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Abstract

This article highlights important performance metrics to consider when evaluating models 

developed for supervised classification or regression tasks using clinical data. We detail the 

basics of confusion matrices, receiver operating characteristic curves (ROC curves), F1 scores, 

precision recall curves, mean squared error, and other considerations when evaluating model 

performance. In this era defined by rapid proliferation of advanced prediction models, familiarity 

with various performance metrics beyond AUROC and the nuances of evaluating models’ value 

upon implementation is essential to ensure effective resource allocation and optimal patient care 

delivery.

Abstract

This article details different metrics to evaluate clinical prediction model performance. In a era 

defined by rapid proliferation of advanced prediction models, familiarity with various performance 

metrics beyond AUROC and the nuances of evaluating models’ value upon implementation is 

essential to ensure effective resource allocation and optimal patient care delivery.

Introduction

Class imbalance (relatively few cases compared with controls), differing disease prevalence 

across populations, and algorithmic fairness necessitate a robust strategy to evaluate 

performance of clinical prediction models. This article highlights important performance 

metrics to consider when evaluating models developed for supervised classification or 

regression tasks using clinical data.
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Classification

Confusion Matrices

Classification tasks constitute predicting classes, such as disease or no disease. For 

binary classification tasks, confusion matrices facilitate calculating common discrimination 

performance metrics.1 Discrimination denotes a model’s ability to differentiate positives 
from negatives (i.e. patients with and without disease). Confusion matrices represent 

absolute truths as rows and predicted classifications as columns (Figure 1), delineating the 

number of true positives, false positives (type-I error), true negatives, and false negatives 

(type-II error). These values derive sensitivity (recall), specificity, positive predictive value 

(precision), negative predictive value, and accuracy. It is important to note that accuracy can 

be a misleading metric for imbalanced datasets: in a dataset with only 1% positive cases, a 

model that always predicts negatives would have 99% accuracy.

Receiver Operating Characteristic Curve

Area under the receiver operating characteristic (AUROC) is one of the most commonly-

reported discrimination metrics in prediction tool literature. Using variable probability 

thresholds between 0.0 and 1.0 for a model to classify subjects as positives or negatives, the 

receiver operating characteristic curve plots the true positive rate (sensitivity) on the Y-axis 

and the false positive rate (1 - specificity) on the X-axis.2 A perfect model would have 

100% sensitivity (detects every positive case) and 100% specificity (detects no false positive 

cases), yet perfect models with AUROC of 1 are exceedingly rare. The receiver operating 

characteristic curve can guide choosing the optimal decision threshold to classify and 

positives and negatives; the optimal threshold would be both model and problem-specific.

The AUROC notes the probability that a model predicts a randomly-selected positive to 

have a higher probability being positive than a randomly-selected negative, but is commonly 

interpreted in simplistic fashion: a higher AUROC denotes better performance. While this is 

an acceptable intuition (AUROC of 0.5 denotes a model whose predictions are no better 

than flipping a coin, while an AUROC indicates perfect discrimination), the AUROC 

may overestimate performance in imbalanced datasets.3 If true negatives outnumber true 

positives, a model’s AUROC can be high simply by “correctly” predicting that the majority 

of negatives to be negative. Especially in imbalanced datasets, the AUROC alone is an 

insufficient representation of model discrimination, and should be interpreted with caution. 

Of note, an AUROC lower than 0.5 likely reflects indicate dataset mislabeling positives and 

negatives and should prompt further investigation.

F1 score and Area Under the Precision Recall Curves

An adjunct discrimination metric to the AUROC for imbalanced datasets is the F1 score. 

The F1 score represents the harmonic mean between precision (positive predictive value) 

and recall (sensitivity), reflecting not only the quantity of errors a model makes, but also 

the type of error (i.e. false positives or false negatives).2 Similar to the AUROC, area under 

the precision and recall curve (AUPRC) constitutes the area under a curve generated using 

variable model decision thresholds to plot precision (Y-axis) against recall (X-axis).4 While 
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the “baseline” AUROC value is 0.5, the “baseline” AUPRC represents the prevalence of 

positive cases in the study population and is typically lower than 0.5.

Regression

Mean Squared Error

Regression tasks constitute predicting a continuous outcome, such as the mmHg drop in 

blood pressure in response to a drug. Mean squared error (MSE) is a common metric to 

estimate regression model performance. The MSE is calculated by squaring the difference 

between a model’s predicted and observed (true) value, summing across all observed-

predicted pairs, and dividing by the total number of observations.5 The squaring function 

ensures that all errors are positive and that large error values are penalized more than small 

errors. An MSE closer to 0 indicates a model with more accurate predictions, but a more 

interpretable metric may be the root mean squared error (RMSE; the square root of MSE), 

which quantifies error using the original data’s measurement units.

Other Considerations When Evaluating Model Performance

Calibration

Calibration is another important, yet often-overlooked prediction model performance metric. 

Calibration is a measure of how well predicted probabilities reflect the true underlying 

probabilities of a study population.6 Calibration can be visualized using a calibration plot 

(Figure 2). This plot is created by taking a model’s predicted probabilities for a collection of 

samples with known outcomes. These samples are then separated into a defined number of 

bins (commonly 10 bins, [0–10%], [10–20%], etc). For each bin, the percentage of positive 

events is plotted on the y-axis relative to the center of each bin on the x-axis. The closer the 

plotted points are to a diagonal line plotted in the center of the graph, the better calibrated 

the model.

It is important to note that discrimination and calibration performance are not necessarily 

correlated. For example, a model that globally predicts risk to be higher than observed for 

both cases and controls may have high discrimination but poor calibration performance. 

Most clinical decisions are made based on estimated risk; reporting calibration performance 

is essential.7

Algorithmic Fairness

Prediction models may have high discrimination and calibration performance, yet exhibit 

bias. For example, models trained on data that themselves encapsulate systematically poor 

treatment of certain racial/ethnic, gender or socioeconomic groups, simply learn this bias 

and could amplify discriminatory practices. Algorithmic fairness is a fast-growing field of 

machine learning that aims to improve how we evaluate and adjust for bias in pre-specified 

groups.8 While metrics such as equalized odds and demographic parity can be used to 

assess systematically poor model performance among certain groups, using these metrics 

to optimize models during training requires caution. For example, training a model to 
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maximize equalized odds rather than F1 scores could yield poor performance across all 

groups.9

Net Benefit Analysis and Decision Curves

High-performing models are not necessarily useful. Useful prediction models should 

facilitate making better clinical decisions when deployed. Depending on the performance 

metric that is optimized, high-performing models could even cause inadvertent harm upon 

implementation. For example, a highly-sensitive cancer diagnostic tool could facilitate early 

detection of cancers, but false positives could lead to more unnecessary biopsies, anxiety, 

and healthcare costs.

Net benefit analysis is one way to evaluate the value of new prediction models upon 

implementation.10 Simply put; net benefit is the benefit derived from the implementation 

of a model (true positives/n) minus the harm from implementation (false positives/n). To 

put harm on the same scale as benefit, harm must be multiplied by an exchange rate. In a 

clinical scenario in which a positive test from a model would prompt a biopsy, the exchange 

rate would be determined by the number of biopsies leading to a positive diagnosis divided 

by the accepted number of unnecessary biopsies. The calculated net benefit can be used 

to compare different prediction models comparison or to create a decision curve. Decision 

curves plot calculated net benefit of a model across a range of probability thresholds (i.e. 

the level of predicted risk output by a model that is considered to be positive and warrants 

intervention). Decision curves facilitate visualizing which specific recommendation (e.g. 

prediction model output, intervening on everyone, intervening on no one) would yield the 

highest net benefit across variable probability thresholds.

Conclusion

No single metric should be used in isolation to evaluate the performance of a clinical 

prediction model. Depending on the clinical task, a unique set of metrics must assess and 

communicate the advantages and drawbacks of using a model to inform clinical decision-

making. Clinicians must also remember that high model performance does not equate 

to usefulness. In this era defined by rapid proliferation of advanced prediction models, 

familiarity with various performance metrics beyond AUROC and the nuances of evaluating 

models’ value upon implementation is essential to ensure effective resource allocation and 

optimal patient care delivery.
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Figure 1. Confusion Matrix.
This matrix allows for calculation of key model metrics such as sensitivity/recall, specificity, 

precision, and accuracy.
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Figure 2: Calibration Plot.
These plots provide a visual example of predicted probablity relative to event rate in 

a collection of samples. Samples are divided into 10 bins based on their predicted 

probablity([0–10%], [10–20%], …). For each bin, the percentage of positive events is 

plotted on the y-axis relative to the center of each bin on the x-axis. The diagnol dashed line 

represents a perfectly calibrated model for reference.
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