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Abstract

Purpose: Despite the significant association of molecular subtypes with poor prognosis in 

pancreatic ductal adenocarcinoma (PDAC) patients, little effort has been made to identify the 

underlying pathway(s) responsible for this prognosis. Identifying a clinically relevant prognosis-

based gene signature may be the key to improving patient outcomes.

Experimental Design: We analyzed the transcriptomic profiles of treatment-naïve surgically 

resected short- and long-term survivor tumors (GSE62452) for expression and survival, followed 

by validation in several datasets. These results were corroborated by immunohistochemical 

analysis of PDAC-resected short- and long-term survivor tumors. The mechanism of this 

differential survival was investigated using CIBERSORT and pathway analyses.

Results: We identified a short-surviving prognostic subtype of PDAC with a high degree of 

significance (p=0.018). One hundred thirty genes in this novel subtype were found to be regulated 

by a master regulator, HOXA10, and a five-gene signature derived from these genes, including 

BANF1, EIF4G1, MRPS10, PDIA4, and TYMS, exhibited differential expression in short-term 
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survivors (STS) and a strong association with poor survival. This signature was further associated 

with the proportion of T-cells and macrophages found in STS and long-term survivors (LTS), 

demonstrating a potential role in PDAC immunosuppression. Pathway analyses corroborated these 

findings, revealing that this HOXA10-driven signature is associated with immune suppression and 

enhanced tumorigenesis.

Conclusions: Overall, these findings reveal the presence of a HOXA10-associated prognostic 

subtype that can be used to differentiate between STS and LTS patients of PDAC and inform on 

the molecular interactions that play a role in this poor prognosis.
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Introduction

Cancer mortality is currently the second leading cause of death across the globe and is 

predicted to rise to the primary cause of death over the next few decades (1). Among 

the cancers whose projected deaths will increase dramatically by 2030, pancreatic ductal 

adenocarcinoma (PDAC) has the lowest five-year survival rate. Up 3% since 2014, this 

recalcitrant cancer has a stage-combined five-year survival rate of 11%. Moreover, PDAC is 

currently the third leading cause of cancer deaths, accounting for approximately 8% of all 

cancer deaths, and will be second in rank for deaths by 2030 (2–4).

For many PDAC patients, poor survival estimates are a consequence of late diagnosis. Due 

to the high occurrence of asymptomatic early stages, it is common that when patients are 

diagnosed, cancer has already metastasized to distant organs. At this stage in the disease, 

the five-year survival rate is about 3%, and treatment options are severely limited (3). 

Unfortunately, the challenges associated with the difficulties of successful treatment, such as 

asymptomatic early stages and tumor heterogeneity, further augment poor survival.

A large portion of PDAC research is dedicated to the identification of biomarkers for early 

diagnosis and subtyping (5,6). This has helped achieve some success in improving diagnosis 

and treatment strategies but with limited outcomes due to their inability to reliably inform on 

patient survival. Most notably, CA19–9 has been widely studied as a PDAC biomarker and, 

more recently, as a prognostic tool, but its efficacy is highly debated due to its startling lack 

of specificity and consistency (7,8). The Collisson et al. (9), Moffitt et al. (10), Bailey et al. 

(11), and Puleo et al. (12) PDAC classifications are also limited in that they offer alternative 

targets for therapeutic targeting but otherwise do not directly influence patient survival.

Due to the disparity observed in PDAC patient survival, there has been gathering interest in 

identifying prognostic markers for PDAC that play a role in survival. In addition to genes 

that are known to play a prominent role in developing PDAC, including mutated KRAS, 

TP53, SMAD4, CDKN2A, and ATM (13,14), over 50 genes have been correlated with poor 

prognoses in PDAC (15–20). Interestingly, some of these prognostically-relevant markers 

have been derived from subtypes of PDAC with differential survival, but no prognostic 
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markers of PDAC have been validated in clinical trials. Therefore, there is a need for reliable 

prognostic markers of PDAC.

In order to define these markers, there needs to be further investigation into subtyping on 

the basis of survival. By identifying biomarkers associated with short- and long-term PDAC 

survivors, we may uncover underlying molecules and pathways that are correlated with the 

mechanism of PDAC progression and metastasis. Consequently, the identification of these 

prognostic markers could lead to the development of a treatment modality to improve overall 

patient survival.

Since the significance of these short- and long-term surviving groups in PDAC is highly 

under-studied, it seemed relevant to ask if [1] there is any substantial difference in genes 

enriched in short-term survivors compared to long-term survivors, [2] we can identify a 

prognostic signature for PDAC using these differentially expressed genes (DEGs), and [3] 

we can identify pathways associated with enriched genes in short-term survivors. Using 

this approach, we aimed to define a prognostic signature that may provide insight into the 

underlying biology of the poor disease prognosis.

A key feature associated with tumor aggression and poor patient survival in PDAC, 

which has gained particular attention in the past few years, is the presence of an 

immunosuppressive tumor microenvironment. HOXA10, a hub gene that is strongly 

associated with survival, is also established as a key regulator of the immune suppression 

and stromal proliferation required for successful implantation in normal endometrium, as 

found in a study by Yao et al. using a Hoxa10-mutant mouse model (21). Further, HOXA10 

is involved in multiple cellular processes, including proliferation, epithelial-mesenchymal 

transition (EMT), and chemotherapy resistance in various cancers (22), demonstrating its 

potential on multiple fronts.

Herein, we identified a HOXA10-driven prognostic signature that can be used to distinguish 

STS and LTS of PDAC and aimed to determine their associated pathways in the hope 

that it will lead to improved management of PDAC by characterizing novel pathways for 

therapeutic targeting.

Materials and Methods

Data collection

Gene Expression Omnibus (GEO; RRID:SCR_005012) (23,24) was perused for PDAC 

datasets using “homo sapiens”, “pancreatic cancer”, “tissue” and “expression array profiling 

by array” as filters. A second filter, the availability of survival information, helped us 

choose the dataset GSE62452 (25). This dataset comprised the gene expression profiles 

of 69 pancreatic tumor tissues and 61 normal adjacent tumor tissues from pancreatic 

ductal adenocarcinoma patients, respectively. Datasets GSE89997 (26), GSE15471 (27), 

GSE16515 (28), and GSE32676 (29) were also downloaded to validate the DEGs and hub 

genes.
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Data preprocessing and identification of enriched genes

The raw microarray data (.CEL files) from GSE62452 was downloaded and processed 

using the R package affy (RRID:SCR_012835) (30). The STS and LTS groups were 

determined by division from a median survival of 14.5 months; the overall survival range 

for STS was defined as 0.9–14.5 months, and the range for LTS was 14.5–70.8 months. 

The gene expression data was then analyzed using gene set enrichment analysis (GSEA; 

RRID:SCR_003199) with a two-class division of long-term and short-term survivors. A 

false discovery rate (FDR) q-value cutoff of 0.25 was utilized in GSEA to allow for the 

exploratory discovery of potentially significant datasets. The GSEA-enriched gene sets for 

STS were validated independently using graphical illustrations of microarray data from 

GSE89997, which includes extreme LTS and STS of PDAC post-surgery.

Pathway enrichment analysis and PPI networks of enriched genes

To further explore key pathways associated with prognosis, Kyoto Encyclopedia of 

Genes and Genomes (KEGG; RRID:SCR_012773) pathway enrichment analysis (31,32), 

WikiPathways (RRID:SCR_002134) pathway enrichment analysis (33), and Gene Ontology 

(GO; RRID:SCR_002811) enrichment analysis (34,35) were utilized. These pathways 

were validated using National Center for Advancing Translational Sciences (NCATS; 

RRID:SCR_012857) BioPlanet pathway analysis web tool. Similarly, the ClueGO plugin 

in Cytoscape (RRID:SCR_005748) (36,37) and Search Tool for the Retrieval of Interacting 

Genes/Proteins (STRING; RRID:SCR_005223) (38,39) were used to visualize the 

functional grouping and interaction networks of the protein products of these enriched 

genes. Genes specifically upregulated in short- or long-term survivors were analyzed 

independently.

Validation through gene expression profiling

Gene association with overall survival and differential expression in PDAC was validated 

using survival analysis and expression analysis from the Gene Expression Profiling 

Interactive Analysis (GEPIA; RRID:SCR_018294) database (40,41), which utilizes The 

Cancer Genome Atlas (TCGA; tumor, N=179) and The Genotype-Tissue Expression (GTEx; 

normal, N=171) project data. Top 25th and bottom 25th quartiles were used as an expression 

threshold for survival analyses for each gene and the combined signature group. The gene 

signature was determined using graphical representations of the expression patterns for each 

STS-enriched gene in pancreatic tumor tissue compared to matched normal tissue in PDAC 

GEO datasets GSE15471, GSE16515, and GSE32676. Genes that had increased levels of 

expression in tumor tissues in each dataset were selected for further validation at the protein 

level in pancreatic tumor tissues using immunohistochemistry (IHC) data from the Human 

Protein Atlas (RRID:SCR_006710).

CIBERSORT analysis

Data from GSE62452 was subjected to an in silico deconvolution by using cell 

type identification by estimating the relative subset of RNA transcripts (CIBERSORT; 

RRID:SCR_016955) and the LM22 signature matrix (42). The 22 immune cell types were 

then compared between high expression (top 25th percentile) and low expression (bottom 
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25th percentile) of HOXA10, EIF4G1, BANF1, PDIA4, TYMS, and MRPS10. These 

high and low expressing divisions reflected short-term and long-term surviving groups, 

respectively.

Generation of HOXA10-specific antibodies

To generate HOXA10-specific antibodies, a peptide derived from human HOXA10 

was selected based on antigenicity and immunogenicity scores predicated by Geneious 

(RRID:SCR_010519) and IEDB database (RRID:SCR_006604) analysis. The selected 

peptide (109–126aa) was sent for synthesis and rabbit polyclonal antisera generation 

(RS Synthesis). Briefly, the peptide was conjugated to Keyhole Limpet Hemocyanin 

(KLH), and routine immunization protocol was followed for the development of polyclonal 

antisera (43). The HOXA10-specific antibodies were purified using protein G based affinity 

chromatography and adsorption on KLH. These purified antibodies were run on a Western 

blot to verify the presence of the heavy and light chain domains and validated in IHC of 

PDAC tumor tissues (Supplementary Fig. S1).

Immunohistochemical analysis

Immunohistochemical analyses were performed on paraffin-embedded STS and LTS PDAC 

tissue slides provided by the Rapid Autopsy Program at the University of Nebraska Medical 

Center. The slides were baked overnight at 58 °C and cooled to room temperature prior 

to paraffin removal using xylene washes (2 × 5 minutes). The slides were then rehydrated 

using an alcohol gradient (100, 90, 70, 50, 30, and 20%) for 5 minutes at each level, 

followed by a rinse with water to remove residual alcohol. Quenching of endogenous 

peroxidases was then performed by incubating the slides in a solution of 3% H2O2 in 

methanol in the dark for 1 hour. The slides were subsequently rinsed with water to remove 

residual peroxidase. Further, antigen retrieval was performed in 0.01M citrate buffer with 

0.05% Tween 20 for 10 minutes using the microwave method. The slides were allowed 

to cool to room temperature, rinsed with water to remove residual citrate buffer, and then 

blocking was done using 2.5% horse serum (Impress Reagent Kit, Vector Laboratories; 

RRID:SCR_000821). The tissues were incubated with primary antibodies for HOXA10 

(3ug/mL), BANF1 (2.5ug/mL; LSBio (LifeSpan) Cat# LS-B447; RRID:AB_2274440), 

TYMS (1:200; Thermo Fisher Scientific Cat# MA5–13512; RRID:AB_11004511), EIF4G1 

(1:120; Sigma-Aldrich Cat# HPA028487; RRID:AB_10602219), MRPS10 (1:100; Sigma-

Aldrich Cat# HPA029134; RRID:AB_10600058), and PDIA4 (1:200; Sigma-Aldrich Cat# 

HPA006140; RRID:AB_1848257) at 4 °C overnight. Following this, the tissue slides were 

washed with PBST (3 × 5 minutes) and PBS (1 × 5 minutes) and incubated with HRP-

labelled universal secondary anti-mouse/rabbit IgG for 45 minutes. The slides were again 

washed with PBST (3 × 5 minutes) and then stained with DAB substrate kit (Vector 

Laboratories; RRID:SCR_000821) before counterstaining with hematoxylin, graded alcohol 

dehydration, and xylene washes. After drying, the slides were mounted with Permount 

mounting medium (Thermo Fisher Scientific; RRID:SCR_008452) and a coverslip. Blind 

slide scoring, which consisted of an intensity score (0–3; 0-negative, 1-weak, 2-moderate, 

3-intense staining) and the percentage of positive cells (0–100%) for each marker, was 

performed by a pathologist. An H-score (intensity score x percentage of positive cells) for 

each marker in STS and LTS was calculated from these scores.
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Statistics

Data were analyzed using GraphPad Prism 9 (RRID:SCR_002798). Statistical analysis of 

CIBERSORT data for each marker was performed using the Mann-Whitney test. For IHC 

expression analysis, the F-test for sample variances was used for each marker, followed 

by the Mann-Whitney test, excluding any statistical outliers and samples of poor quality. 

Kaplan-Meier method was used to estimate overall survival distributions by low and high 

gene expression, categorized at the top 25th and bottom 25th quartiles and the logrank 

test was used to compare survival distributions between groups. A p<0.05 or q<0.05 was 

considered to indicate significance for each analysis.

Data Availability

The expression profile data analyzed in this study were obtained from GEO at GSE62452, 

GSE89997, GSE15471, GSE16515, and GSE32676.

Results

Identification of hub genes associated with prognosis

Based on the availability of patient survival information in dataset GSE62452, we processed 

the raw data and divided the population into LTS and STS, as depicted in Fig. 1. GSEA was 

performed, and we identified several gene sets which are enriched in STS (Supplementary 

Table S1). The protein counterparts of the hub genes of these sets were identified as 

proteins that control cell cycle progression, interact with cell cycle regulators, mediate 

transcription, translation, and DNA replication, and contribute to cancer initiation and 

progression. However, two of these hub genes, MYBL2 and HOXA10, were especially 

noteworthy due to their involvement in cell differentiation and immune response. The 

gene set driven by MYBL2 (ES=0.59; p=0.002; q=0.206) and comprised of 177 genes 

(Fig. 2A), was distinctive due to the essential role of MYLB2 in hematopoietic stem cell 

and myeloid progenitor cell development (44). Similarly, the gene set driven by HOXA10 

(ES=0.49; p=0.018; q=0.239) and comprised of 130 genes (Fig. 2B, Supplementary Table 

S2) was unique in that HOXA10 is associated with stromal cell proliferation and local 

immunosuppression, specifically as it relates to T lymphocytes (21). Further, our initial 

observations of HOXA10 expression and survival using GEPIA supported its increased 

expression in PDAC compared to the normal pancreas (Fig. 2C) and its association with 

poor survival (Fig. 2D). Since the immunosuppressive nature of the pancreatic tumor 

microenvironment is a key prognostic factor, this gene set was selected for future validation 

and exploration. Of these 130 HOXA10-driven genes, GSEA revealed 69 genes were 

enriched in STS (Supplementary Table S3). To validate this gene set, we performed a 

preliminary evaluation of their differential expression and association with overall survival 

in PDAC using their GEPIA profiles. Of the 69 enriched genes, 46 had significantly higher 

expression in cancer compared to the normal (q<0.05). Thirty-three of these upregulated 

genes were associated with short-term survival, and 11 were significant (q<0.05) (Fig. 1).
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Pathway analysis in short-term survivors

To investigate the biological pathways associated with the HOXA10 prognostic signature, 

we performed pathway analysis using different in silico tools (Fig. 1). The consensus 

of these analyses revealed the enrichment of genes and pathways involved in cell cycle 

regulation, protein homeostasis, immune response, and cellular maintenance in short-term 

survivors. Specifically, GO enrichment analysis revealed that the HOXA10-driven gene 

set was enriched in the cellular response to interleukin-1 and its mediated signaling 

pathway (gene ratio(s)≈0.0975, 0.0725; q<0.005), regulation of G2/M cell cycle transitions 

(gene ratio≈0.085; q<0.05), and antigen processing and presentation of the antigen (gene 

ratio≈0.0725; q<0.05), among others (Fig. 3A). Furthermore, we observed the enrichment 

of these biological pathways in the functional clusters derived from subsequent ClueGO 

and STRING analyses. Namely, pathways associated with protein homeostasis (ribosomal 

large subunit biogenesis, IRE1-mediated unfolded protein response), cellular metabolism 

(hexose catabolic process, negative regulation of RNA catabolic process, pyrimidine 

deoxyribonucleoside triphosphate metabolic process, regulation of RNA stability) and 

immune response (cellular response to interferon-beta) were associated with HOXA10 gene 

set suggesting its association with tumor progression and aggressiveness (Fig. 3B).

Development and validation of the HOXA10-driven genes as a prognostic signature

To establish a subset of genes representative of the HOXA10 gene set, we evaluated 

their differential expression based on the normal pancreas and PDAC microarray data 

using several external datasets. From graphical illustrations of this data, we determined 

that 40 of the 69 enriched genes had increased expression in cancer cases compared to 

the normal pancreas (Supplementary Table S4). We further evaluated these genes and 

shortlisted the ones that contained a signal peptide, did not have any transmembrane 

domains, and had an association with poor survival (Fig. 1). Combined with the validation 

data from GEPIA, we were able to identify five enriched genes that were determined to 

have differential expression and association with survival for further investigation: BANF1, 

EIF4G1, MRPS10, PDIA4, and TYMS (Fig. 1). Each gene was upregulated in PDAC 

compared to the normal pancreas, and their expression was associated with decreased 

survival in PDAC; EIF4G1 (p=0.0013), MRPS10 (p=0.013), PDIA4 (p=0.083), TYMS 

(p=0.00064), and BANF1 (p=0.053) (Fig. 4A–E). These findings were corroborated by IHC 

of PDAC tissues from HPA (Supplementary Fig. S2), together demonstrating that these 

genes are expressed at both the RNA and tissue levels. An association with decreased 

survival was also observed for the newly identified prognostic genes using a Kaplan-Meier 

plot and log-rank test (p=0.00076) (Fig. 4F).

The HOXA10 and the five representative genes from the HOXA10-assocaited signature 

were validated using IHC of STS and LTS PDAC tissues. The expression of HOXA10 

was significantly increased (p=0.038) in STS tissues compared to LTS tissues (Fig. 5A). 

Similarly, a trend of high expression for each of the five genes was observed in STS tissues, 

supporting the in silico findings: BANF1 (STS median=225; LTS median=160; p=0.024); 

EIF4G1 (STS median= 167.5; LTS median= 97.5; p=0.045); MRPS10 (STS median= 45; 

LTS median=57.5; p=0.895); PDIA4 (STS median= 65; LTS median= 35; p=0.568); TYMS 

(STS median=0; LTS median=12.6; p=0.340) (Fig. 5B–F).

Kisling et al. Page 7

Clin Cancer Res. Author manuscript; available in PMC 2024 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Immune cell enrichment analysis in HOXA10-driven gene set

Since we observed a significant correlation between HOXA10 expression and short-term 

survival of patients, we sought to investigate the associations between our HOXA10 gene 

set and immunosuppressive cell types. Our estimations using CIBERSORT and the LM22 

signature matrix revealed a greater proportion of Treg cells and M2 macrophages, both 

immunosuppressive cell types, in patients with high expression of these HOXA10-driven 

genes (Fig. 6A–C, Supplementary Fig. S3A–C). Specifically, Treg cell signatures were 

increased in groups highly expressing HOXA10, PDIA4, EIF4G1, and BANF1 (Fig. 6A), 

while M2 macrophages were elevated in groups with high expression of MRPS10, EIF4G1, 

and TYMS (Fig. 6B). Conversely, CD8+ T cells were proportionally lower in groups highly 

expressing MRPS10, PDIA4, and TYMS than in groups with low expression of these genes 

(Fig. 6C). Curiously, CD8+ T cells were elevated in groups highly expressing HOXA10 

compared to groups with low expression of HOXA10 (Fig. 6C). Upon further analysis, 

we found significantly higher expression of co-inhibitory receptors PD-1 (p<0.0001) and 

LAG-3 (p<0.0001), associated with T cell exhaustion, in the high HOXA10 expressing 

patients (Supplementary Fig. S4). In corroboration with our findings, previous studies have 

implicated HOXA10 in immune response in multiple physiological milieu (21,45). Taken 

together, these results indicate HOXA10 may play a crucial role in differential immune 

modulation and thus impact PDAC patient survival.

Discussion

The lack of clinically relevant prognostic subtypes in PDAC is a widely recognized concern. 

Direct prognostication from these subtypes would allow for greater accuracy and eliminate 

any issues of consensus, as patient prognoses are currently inferred from existing molecular 

and histological subtypes, which do not always correspond with each other (46). Moreover, 

unlike molecular and histological subtypes, prognostic subtypes may offer an effective 

way to inform treatment strategies (47). Chiefly, using a prognostic signature to classify 

patients as STS or LTS will augment risk stratification and clinical decision-making after 

identifying a tumor, which is currently limited by the TNM staging system. Clinicians use 

the TNM staging system to report the size and spread of a tumor, which has minimal 

impact on the treatment plan and does not inform on individual patient prognoses (48). In 

PDAC, the combinatorial use of a prognostic signature and TNM staging would allow for 

further stratification of patients with either localized or metastatic disease into subgroups 

predisposed to long-term or short-term survival. With this knowledge, clinicians may design 

a more personalized treatment plan tailored to expected survival to preserve quality of life.

In this study, we analyzed the transcriptomics of short- and long-term survivor data of 

PDAC to reveal prognostically significant genes. Our GSEA analysis on a dataset of LTS 

and STS resulted in the enrichment of a HOXA10-driven cluster of 130 genes in STS, 

out of which 69 genes are associated with key biological pathways of cancer, including 

cell cycle regulation, protein homeostasis, DNA binding, and repair, and cytoskeletal 

maintenance. Specifically, these pathways are implicated in a cancer cell’s high level 

of proliferation, reduced apoptosis, altered DNA damage response, and immune evasion, 

among other factors, all contributing to the development and progression of cancer (49–52). 
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This highlights their potential as therapeutic targets and indicates that poor survival and the 

hallmarks of cancer may be deeply interconnected (50,53).

Five of the genes associated with these pathways, including BANF1, EIF4G1, MRPS10, 

PDIA4, and TYMS, stood out due to their strong association with survival. These genes 

have been implicated in several types of cancer, and several studies have also observed their 

prognostic potential (54–58). In fact, PDIA4 has previously been reported to predict reduced 

survival in cervical cancer (59). Furthermore, the driver gene of this 5-gene signature, 

HOXA10, is correlated with poor survival in multiple cancer types (60–63), and has recently 

been shown to play a role in PDAC development (64). The findings mentioned above are 

further validated by our immunohistochemistry staining and combined survival analysis. Our 

study emphasizes the importance of studying the molecular mechanisms of these genes and 

their association with survival in PDAC.

To further understand the biological significance of short-term survival, we performed 

pathway analyses of short-term survivor genes and identified several associated pathways. 

Most notably, high expression of interleukin-1 is associated with poor prognosis in multiple 

cancer types, and its upregulated expression is associated with immune suppression 

in PDAC (65,66). Similarly, inflammation induced by interleukin-1 is associated with 

carcinogenesis (67). The enrichment of these genes in metabolic pathways, homeostasis, 

and cell cycle regulation also suggests a potential association with chemoresistance and the 

development of cancer (68,69). In fact, the correlation of the HOXA10 signature with these 

biological pathways partly explains its association with the short-term survival of patients. 

This association is reinforced by the discovery of HOXA10-mediated immunosuppression 

by Yao et al. (21), as this supports the supposition that HOXA10 may play a key role in 

the pathogenesis of PDAC, which often lays claim to a highly immunosuppressive tumor 

stroma.

As immune response plays an important role in PDAC patient survival (70), it is pertinent 

to decipher the association of this newly identified signature with the immune profiles of 

PDAC patients. Interestingly, the expression of these HOXA10-driven genes were associated 

with several immunosuppressive cell types, including Tregs and M2 macrophages, indicating 

the presence of an enhanced immunosuppressive tumor microenvironment in STS compared 

to LTS. This is supported by a recent meta-analysis that discovered an association between 

high levels of infiltrating M2 macrophages and poor survival in PDAC (71), and by a 

study that revealed that increased levels of peripheral Tregs in PDAC is associated with 

poor patient survival (72). Though CD8+ T cells seemed to be high in HOXA10-expressing 

patients, there have always been arguments on the quality versus quantity of T cells in 

cancer patients (26,73). Of note, the high expression level of PD-1 and LAG-3 in HOXA10 

high patients hints towards immunosuppression and thus poor survival of those patients. 

These in silico findings are corroborated by previous studies that have also linked our 

HOXA10-driven genes with immune responses (74–77), particularly with suppressive roles 

(78,79). Further, recent research indicates that immune signatures may have prognostic value 

in PDAC (80), supporting the significance of these genes.
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The present study addresses the identification of a novel signature and its master regulator, 

which are associated with the pathogenesis of PDAC. To the best of our knowledge, this is 

the first attempt to elucidate the downstream effects of HOXA10, specifically as they relate 

to PDAC prognosis. This study details the design and validation of a 5-gene HOXA10-based 

prognostic signature using multiple state-of-art computational tools. The use of GSEA in 

combination with multi-database pathway analyses illustrates the robustness of the study and 

demonstrates a thorough examination of the significance of this signature. The innovation 

of this study lies in the experimentally validated signature on STS and LTS patient tumors, 

whose results were correlative. Further, the study has employed multiple in silico tools, 

including different GSE datasets and pathway analyses to validate the signature. However, 

further investigation is needed to determine the clinical utility of this 5-gene signature, 

including its validation using a larger cohort size with associated patient information. In 

addition, biological assessment of this signature using NanoString technologies and in 
vitro and in vivo models should be conducted to supplement our computational findings. 

Once we understand the biological significance of this signature and its driver gene, we 

may develop a clinically relevant HOXA10-based biomarker panel that will improve on 

the standard clinical staging parameters and identify pathways that can be targeted for 

therapeutic intervention in patients with unfavorable prognoses.
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Translational Relevance

Current studies on identifying prognostic markers in pancreatic ductal adenocarcinoma 

(PDAC) have failed to define a clinically relevant panel, suggesting that an alternative 

approach may yield better results. Since the presence of short- and long-term surviving 

groups in PDAC is an established phenomenon, we analyzed the transcriptomics 

of these patients to delineate differentially expressed genes. This analysis yielded a 

novel HOXA10-associated 5 gene-based prognostic signature that is highly expressed 

in short-term survivors of PDAC. A deeper evaluation of this signature highlighted 

its connection with cancer-associated signaling pathways and immunosuppressive cell 

types, specifically Tregs and M2 macrophages. These findings indicate that this gene 

signature may be utilized to stratify short- and long-term survivors of PDAC and provide 

therapeutic targets that directly influence patient survival.
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Figure 1. 
Workflow for bioinformatics analysis and signature validation. GSE62542 was divided into 

STS and LTS based on a median survival of 14.5 months, and data for STS was subjected to 

GSEA and pathway enrichment analyses. A total of 130 genes were identified as part of the 

HOXA10 gene set, and 69 were specifically enriched in STS. Additional validation of gene 

expression data and association with survival determined five genes for final validation using 

IHC.
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Figure 2. 
Gene set enrichment analysis (GSEA) enrichment plots and HOXA10 expression profile. A 
and B, An enrichment score (ES) of 0.59 was observed for the gene set driven by MYBL2 

(A), and an ES of 0.49 was determined for the HOXA10-driven gene set (B). C and D, 
HOXA10 is significantly upregulated in PDAC compared to the normal pancreas (C), and 

associated with decreased survival of PDAC patients (D).
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Figure 3. 
Geno Ontology (GO) enrichment and ClueGO analysis of the HOXA10 gene set. A, 
Pathways involved in protein homeostasis (regulation of mRNA stability, ribosomal large 

subunit biogenesis), cellular metabolism (regulation of mRNA catabolic/metabolic process, 

regulation of cellular amino acid metabolic process), immune response (cellular response to 

interleukin-1, response to interleukin-1, interleukin-1-mediated signaling pathway, antigen 

processing and presentation of exogenous peptide antigen/via MHC class I), and cell cycle 

(regulation of mitotic cell cycle phase transition, regulation of G2/M transition of mitotic 
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cell cycle/phase transition) were enriched in the HOXA10 gene set. The count depicts the 

number of genes included in each GO term, and the gene ratio demonstrates the percentage 

of HOXA10 gene set genes enriched in each GO term. All terms were significantly 

associated with the HOXA10 gene set. B, ClueGO analysis revealed that the HOXA10 

gene set is enriched in several biological networks, namely those associated with cellular 

metabolism, protein homeostasis, and immune response.
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Figure 4. 
GEPIA profiles for the five signature genes, including relative mRNA expression in tumor 

(red) compared to the normal pancreas (blue) and Kaplan-Meier plots of OS in patients 

with high expression of these five genes. A-E, BANF1 is significantly upregulated in PDAC 

compared to the normal pancreas and associated with decreased survival (A); EIF4G1 

is significantly upregulated in PDAC compared to the normal pancreas and significantly 

associated with decreased survival (p=0.0013) (B); MRPS10 is significantly upregulated 

in PDAC compared to the normal pancreas and significantly associated with decreased 
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survival (p=0.013) (C); PDIA4 is significantly upregulated in PDAC compared to the normal 

pancreas and associated with decreased survival (D); TYMS is significantly upregulated 

in PDAC compared to the normal pancreas and significantly associated with decreased 

survival (p=0.00064) (E). F, As a panel, high expression of these five genes is significantly 

associated with decreased survival (p=0.0012).
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Figure 5. 
Immunohistochemical analysis of HOXA10 and the five signature genes. A-E, In a cohort 

of short (HOXA10 n=9; BANF1 n=13; EIF4G1 n=14; MRPS10 n=13; PDIA4 STS n=12; 

TYMS n=12) and long surviving (HOXA10 n=7; BANF1 n=15; EIF4G1 n=14; MRPS10 

n=14; PDIA4 STS n=14; TYMS n=14) patients, a trend of increased expression was 

observed in short-term survivors for the five signature genes (*, p<0.05). Panels C and F 

contain serial sections from LTS patients, stained with two different antibodies for EIF4G1 

and TYMS.
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Figure 6. 
CIBERSORT analysis for HOXA10 and its driven signature. Heightened expression of 

HOXA10 and its driven signature is associated with altered levels of immunosuppressive 

cell types. A, Treg cells were elevated in groups that highly expressed HOXA10 (p=0.0163), 

EIF4G1, PDIA4, and BANF1. B, M2 macrophages were elevated in groups highly 

expressing MRPS10 (p=0.0017), PDIA4, and TYMS. C, CD8+ T cells were elevated in 
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patients with high expression of HOXA10 (p=0.0207), and decreased in patients with high 

expression of MRPS10, PDIA4, and TYMS.
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