling enrollment to monitor, over 

long periods of time, the home ambient temperature and outcomes related to sleep within a 

sample of community dwelling older adults.

Setting

This was a single-site study conducted in Boston, MA, USA (42.3601° N, 71.05 W, 

The Köppen-Geiger climate classification Dfa). Boston is a coastal city, with warm and 

humid summers, cold and stormy winters, and relatively cool spring and fall seasons. The 

recruitment period was October 2021-September 2022. Participants slept in their own homes 

and came from a variety of housing types ranging from small subsidized housing apartments 

to large single-family detached homes. Data collection started on Oct 28th, 2021, when the 

first subject entered the study and continued through Feb 28th, 2023.

Participants and Protocol

Participants were community-dwelling older adults who met the following inclusion criteria: 

1) At least 65 years old 2) Willing to follow study protocols for the duration of the 

study 3) Living in the greater Boston metropolitan area 4) Access to a stable internet 

connection within their home. Exclusion criteria were established to ensure safety and 

optimize compliance, while minimizing confounds due to overt disease or conditions that 

may significantly influence study outcomes. They included: 1) Plans to leave their current 

place of residence within two consecutive years from the time of enrollment, 2) Spending 

most of their time away from home, 3) Any acute or unstable medical condition, 4) Self-

reported physician-diagnosed dementia, or likely inability to understand the study protocol 

and/or safely adhere to study procedures, 5) Self-reported inability to ambulate without the 

assistance of another person, and 6) Self-report of physician-diagnosed sleep apnea.

We advertised the study through flyers in several senior living facilities as well as 

community senior centers. We advertised in two subsidized and two private senior housing 

sites, and a senior community center. Participants identified as eligible through our phone 

screen were visited in their own home for an in-person screening and baseline health 

assessment. Individuals who met all inclusion and exclusion criteria read and signed an 

informed consent form approved by Advarra Institutional Review Board (protocol ID: 

Pro00047567). During the same visit, medical history questionnaires were completed 
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along with physical and cognitive assessments. After the initial assessments, we installed 

environmental sensors in participants’ bedrooms and living rooms and linked a wearable 

ring heart rate, activity, and sleep monitor (Ouraring; Oura, Finland) to their smartphones. 

Those who did not have a smartphone were provided one by the study team. We explained 

all elements of the study to participants and asked them to 1) Keep environmental sensors 

connected and plugged-in and 2) Wear the wearable device continuously and charge it twice 

a week. Participants remained in the study for 12 months, or through the end of our data 

collection period.

Variables

The outcome variables were sleep efficiency (SE, ratio of time spent asleep to time spent 

in bed) and sleep restlessness (RSTLS, ratio of time spent tossing and turning to time spent 

asleep), as well as total sleep time (TST). SE and RSTLS are related to the quality of 

sleep. A low SE is associated with more frequent and/or longer awake periods throughout 

the night while a high RSTLS means more tosses and turns per hour of sleep. Poor sleep 

quality is therefore often associated with a low SE and/or a high RSTLS. The exposure 

variable was nighttime average ambient temperature. Our goal was to isolate, to the extent 

possible, the impact of exposure variable on outcome measures. Therefore, as shown in 

figure 1, we constructed an a priori structural causal graph based on known and measured 

between- and within- subject sources of variations in sleep. We considered cognitive and 

physical function, health status, and biological sex as sources of between-subject variation 

in sleep. Socio-economic status and cognitive and physical function can also influence both 

sleep quality and the home ambient temperature and are therefore considered as possible 

confounders (methods of measurement described below). Within each subject, length of the 

day (i.e., number of hours between sunrise and sunset) and nighttime ambient humidity 

(measured by our environmental sensor) can influence sleep directly and/or indirectly. 

Further, we included the social calendar (i.e., weekend vs. weekday) as a covariate.

Measurements and sources of data

Ambient temperature and humidity: We used the Netatmo smart air quality monitor 

(Netatmo, France) to continuously measure indoor air temperature and relative humidity. 

We installed two sensors in each home: one in the bedroom and one in the living room. 

We asked participants to not move the sensors from their original location and always keep 

them plugged in. We used Netatmo’s Application Programming Interface (API) to record 

temperature and humidity every 15 minutes and upload acquired data to cloud storage.

Sleep: We used a wearable ring device worn in the finger (Ouraring, Oura, Finland) 

to measure outcomes related to sleep. Ouraring uses different biological signals in its 

sleep detection algorithm. It measures heart rate, heart rate variability, respiration, skin 

temperature (measured at the ring), and movement, via infrared photoplethysmography 

(PPG), negative temperature coefficient (NTC), and a 3-D accelerometer43. Several studies 

have tested and validated Ouraring against polysomnography, which is the gold-standard 

in sleep detection. These studies show that Ouraring’s 2-stage sleep-wake accuracy and 

ability to correctly identify sleep efficiency is 89 – 94%43. Each participant received an 

appropriately sized ring to wear continuously on their finger and was instructed to charge it 
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once every 3 to 4 days. To charge the ring, participants had to place it on a charger terminal 

for 2–3 hours. During the initial visit we explained the charging process to the participants 

and allowed them to practice it. We repeated this training as needed throughout the study 

to ensure participants remember and are able to charge the ring appropriately. We did not 

instruct participants to wear the ring during the day to increase battery life and minimize 

disruption to their daily life. We monitored the incoming data from all participants on a 

weekly basis and promptly addressed gaps to ensure high compliance. Data collected from 

the ring was transmitted to the cloud via the participant’s smartphone. We used Oura’s API 

to create a data stream from the device to cloud storage.

Length of the day: We calculated length of the day using the Geosphere package in R44.

Baseline assessments: Physical and cognitive function were represented by baseline 

scores on short physical performance battery 45,46 (SPPB) and Montreal Cognitive 

Assessment 46–48 (MOCA), and health status was represented by the Charlson comorbidity 

index (CCI) 49 which was calculated from our baseline health questionnaire. SPPB is a 

series of physical performance tests used to assess physical function and mobility in older 

adults and includes three main components: a balance test, a gait speed test, and a chair 

stand test. The timed results of each subtest are rescaled according to predefined cut-points 

to result in an overall score ranging from 0 (worst performance) to 12 (best performance). 

MoCA is used to evaluate people with memory loss or other symptoms of cognitive decline. 

It assesses short-term memory recall, visuospatial abilities through clock-drawing and cube 

copy, and orientation. CCI is a measure of comorbidities that is predictive of mortality. It 

includes a count of multiple conditions, such as heart disease, AIDS, or cancer. CCI scores 

12 comorbidities with various weightings giving a maximum score of 24. A score of zero 

means that no comorbidities were found. Socioeconomic status was represented by three 

binary variables: living status (1= living alone, 0= living with a partner), education (1=less 

than 2 years of college, 0=more than two years of college), and housing type (1= living in 

subsidized housing, 0= private market-rate housing)

Statistical analysis

Using the timestamps in sleep and environmental data, we matched the sleep outcome of 

each night from each participant to the environmental data measured from their bedroom 

during the same night. Then, we removed outlier nights by applying the interquartile range 

(IQR) method of outlier detection to each participant’s sleep efficiency and total sleep time. 

This method involves calculating the interquartile (IQR) which is the range between the first 

quartile (Q1, 25th percentile) and third quartile (Q3, 75th percentile) of a dataset. Outliers 

are then identified and removed by excluding data points that fall below the lower bound 

(Q1 – 1.5IQR) or above the upper bound (Q3 + 1.5IQR). Further, using the same method, 

we removed nights when the indoor temperature was extremely hot or cold assuming the 

participant did not sleep at home that night. Finally, we removed data from nights when 

individual participants reported being away (e.g., due to travel). We reported descriptive 

results by using box plots to show the range and variation in exposure (temperature) and 

outcome (SE, TST, and RSTLS) variables for each participant.
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Our first hypothesis was that there exists a global relationship between nighttime ambient 

temperature and date-synced outcomes related to sleep, independent of between-subject 

(sex, health status, and physical and cognitive function, and socioeconomic status) and 

within-subject (humidity, length day, day of week) sources of variation. To test this 

hypothesis, we created three regression models (one for each outcome) with all the 

predictors and covariates shown in figure 1. Because we expected non-linear relationships 

between the outcomes and environmental predictors, we used Generalized Additive Models 

(GAMs) 50. GAMs are a specific type of generalized linear models that can handle linear 

response variables that depend linearly on unknown smooth functions of some (or all) 

predictor variables. For a select set of variables that are assumed to have a non-linear 

relationship with the outcome, GAMs replace beta coefficient with “smooths” which are 

complex functions that capture the non-linearity in the relationships.

Model equation:

Outcomeij β0 + S1 temperatureij + S2 relative_ℎumdityij + S3 day_lengtℎij + β1 SPPBi + β2 MOCAi +  β3 CCIi
+ β4 sexi + β5 living_statusi + β6 housing_typei + β7 educationi + β8 weekendj

where j and i designate the jth observation and the ith subject. The first three terms are 

modeled as smooth functions (S1, S2, S3) while the remaining are simple linear terms with 

traditional β coefficients. Because the nonlinear terms in GAMs do not result in a traditional 

beta coefficient, we used graphics to show the relationships between dependent variable and 

predictors of interest while keeping other variables constant at their median. Further, we 

reported partial R2 51,52 values as a measure of the proportion of variance in the dependent 

variable that can be attributed to a specific predictor while accounting for the influence of 

the other predictors in the model. To calculate partial R2 for each predictor, we fit a reduced 

GAM without that predictor and calculated the R2 for both the full and reduced models. 

The partial R2 was calculated as the difference between the R2 of the full model and the 

reduced model. For the linear terms (MOCA, SPPB, CCI, Sex, housing type, Living Status, 

Weekend), we simply reported traditional Beta coefficients.

Our second goal was to investigate the within-subject relationships between nighttime 

ambient temperatures and sleep outcomes. We therefore replaced physiological, 

socioeconomic, and functional variables (the left side of figure 1) with a subject-specific 

intercept (participant ID). Then, we allowed each participant to have their own set of 

subject-specific non-linear relationships between the dependent variable and nighttime 

ambient temperature, nighttime relative humidity, and day length. This enabled us to study 

whether and how, within each participant, nighttime ambient temperature had a relationship 

with outcomes related to sleep.

Model equation:

Outcomeij β0i + S1i temperatureij + S2i relative_ℎumdityij + S3i day_lengtℎij + β1i weekendj

where i and j designate the ith participant and the jth observation. Notably, each participant 

has their own set of smooth functions (S1i, S2i S3i). Given the nature of environmental 
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timeseries data (ambient temperature, humidity, and length of the day), some level of 

collinearity between these variables is inevitable when the data are limited to a single 

participant. In extreme cases, this collinearity can negatively impact model performance. 

We therefore tested data from each participant and excluded those with extremely high 

correlation between the ambient temperature and humidity or length of day. Specifically, 

we used concurvity 53–55, which is a measure of redundancy in the feature set of GAMs. 

Generally, a concurvity of more than 0.8 between any two of the predictors adversely 

affects model performance and can lead to unstable estimates. Five (out of 50) participants 

who demonstrated strong correlations between ambient temperature and humidity and/or 

day length were excluded from the within-subject analysis. We plotted the within-subject 

relationship between ambient temperature and outcomes related to sleep for the remaining 

45 participants to illustrate the inter-individual differences in the relationships between 

ambient temperature and outcomes of interest.

RESULTS

Participants

Figure 3 shows the recruitment diagram. Out of the 65 participants who were screened, 53 

enrolled in the study, and 50 were included in our analysis. Table 2 shows the characteristics 

of our sample as well as the number of data points collected. After removing the outliers, 

on average, we had 212 (±96.3, range: 31–358) nights of measured sleep and environmental 

data from each participant. In total, our analysis included 10903 person-nights of data.

Descriptive data

Figure 3 shows the observed range of nighttime bedroom temperature for each participant. 

Each box includes all the data from a specific participant. Figures 4–6 show the three 

outcomes related to sleep for each participant (each box plot represents a specific 

participant). These data reveal substantial differences between (the difference in means and 

variance between different boxes) and within (the range of data within each box) subjects.

Table 2 shows the results for all three outcomes of our main regression analysis. The 

partial R2 shows the contribution of each variable to overall model fit (i.e., the relative 

importance of each variable in predicting the dependent variable). According to these partial 

R2 values, the most important predictors (partial R2 >0.1 and P<0.05) are as follows: (1) 
SE: Living alone, housing type, education, and nighttime ambient temperature (2) RSTLS: 
living alone, housing type, and nighttime ambient temperature, (3) TST: sex, housing type, 

and education. We did not report β coefficients for environmental variables because we 

modeled them as non-linear predictors. Their predicted impact on each outcome is presented 

graphically in figure 7.

These results reveal non-linear relationships between the nighttime ambient temperature 

and all three sleep outcomes. Model-predicted TST was unaffected by nighttime ambient 

temperature until 22 °C and then dropped, rather substantially, as the temperature increased. 

Accordingly, our model predicted a 60-minute reduction in total sleep time as temperature 

increased from 22 to 30 °C. SE and RSTLS, both of which are related to the quality of 
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sleep, show a u-shape relationship. Based on our models, an 8 °C increase in nighttime 

ambient temperature (from 22 to 30 °C) is associated with a 10% drop in sleep efficiency. 

On the other hand, an 8 °C decrease in nighttime ambient temperature (from 22 to 14 °C) 

is associated with a 5% drop in sleep efficiency. Overall, these results indicate an optimal 

range of temperature, whereby sleep was most efficient and restful when nighttime ambient 

temperature was between 20 – 25 °C.

Based on partial R2 values reported in table 2, day length and nighttime ambient humidity 

were only relevant in predicting SE (second column in figure 7). SE decreases with length 

of the day but remains constant once it reaches 13 hours. Relative humidity shows an inverse 

U-shape relationship with SE whereby 50% is the optimal relative humidity. However, it 

should be noted that over the range of our observations, relative humidity and day length had 

a smaller effect on SE than ambient temperature.

Within-subject relationships

Data from five participants revealed a high degree of correlation between nighttime ambient 

temperature and humidity and were therefore excluded from within-subject analyses. 

Among the remaining 45 participants, our person-specific regression models revealed 

statistically significant (P<0.05) within-subject relationships between nighttime ambient 

temperature and TST in 29, SE in 21, and RSTLS in 30. The effect size and direction of 

these relationships are shown in figures 8 for SE and supplementary figures S1 and S2 for 

TST and RSTLS.

These data show that there are substantial between-person variations in the relationship 

between ambient temperature and outcomes related to sleep. For all three outcomes, 

statistical significance, magnitude, and even the direction of the relationship with ambient 

temperature varies between individuals. For example, out of 21 participants who showed 

a statistically significant within-subject relationship between SE and nighttime ambient 

temperature, eight presented a positive and 14 presented a negative relationship.

DISCUSSION

Key results

The results of this study demonstrated that even in a sample of older adults with a relatively 

high standard of living, bedroom nighttime temperature was associated with duration, 

efficiency, and restlessness of sleep, even after accounting for between- and within-subject 

confounders and covariates. Further, our results revealed that the relationships were mostly 

nonlinear whereby sleep was most efficient and restful when nighttime ambient temperature 

is between 20 – 25 °C. At the same time, within-subject analyses revealed substantial 

between-subject variation in the strength, and even the direction, of the relationship between 

nighttime ambient temperature and outcomes related to sleep.

Interpretation

Our data suggest that the self-selected/controlled home thermal environment influences 

the sleep of older adults even within a sample with a relatively high standard of 
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living. This work overcomes the limitations of previous laboratory-based studies by 

observing individuals over longer term and inside their own home, thus enabling us to 

establish associations between home ambient temperature, and objective measures of sleep, 

independent of other environmental, physiological, functional, and socioeconomic factors. 

Overall, our findings indicate an optimal range of temperature, whereby sleep was most 

efficient and restful when nighttime ambient temperature was between 20 – 25 °C. This is 

in-line with the work by Lee and Shaman, who conducted a survey of 706 adults in New 

York city, and reported that while the frequency of AC use (which protects occupants from 

exposure to high temperature) resulted in greater bedroom thermal satisfaction, setting it 

at low temperatures provide no additional benefits56. The effect sizes we observed were 

clinically relevant, especially in the case of sleep efficiency where past studies enable 

a comparison. We observed 5–10% drop in sleep efficiency as the nighttime ambient 

temperature increases from 25°C to 30°C. Based on past studies, a 5–10% drop in sleep 

efficiency is large enough to influence cognitive performance9, next-day activity57, next-day 

stress 58,59, postprandial glucose response to breakfast12, anxiety, mood, and fatigue 2. 

Further, the effect associated with increasing temperature from 25°C to 30°C was similar in 

size to that of evening alcohol and/or nicotine consumption 60 and chronic pain 61,62.

Our observations point to an exciting opportunity to potentially improve sleep within the 

older adult population by creating a more comfortable home thermal environment. This is 

also important from a climate adaptation point of view, as most cities in North America 

are projected to become warmer due to a combination of climate change and urban induced 

warming 63. An increase in frequency and intensity of hot weather events may adversely 

affect sleep especially in community-dwelling older adults with lower socioeconomic status. 

In addition to the clinical implications, data presented here also support increasing the 

adaptive capacity of older adults, especially in the face of a changing climate. This includes 

utility assistant programs that enable low-income older adults maintain a comfortable home 

thermal environment by lifting the financial barriers to using heating and cooling systems.

Our study also reveals the distinction between different outcomes related to sleep, and 

how each is influenced by environmental, physiological, or functional factors in different 

ways. For example, the effect of sex, education, ambient temperature, and humidity on sleep 

efficiency were substantially different than total sleep time. This was expected, considering 

decades of research showing complexity of sleep as a multifaceted phenomenon. Therefore, 

improving sleep quality of a patient or a population requires a thorough examination of the 

clinical relevance of each outcome especially within the aging population. Further research 

is needed to identify which outcome related to sleep has the most impact on meaningful 

factors related to short and long-term health and wellbeing of older adults. For example, 

establishing which outcome related to habitual sleep presents the strongest association 

with the rate of long-term cognitive decline. Understanding these links, along with the 

associations each outcome demonstrates with ambient variables, enables researchers and 

health care providers to fine tune their environmental interventions based on most important 

outcomes related to sleep.

Our study also highlights, via the between-subject analysis presented in table 2, that certain 

physiological, functional, and socioeconomic factors influence sleep to a significant extent. 
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It is also likely that these factors influence the interaction between ambient temperature and 

sleep, which can be investigated with a larger sample size. This observation, in combination 

with our within-subject analyses justifies the need to monitor each individual and to identify 

their specific relationship between temperature and sleep, given their unique health status, 

level of function, physiology, and behavior. Technology, like wearables and environmental 

sensors used in this study, enables monitoring of older adults within their own home over 

long periods of time with relative low cost and burden. As a result, it is now possible 

to automate the process of adjusting temperature based on each persons’ specific needs, 

which can help older adults and those who, due to age-related decline in physical and 

cognitive function, are not able to continuously adjust their home temperature. Notably, it 

is also possible to identify groups who stand to benefit most from this type of intervention 

using functional, health, and socioeconomic characteristics that strengthen the link between 

ambient temperature and sleep. This suggests an opportunity to go beyond a “one-size-fits” 

all solution and personalize the home ambient temperature based upon specifics needs, 

physiology, and the behavior of the individual or a specific group. This finding is important 

for both the development of interventions as well as design and operation of buildings, 

especially large facilities where many older adults live together.

Limitations

Sample: We characterized socioeconomic status based on housing type and education, 

which is a fairly coarse measure. Our initial questionnaire included a question about income, 

which the majority of participants refused to answer. Nevertheless, individuals in our 

sample had a relatively high socioeconomic status and standard of living. It is plausible 

that the effects observed in this study exist, perhaps even to a higher degree, within a 

sample that has lower socioeconomic status because they are less able to maintain a home 

ambient temperature that is optimal for sleep. Further, our study was conducted in only 

one city. Because of the differences in climate and the built environment we take caution 

in generalizing our findings to other cities. These important limitations can be addressed in 

future work by including a larger and more socio-economically diverse sample, focusing on 

low-income older adults, and expanding the geographic area.

Unmeasured covariates: Sleep is a multifaceted and complicated phenomenon that is 

simultaneously influenced by numerous factors, many of which were not accounted for in 

this study (e.g., daily medication, activity, stress, noise, social interactions). These factors 

are often challenging to measure inside the home over the long term without disrupting 

the day-to-day life of older adults. On the other hand, lab-based studies that control many 

of these factors do not provide insight into the lived experience inside their own home. 

Advances in technology will provide opportunities to better control these factors while 

observing the individuals inside their own home. Future research can therefore build upon 

this work and include more covariates in order to ensure the stability of results.

Measurements: Sleep was measured using a method which is not the gold standard for 

sleep detection. Ouraring has shown acceptable accuracy compared to Polysomnography 

and avoids intrusive and potentially sleep-disrupting instrumentation of more sophisticated 
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methods. More specialized sleep detection tools can enable investigation of other outcomes 

related to sleep such as deep vs. light sleep duration.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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• Bedroom ambient temperature was associated with sleep in older adults.

• These associations were independent of other environmental and personal 

factors.

• Sleep quality was optimal between 20–25 °C and drops at higher and lower 

levels.

• Substantial differences in optimal temperature were observed between 

subjects.
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Figure 1. 
Concept model showing measured between- and within- subject sources of variations in 

sleep. Nighttime Ambient Temperature is the exposure variable.
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Figure 2. 
Enrollment and retention of participants
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Figure 3. 
Nighttime bedroom temperature by participant. Each box includes all the data from a 

specific participant.
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Figure 4. 
Sleep Efficiency by participant. Each box includes all the data from a specific participant.

Baniassadi et al. Page 19

Sci Total Environ. Author manuscript; available in PMC 2024 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Total Sleep Time by participant. Each box includes all the data from a specific participant.
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Figure 6. 
Sleep Restlessness by participant. Each box includes all the data from a specific participant. 

Main results
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Figure 7. 
Model-predicted outcomes based on environmental variables. In creating these graphs, we 

used the median value of all other variables (a female with MOCA score of 25, SPPB score 

of 10, comorbidity score of 5, who lives in private housing, in a weekday with a day length 

of 12.3 hours, and bedroom nighttime humidity of 44.2%). In rows two and three, nighttime 

ambient temperature was set to 22 °C. TST is total sleep time, SE is sleep efficiency, and 

RSTLS is sleep restlessness.
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Figure 8. 
Within-subject relationships between nighttime ambient temperature and Sleep Efficiency 

(SE) adjusting for day of the week, nighttime relative humidity, and day length. Each panel 

represents data from a specific participant. Note the vertical axis varies between panels. 

Unlike figure 7, nighttime temperature in these graphs is limited to 20–26 because we had 

fewer observations outside this range from any given individual. These data suggest the 

strength and even the direction of relationship between ambient temperature and SE may 

vary between subjects.
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Table 1.

Participants’ characteristics

Characteristic Mean SD

Age (y) 79 7.2

SPPB score (out of 12) 9.4 2.44

MoCA score (out of 30) 25.6 3.12

Comorbidity Index 5.5 2.3

SE (%) 81 9.9

TST (minutes) 420 83.6

RSTLS (%) 6 2.4

Bedroom nighttime ambient temperature 21.8 2.5

Biological Sex Female: 41
Male:9

Race
White: 46
Black:3
Non-white Latino:1

Education < 2y of college: 5
> 2y of college: 45

Living Status Alone: 30
With a partner: 20

Housing type Subsidized housing:14
Private housing: 36
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Table 2.

Results of the fully adjusted regression analysis on data from all participants (10,903 person-nights of data 

from 50 participants). TST is total sleep time, SE is sleep efficiency, and RSTLS is sleep restlessness. We did 

not report β coefficients for environmental variables because they were modeled as non-linear predictors. Their 

predicted impact on outcomes is presented graphically in figure 7.

variable Observed Range

TST SE RSTLS

β Partial
R2 β Partial

R2 β Partial
R2

Nighttime temperature (°C) 14 – 32.2 NA 0.05 NA 0.11 NA 0.1

Nighttime relative humidity (%) 16 – 79 NA 0.03 NA 0.08 NA 0.03

Day length (hours) 9.1 – 15.3 NA 0.01 NA 0.08 NA 0.08

SPPB score 0 (not able to take the test) - 12 3.44 0.04 0.32 0.05 0.06 0.03

MOCA score 13 – 30 −1.02 0.01 −0.04 0.00 −0.02 0.01

CCI score 2 – 13 −0.71 0.00 −0.28 0.02 −0.05 0.01

Sex (0=male, 1=female) 57.92 0.32 0.02 0.00 −0.37 0.02

Living alone (0=no, 1=yes) −15.08 0.04 −4.57 0.42 1.18 0.38

Housing type (0=private, 1=subsidized) −9.96 0.21 −1.71 0.21 0.78 0.21

Education (1= less than 2y of college) −55.63 0.19 −4.45 0.15 0.57 0.03

Weekend (0=no, 1=yes) 10.95 0.02 −0.24 0.00 −0.16 0.01

*
Two-sided P<0.05
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