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Abstract

Background/Aims: Wildfire air pollution is a growing public health concern as wildfires 

increase in size, intensity, and duration in the United States. The public is often encouraged 

to stay indoors during wildfire smoke events to reduce exposure. However, there is limited 

information on how much wildfire smoke infiltrates indoors at residences and what household/

behavioral characteristics contribute to higher infiltration. We assessed fine particulate matter 

(PM2.5) infiltration into Western Montana residences during wildfire season.

Methods: We measured continuous outdoor and indoor PM2.5 concentrations from July-October 

2022 at 20 residences in Western Montana during wildfire season using low-cost PM2.5 sensors. 

We used paired outdoor/indoor PM2.5 data from each household to calculate infiltration efficiency 

(Finf; range 0–1; higher values indicate more outdoor PM2.5 infiltration to the indoor environment) 

using previously validated methods. Analyses were conducted for all households combined and for 

various household subgroups.

Results: Median (25th percentile, 75th percentile) daily outdoor PM2.5 at the households was 

3.7 μg/m3 (2.1, 7.1) during the entire study period and 29.0 μg/m3 (19.0, 49.4) during a 2-week 

period in September impacted by wildfire smoke. Median daily indoor PM2.5 at the households 

was 2.5 μg/m3 (1.3, 5.5) overall and 10.4 μg/m3 (5.6, 21.0) during the wildfire period. Overall Finf 
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was 0.34 (95% Confidence Interval [95%CI]: 0.33, 0.35) with lower values during the wildfire 

period (0.32; 95%CI: 0.28, 0.36) versus non-wildfire period (0.39; 95%CI: 0.37, 0.42). Indoor 

PM2.5 concentrations and Finf varied substantially across household subgroups such as household 

income, age of the home, presence of air conditioning units, and use of portable air cleaners.

Conclusions: Indoor PM2.5 was substantially higher during wildfire-impacted periods versus 

the rest of the study. Indoor PM2.5 and Finf were highly variable across households. Our 

results highlight potentially modifiable behaviors and characteristics that can be used in targeted 

intervention strategies.

Graphical Abstract:
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1. Introduction

Wildfire season has lengthened and wildfire events have increased in intensity and duration 

in recent decades in the United States (US)1,2. As a result, the burned area from wildfires 

in the US has nearly quadrupled over the past 40 years and the contribution of wildfires 

to overall fine particulate matter (PM2.5) in the US has increased, with up to 50% of 

ambient PM2.5 in some Western regions attributed to wildfires2. Similar trends of increasing 

wildfire activity have been observed across the globe, creating a substantial public health 

and economic burden for many countries that is predicted to worsen with climate change3,4.

There is substantial evidence that wildfire air pollution is associated with all-cause and 

cardiovascular and respiratory mortality, as well as cardiovascular and respiratory disease 

including exacerbation of asthma, chronic obstructive pulmonary disease, myocardial 

infarction, stroke, and heart failure3–8. Evidence from recent studies also suggests that 

wildfires adversely impact mental health and well-being9,10, birth outcomes including 

pre-term birth and low birth weight11–13, and can worsen respiratory infection such as 

influenza14 and coronavirus15. However, the overall public health burden of wildfires, 

particularly the impact on subclinical health outcomes and underlying disease processes, 

is difficult to assess due to the unpredictable, transient nature of wildfire events5,6. Many 

previous studies have classified wildfire air pollution exposures using stationary monitors 

or models that incorporate satellite and meteorological data6,7. Such methods allow for 

wildfires to be studied over wide geographic areas and timeframes, but spatial resolution is 

typically low using these methods and household-level exposures can be misclassified due to 

widely variable household- and individual-level characteristics and behavioral patterns.
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Another important consideration when estimating the public health burden of wildfire 

air pollution is that individuals in the US spend nearly 90% of their time indoors16. 

Consequently, ambient exposure estimates may not accurately represent what individuals 

are exposed to during wildfires. Understanding how wildfires impact indoor air quality will 

help improve public health messaging and risk reduction efforts during wildfire events. More 

accurate exposure characterization that includes both indoor and outdoor measurements will 

also allow researchers to better assess how wildfires impact health outcomes.

In an effort to understand indoor air pollution exposures during wildfires, some studies have 

calculated outdoor particle infiltration to the indoor environment during wildfire events17–22. 

Infiltration efficiency, or Finf, is the fraction of outdoor particles that penetrate indoors and 

remain suspended23. Finf can be estimated by measuring infiltration of surrogate particles 

such as sulfate or by using mass balance equations that incorporate particle penetration 

efficiency, particle deposition rate, and air exchange rate of the indoor environment23. By 

calculating Finf, we can better understand how sources of ambient PM2.5, such as wildfires, 

impact the indoor environment where we spend the majority of our lives.

In a 2021 study, Liang et al. used publicly-available PM2.5 data from low-cost sensors in 

California to assess indoor vs outdoor air quality and particle infiltration during wildfires17. 

The authors reported that mean indoor PM2.5 concentrations were nearly 3 times higher 

during wildfire events vs non-wildfire periods, yet ambient particle infiltration inside the 

buildings was lower during wildfire events, potentially due to behavior changes of building 

residents during wildfires17. Indoor PM2.5 concentrations and particle infiltration also varied 

across geographic location and building characteristics such as age of the residence17. 

This study highlights the importance of indoor and outdoor exposure characterization 

at the household-level. Moreover, the need for further investigating the impact of 

household/sociodemographic characteristics and behavioral changes during wildfires and 

the subsequent impact on indoor air quality is evident.

In a 2022 study, Burke et al. used data from smart phones, social media posts, and internet 

search activity to assess behavioral responses during wildfire events18. The authors found 

that behavioral responses to wildfire smoke varied depending on neighborhood-level income 

status, with wealthier locations more likely to search for information on health protection 

than lowerincome neighborhoods18. They also reported that particle infiltration and indoor 

smoke exposures were less correlated with income status and suggest that individual-level 

behaviors such as opening windows may have stronger associations with indoor smoke 

exposures during wildfire events than type or quality of residential building materials18.

The studies by Liang and Burke were innovative in their use of publicly-available data and 

have contributed substantially to our understanding of indoor exposures during wildfire 

events17,18. These studies also highlight the need for further research that measures 

individual-level data to better understand what household and behavioral characteristics 

impact particle infiltration and indoor exposures during wildfire events. We aimed to inform 

these gaps in the literature by implementing a novel study framework to measure continuous 

indoor and outdoor PM2.5 concentrations at individual households over the course of the 

2022 wildfire season in Western Montana. In a pilot study among 20 households, we utilized 
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an entirely distance-based approach in which we mailed air pollution sensors to participant 

households and remotely collected real-time indoor and outdoor PM2.5 data over a 4-month 

period during wildfire season. We also collected baseline sociodemographic and household 

characteristics as well as weekly health and activity surveys from each participant. Here we 

present results that demonstrate the feasibility of a novel study framework as well as how 

household characteristics and individual behaviors impact indoor air quality and wildfire 

smoke infiltration to the indoor environment.

2. Methods

2.1 Study overview

Our study took place among 20 households in and around the city of Missoula in the US 

state of Montana. The Missoula area commonly experiences waves of wildfire air pollution 

between July and October each year from local wildfires as well as regional fires from 

across the Western US and Canada. We recruited participants through the help of a local 

climate advocacy organization. Interested individuals filled out an eligibility survey and 

were contacted to discuss study details if all criteria were met. To be eligible, participants 

had to be a consenting adult (≥ 18 years of age), non-smoking and live in a non-smoking 

household, have access to an electronic device to submit online surveys, and live within 

range of a cellular data tower so a Wi-Fi hotspot could be used in their home. Participants 

signed a written informed consent form prior to engaging in any study activities. The study 

was approved by the University of Montana Institutional Review Board.

Following the consent process, packages with study equipment were mailed to each 

participant’s household during June and July of 2022. Packages contained 2 low-cost air 

pollution sensors (PAII-SD, PurpleAir, Inc, USA) that were paired with a Wi-Fi hotspot 

(Solis Lite, Skyroam, Inc, USA). Pairing the PurpleAir sensors with Wi-Fi hotspots helped 

simplify the in-home setup by participants while also allowing the research team to monitor 

and retrieve the PurpleAir data in real time from the PurpleAir online database. Our research 

staff scheduled a phone call with each participant to talk through in-home equipment setup, 

study procedures, and to ensure the PurpleAir sensors were online and collecting data. After 

the initial setup call, participants completed a baseline household and demographic survey 

followed by weekly activity surveys. Participation lasted through October 2022, after which 

participants mailed the equipment back to the University of Montana using pre-paid postage. 

Participants were compensated for time spent completing study procedures.

2.2 Exposure assessment

The PurpleAir PAII-SD instruments use dual optical sensors (PMS5003, Plantower, China) 

to measure particle numbers every 2 minutes. The PurpleAir sensors also measure 

temperature and humidity and are weather resistant, allowing them to be used indoors 

and outdoors through varying weather conditions. Prior to being mailed to participant 

households, we collocated the PurpleAir sensors with both indoor and outdoor continuous 

particulate monitors (BAM 1020, Met One Instruments, Inc., USA) designated as PM2.5 

equivalent methods by the US Environmental Protection Agency (EPA). Using methods 

previously employed and published by our research group19, we compared hourly mean 
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PM2.5 concentrations from each PurpleAir with hourly mean PM2.5 concentrations from 

the BAM to ensure all sensors had similar readings prior to being shipped to participant 

households.

Once delivered to the study households, participants set up 1 indoor and 1 outdoor sensor 

with guidance from study personnel. The indoor sensor was placed 1 to 2 meters above 

the floor in a common room away from indoor pollution sources (e.g., kitchen), windows, 

doorways, and areas with potential drafts that could impact measurements. Outdoor sensors 

were placed 1 to 2 meters above the ground and away from potential air pollution sources 

(e.g., vehicle exhaust or air vents) and other obstacles that could impact measurements. Once 

the sensors were placed at the study households, participants only had to plug them into a 

power source and turn on the Wi-Fi hotspot to begin the real-time, continuous, cloud-based 

data collection. PurpleAir data were also stored on internal SD cards and downloaded at the 

end of the wildfire season as a backup data collection method.

Once set up at participant households and online, PurpleAir data were downloaded in real 

time and stored in a local database at the University of Montana. From the local database, 

we set up daily, automated data checks to assess data quality and completeness. The data 

checks helped us ensure that sensors functioned properly and remained plugged in and 

online through the duration of the study. Our study team received automated email alerts for 

a variety of situations: 1) if a sensor went offline, 2) if less than half the expected PM2.5 

datapoints were received for a given hour, 3) if less than 80% of hourly datapoints were 

received for a given day (i.e., <19 hours), 4) if PM2.5 data were negative, or 5) if PM2.5 data 

were consistently recording very high concentrations (>250 μg/m3 for >12 hours in a day). 

We also set up daily email reports with data summaries and time-series plots of PM2.5 data 

for each sensor to visually inspect trends in the data for further quality control throughout 

the study. If a sensor went offline during the study, we contacted the participants to perform 

basic troubleshooting to ensure both the sensors and Wi-Fi hotspot were online. There were 

2 instances in which a sensor issue could not be resolved remotely and a replacement set of 

PurpleAir sensors paired with a new Wi-Fi hotspot were mailed to the participant.

2.2.1 PurpleAir data and correction equation—PM2.5 mass concentrations are 

reported by PurpleAir in 2 primary data series designated ATM and CF1. These data series 

are calculated using proprietary algorithms developed by the sensor manufacturer24. Wallace 

et al. also describe an alternative (ALT) method for calculating PM2.5 concentrations from 

PurpleAir particle counts using reproducible and transparent methods24. The ALT method 

aligns more closely with reference monitors than the ATM or CF1 methods24 and is now 

available on the PurpleAir website and database. Previous studies have found that PurpleAir 

ATM and CF1 data overestimate PM2.5 concentrations in field settings19,24–27. Barkjohn et 

al. developed a nationwide correction equation for PurpleAirs using collocated PurpleAir 

sensors and Federal Reference Method/Federal Equivalent Method instruments from across 

the US26.

We used similar methods to develop a location- and time-appropriate correction equation for 

the PurpleAir sensors used in our study. We analyzed PurpleAir PM2.5 data from two sensors 

that were collocated with an outdoor BAM instrument in Missoula during the entire study 
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period from late June through October of 2022. The BAM we used for outdoor collocation 

is a Federal Equivalent Method instrument that is maintained by local and state air quality 

experts in Montana. We used hourly mean PM2.5 data from the BAM and the PurpleAir 

sensors to develop a correction equation for the PurpleAir sensors used in our study:

PM2.5 corrected  = 0.387 × PAcf1 − 0.008 × PARH + 1.047 Equation 1

where PM2.5_corrected = corrected hourly mean PurpleAir PM2.5,

PAcf1 = hourly mean PurpleAir CF1 PM2.5, and PARH = hourly mean relative humidity 

measured by the PurpleAir.

Based on our collocation data, correction equations using PurpleAir’s ATM and CF1 PM2.5 

methods, as well as the ALT PM2.5 method by Wallace et al., all performed similarly 

in comparison to the BAM reference monitor. We chose to use the corrected CF1 PM2.5 

to be consistent with previous studies by our group and others19,26. We used the same 

correction equation for both indoor and outdoor PM2.5 in our study. Our rationale for this 

decision is that we are assuming one of the dominant sources of indoor PM2.5 in the 

households is from ambient PM2.5 infiltration. While the households may have other indoor 

sources of PM2.5, we censor the indoor sources for the calculation of Finf (see analysis 

section below). Additionally, to our knowledge, there are no indoor-specific correction 

equations for PurpleAir sensors due to the widely varying indoor environmental conditions 

and indoor air pollution sources. Thus, in order to make comparisons between indoor and 

outdoor PM2.5 in our study, it seemed more appropriate to correct both indoor and outdoor 

PM2.5 concentrations in the same manner rather than to leave the indoor concentrations 

uncorrected.

2.3 Survey administration and covariates

2.3.1 Survey design and workflow—Study surveys were administered electronically 

using a platform called Research Electronic Data Capture (REDCap; Vanderbilt University 

and NIH, USA). REDCap is a secure, HIPAAcompliant, web-based software platform 

designed to support data capture for research studies. Private links were sent to each 

participant via email to complete surveys and submit them to the REDCap database. We 

used a private dashboard at the University of Montana to track survey submission status 

and send reminder emails if surveys were not completed within 24 hours. If surveys were 

not completed after another 24 hours, reminder emails and further participant follow-up was 

conducted at the discretion of study personnel.

2.3.2 Baseline survey—After the initial phone call to guide participants through 

equipment setup, study personnel sent participants an email link to complete a one-time 

baseline survey on demographics and household characteristics. Demographic variables 

included age, sex, and race/ethnicity of the participants, household income, occupation, 

participant education, and number of residents in the home. Household characteristics 

included type of residence (e.g., house, mobile, apartment), size (e.g., square meters, levels, 

bedrooms), year the home was built, and number of windows and doors in the home. 

Other factors that could influence PM2.5 exposures within the home were assessed, such as 
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primary heating and cooling methods, cooking stove type (e.g., gas or electric), presence 

of wood stove or fireplace, and use of portable air cleaners (PACs). Survey questions were 

modified from surveys used in previous field studies conducted by our team28–30.

2.3.3 Weekly survey—In addition to the baseline survey, participants also completed 

weekly surveys that included an activity assessment and a study equipment checkup. Each 

participant had the opportunity to complete up to 16 of the weekly surveys. An email 

link for the survey was sent out each Tuesday afternoon with instructions to complete it 

at 7pm on Tuesday evening. The survey asked questions about frequency and duration 

of activities over the previous week: out-of-town travel, leaving the home to go to work, 

time spent outdoors, moderate to vigorous physical activity outdoors (activities that lasted 

at least 10 minutes and caused large increases in breathing, heart rate, or leg fatigue, or 

caused them to perspire), time spent indoors at home, moderate to vigorous physical activity 

indoors at home, number of days with self-reported poor outdoor air quality (haze, limited 

visibility), number of days in which they left windows and/or doors open for extended 

periods of time at their home, and number of days they encountered other air pollution 

sources indoors or outdoors. Wording for the activity questions was modified from the 

Yale Physical Activity Survey31. We included an open-ended question for participants to 

describe other details about their weekly activity they saw as important. The survey also 

prompted participants to check and document that the PurpleAir sensors and Wi-Fi hotspot 

were plugged in and turned on. The weekly survey also included a health assessment 

with participant-reported blood pressure and health symptoms. Results from the health 

assessment, including associations between in-home PM2.5 and blood pressure, are reported 

separately.

2.4 Statistical analysis

2.4.1 Data cleaning—The data cleaning and analyses for the study were performed 

using R software version 4.2.132. We calculated hourly mean PM2.5 concentrations for each 

PurpleAir sensor by averaging the real-time (2-minute) CF1 PM2.5 concentrations across 

the dual sensors within each PurpleAir. Equation 1 was applied to the hourly mean PM2.5, 

and the hourly corrected PM2.5 was used for all subsequent analyses. We removed 603 

hourly PM2.5 concentrations (0.6%) in which there were fewer than half the expected hourly 

datapoints (<15 of 30 expected datapoints). We also removed 1070 hours (1.1%) from a 

single sensor in which the humidity sensor malfunctioned and Equation 1 could not be 

applied to the PM2.5 data. For instances when we used 24-hour mean PM2.5 concentrations 

in the analysis, we removed days with less than 19 hours of data in a given day. This resulted 

in an additional 2329 hours (2.5%) being removed from the dataset.

2.4.2 Wildfire Period and Day definitions—During the 2022 wildfire season, the 

Missoula area was largely unimpacted by wildfire smoke until September. During the first 

half of September 2022 there was consistent wildfire smoke from local and regional fires in 

the study area as documented by local Air Quality Specialists33. In the following analyses 

and results, Wildfire Period is defined as September 1st −16th, 2022 when the study area was 

impacted by wildfire smoke. Similarly, we define a Wildfire Day as a single 24-hour day 

during this Wildfire Period.
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2.4.3 Summary statistics—We calculated descriptive statistics for numeric variables 

(n, mean, standard deviation [sd], minimum [min], 25th percentile [P25], median, 75th 

percentile [P75], maximum [max]) and categorical variables (n, percent of total [%]). 

Descriptive statistics are presented for overall study data and by subgroups of self-reported 

demographic characteristics, household characteristics, and activities.

Table 2 summarizes the percentage of days a self-reported activity or observation was 

recorded by a participant since the previous survey was submitted. Although surveys were 

sent out electronically at a consistent day and time each week, they occasionally were not 

taken on the intended/scheduled day. For the self-reported activities/observations in Table 2, 

participants were told the number of days since their previous survey and asked to report the 

number of days each activity or observation occurred during that specific timeframe. Table 2 

is reporting statistics on the percentage of days each activity or observation occurred out of 

the total number of days since the previous survey was taken.

2.4.4 Linear regression—In Table 2 and Table 3, we report estimates from simple 

linear regression models to demonstrate crude associations between PM2.5 concentrations 

and various subgroups of the study population. PM2.5 concentrations were natural log 

transformed for the regression analyses. In Table 2, estimates are from simple linear 

regression models with mean PM2.5 since the previous survey as the outcome and self-

reported activities/observations as predictor variables. Estimates are presented as percent 

change in geometric mean indoor PM2.5 per 10% increase in days with the self-reported 

activity/observation. In Table 3, estimates are from simple linear regression models with 

24-hour mean PM2.5 as the outcome and household/demographic characteristics as predictor 

variables. Estimates are presented as percent difference in geometric mean PM2.5 compared 

to the reference group.

2.4.5 Infiltration efficiency—We used the paired indoor/outdoor hourly PM2.5 

concentrations at each household to calculate Finf, which is defined as the fraction of 

the outdoor PM2.5 concentration that penetrates to the indoor environment and remains 

suspended34,35. We used methods that have been previously validated by others35,36 and 

implemented by our group at the University of Montana19,34. Specifically, we used paired 

indoor and outdoor 1-hour mean PM2.5 concentrations in a recursive mass balance model. 

Indoor air pollution sources were censored from model data by identifying periods during 

which indoor PM2.5 concentrations increased without corresponding increases in the paired 

outdoor PM2.5 concentrations35,36. After censoring indoor PM2.5 sources, we analyzed the 

data in a model which states that indoor PM2.5 is equal to a fraction of outdoor PM2.5 from 

the current hour, a fraction of indoor PM2.5 from the previous hour, and indoor PM2.5 from 

the current hour35,36. Results are presented as Finf, a unitless number between 0 and 1 where 

higher values indicate more ambient particle infiltration to the indoor environment.

3. Results

3.1 Participant and household characteristics

Demographic and household characteristics for the 20 participants and households are 

reported in Table 1. The participants had a mean age of 49 years (sd=16). Seventeen of the 
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participants (85%) reported their sex as female, with the other 3 participants reporting their 

sex as male (15%). All 20 participants reported their race as White, and all 19 participants 

who reported their ethnicity described themselves as non-Hispanic. All participants had 

at least some college education, with 50% having advanced degrees. Over half of the 

participants (n=11, 55%) reported a household income of at least $50,000 United States 

Dollars (USD), and 50% of the participants worked at least 40 hours per week at the time 

of the study. Two of the participants (10%) lived in an apartment or condominium with 

multiple levels and the rest of the participants (n=18, 90%) lived in single-family homes. 

The mean age of the study homes was 51 years (sd=37). Twelve of the homes (60%) had 

two levels (including basement) and the other 8 homes were single-level (40%). Twelve 

of the homes (60%) had air conditioning of any kind (central, window, or portable), 3 of 

the homes (15%) had a wood heating stove or fireplace, 6 of the homes (30%) had a gas 

stovetop, and 14 of the participants (70%) reported that they used a PAC in their home.

3.2 Self-reported activities and participant observations

Table 2 describes self-reported activities and observations made by the participants during 

the weekly electronic surveys throughout the study. In total, participants submitted 316 

weekly surveys over 2091 days of follow-up. Windows and doors were left open more often 

during non-wildfire days compared to wildfire days (62.0% vs 43.3%). The action of leaving 

windows/doors open had stronger associations with indoor PM2.5 on wildfire days compared 

to non-wildfire days (Table 2). For example, on wildfire days, geometric mean indoor PM2.5 

was 11.4% higher per 10% increase in days with windows/doors open (95% Confidence 

Interval [95% CI]: 6.4, 16.7); on non-wildfire days, geometric mean indoor PM2.5 was 2.6% 

higher per 10% increase in days with windows/door open (95% CI: 0.2, 5.1). Participants 

reported observing ambient air pollution or haze near their home on 72.1% of wildfire 

days compared to 23.8% of non-wildfire days. Self-reported observation of ambient air 

pollution also had stronger associations with indoor PM2.5 on wildfire days (estimate: 7.7, 

95% CI: 0.7, 15.3) compared to non-wildfire days (estimate: 3.0, 95% CI: −0.4, 6.5). 

Other common activities reported by participants were cleaning in the home, smoke in the 

home from cooking activities, gas stovetop used for cooking in the home, and mowing 

outside the home; the frequency of these activities/observations did not substantially vary 

across wildfire vs non-wildfire days (Table 2). Cooking with a gas stovetop indoors, as 

well as outdoor cooking activities using charcoal and gas grills, did not have meaningful 

associations with indoor PM2.5 concentrations (Table 2).

3.3 Indoor and outdoor PM2.5 and infiltration efficiency

Figure 1 displays daily mean indoor and outdoor PM2.5 concentrations over the course of 

the study. The figure suggests trends for indoor PM2.5 closely mirrors trends for outdoor 

PM2.5 over the course of the study. Table 3 and Figure 2 describe 24-hour indoor PM2.5 

concentrations, associations with various demographic and household characteristics, and 

particle infiltration from the outdoor to indoor environment. After data cleaning procedures 

were applied, there were 1914 outdoor PM2.5 sampling days and 1860 indoor PM2.5 

sampling days across all study households. Shown in Table S1, the mean 24-hour outdoor 

PM2.5 concentration across all study households was 9.1 μg/m3 (sd=16.1; median=3.7; 

P25=2.1; P75=7.1). The mean 24-hour indoor PM2.5 concentration across all study 
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households was 5.6 μg/m3 (sd=8.7; median=2.5; P25=1.3; P75=5.5). Finf for all study 

households combined was 0.34 (95% CI: 0.33, 0.35) and ranged from 0.04 to 0.84 across 

individual households. Both outdoor and indoor PM2.5 were substantially higher during the 

wildfire-impacted period in September 2022 compared to the rest of the study (Tables 3 

and S1). During the wildfire period, the mean outdoor PM2.5 concentration was 36.8 μg/m3 

(sd=26.4; median=29.0; P25=19.0; P75=49.4) and the mean indoor PM2.5 concentration was 

15.9 μg/m3 (sd=14.7; median=10.4; P25=5.6; P75=21.0). Finf during the wildfire period 

(0.32; 95% CI: 0.28, 0.36) was slightly lower than during the non-wildfire periods (0.39, 

95% CI: 0.37, 0.42). These findings indicate that even though indoor PM2.5 was higher 

during the wildfire period, a smaller proportion of outdoor particles actually infiltrated 

indoors during the wildfire period compared to the rest of the study, an important finding 

that will be discussed further below.

Other results from Table 3 suggest that indoor PM2.5 was associated with various participant 

demographic and household characteristics such as household income, age of the home, 

pets in the home, presence of air conditioning (AC), and presence of a wood heating 

stove or fireplace. For example, households with income greater than $75,000 USD had 

24-hour geometric mean indoor PM2.5 concentrations that were 27% lower (estimate: 

−26.8; 95% CI: - 33.6, −19.2) than households with self-reported income less than $75,000 

USD. In contrast, indoor PM2.5 was not associated with presence of a gas stovetop in the 

home or participant education (Table 3). We also found that higher mean daily outdoor 

temperatures (>24 degrees Celsius [C], the median value across all study days/participants) 

were associated with 30.1% lower indoor PM2.5 concentrations compared to days with mean 

temperature <24 C (estimate: −30.1; 95% CI: −36.3, −23.3).

When comparing particle infiltration across subgroups of the study households, the largest 

differences in Finf were observed across subgroups of household income, participant 

education, age and size of the household, and use of a PAC in the household (Table 3). 

For example, households in which the participant reported use of a PAC had Finf of 0.25 

(95% CI: 0.24, 0.26) compared to Finf of 0.57 (95% CI: 0.54, 0.60) among households 

without a PAC. Finf did not vary substantially across household subgroups of participant age 

or presence of central AC (Table 3).

4. Discussion

We measured continuous, real-time PM2.5 concentrations indoors and outdoors at 20 

households across Western Montana over a 4-month period that spanned the 2022 

wildfire season. Outdoor PM2.5 concentrations over the entire study period (mean=9.1 

μg/m3; median=3.7) were higher than indoor PM2.5 concentrations (mean=5.6 μg/m3; 

median=2.5), and both indoor and outdoor PM2.5 concentrations were substantially 

higher during a wildfir-eimpacted period in September (Table 3). We have also reported 

results among subgroups of the study population that highlight participant demographics, 

household characteristics, and selfreported activities that are associated with indoor PM2.5 

concentrations and particle infiltration to the indoor environment. Our results demonstrate 

important characteristics and activities that may impact indoor PM2.5 at the household 
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level and lead to future strategies for improving indoor air quality through education and 

behavioral interventions.

Although there is growing literature on the impacts of wildfires on indoor air quality 

and public health, few studies have focused on exposure assessment and health outcomes 

at the household level. Due to the unpredictable, transient nature of wildfires, research 

studies typically use fixed-site regulatory monitors or spatial models to characterize wildfire 

exposures. Xiang et al. assessed indoor PM2.5, PM2.5 infiltration factor, and the impact of 

PACs on indoor PM2.5 among 7 households in Seattle, Washington during a wildfire episode 

in 202037. The authors reported that mean particle infiltration was 0.56 (range 0.33 to 0.76 

across the households) and suggested that staying indoors during wildfire events may be 

an insufficient protective measure on its own37. Another study by May et al reported Finf 

among 26 residences, 6 schools, and 10 commercial buildings in the Western US during 

a 2020 wildfire-impacted period20. They reported that while overall Finf was lower in 

residences than in schools or commercial buildings, the Finf across residences had a wide 

range of 0.01 to 0.87; this range of Finf across households matched our findings very closely 

(0.04 to 0.84)20. These findings help corroborate the results we have reported, which suggest 

that while indoor PM2.5 does substantially increase during wildfire events, there may be 

modifiable household or behavioral factors that can lead to lower particle infiltration to the 

indoor environment.

Larger-scale studies have also reported indoor vs outdoor PM2.5 and/or PM2.5 infiltration 

during wildfire events using publicly available data. Liang et al. used publicly-available 

PM2.5 sensors to assess indoor air pollution during wildfire season among 1400 buildings 

across metropolitan California17. Similar to our study, they reported that particle infiltration 

was lower during wildfire days (0.27) vs non-wildfire days (0.45) and that indoor PM2.5 

concentrations were substantially higher during wildfire days (mean=11.1 μg/m3) vs non-

wildfire days (mean=4.1 μg/m3)17. While not calculating PM2.5 infiltration specifically, 

O’Dell et al. reported 82% higher indoor PM2.5 concentrations on wildfire-impacted days 

vs non-wildfire days across more than 1200 locations in the Western US during the 

2020 wildfire season38. Similar to other recent studies, their message is that indoor air 

quality declines substantially during wildfire events across a wide spectrum of indoor 

environments38.

Although the focus of this current study is residential buildings, PM2.5 infiltration 

during wildfire events have also been reported by our group and others at healthcare 

facilities19,21. In contrast to infiltration results at residences that were lower during wildfire 

events compared to non-wildfire events, infiltration rates at the healthcare facilities were 

higher during wildfire periods, potentially due to differences in building characteristics 

and behavioral responses of the building occupants19,21. These results further suggest 

that wildfire smoke infiltration to the indoor environment varies depending on complex 

behavioral factors and building characteristics.

Although a common message during wildfire events is to stay indoors, our work adds to the 

growing body of literature which shows that simply remaining indoors is not sufficient 

to avoid the harmful effects of wildfire smoke39,40. Due to the complexity of indoor 
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environments and the high variability in indoor air quality from building to building, it 

is difficult to make blanket statements on recommendations for reducing indoor exposures 

during wildfires and other similar events involving poor ambient air quality. A strength of 

our study was the focus on household-level characteristics and participant-reported activities 

that provide insight into what factors may impact indoor air quality. Understanding such 

factors will help us identify households that are more at-risk and develop strategic and 

targeted public health messaging during wildfire events.

We found that indoor PM2.5 was lower among older participants and participants with 

higher household income (Table 3). Compared to homes built before 1975 (median home 

age), homes built after 1975 had substantially lower indoor PM2.5 (Table 3). Specifically, 

geometric mean indoor PM2.5 was 37% lower (estimate: −36.9; 95% CI: −42.4, −30.9) 

among the newer homes compared to the older homes. While some of these household and 

demographic factors may not be easily modifiable for targeted educational interventions, 

they do provide insight into what types of households may be more at risk for higher indoor 

PM2.5 during wildfire events.

Another important factor was presence of an AC unit within the study households. Homes 

with no AC (n=8) had geometric mean indoor PM2.5 that was 41.9% higher (95% CI: 29.0, 

56.0) than homes with any (portable, window, mini-split, or central) AC (n=12). Finf was 

also higher among homes with no AC (0.42 vs 0.30), which could be due to participants 

opening windows to cool their homes. A 10% increase in participant-reported days with 

windows/doors left open for ventilation was associated with an 11.4% increase in indoor 

PM2.5 during wildfire days (Table 2). These findings about AC are an important part of the 

discussion on coping with wildfire smoke as the climate warms and summer temperatures 

increase in regions that traditionally do not have central AC systems. Similar to other 

Northern US states, less than half of homes in Montana (40%) have central AC, although 

65% of homes reported having some form of AC41. Many individuals are left with the 

choice of opening windows at night to cool their homes or keeping windows shut to prevent 

smoke from getting indoors. Finf among homes with any AC (0.30) was similar to Finf 

among homes with central AC (0.32), suggesting that even portable, window, or mini-split 

AC units may help reduce particle infiltration to the indoor environment.

Our findings further suggest that outdoor temperature impacts behavior and PM2.5 

infiltration inside study households. Participants reported opening windows/doors for 

ventilation on 65% of study days with outdoor daily mean temperature greater than 24 

C vs 49% of study days with outdoor daily mean temperature less than 24 C (24 C was the 

median for daily mean outdoor temperature across all study days/households recorded on 

the outdoor PurpleAir sensors). Opening windows and doors for increased ventilation will 

impact air exchange rates in the home and consequently particle infiltration, as observed in 

our Finf results (Table 3). Specifically, we saw higher Finf on days with outdoor temperature 

above 24 C (0.40) vs days below 24 C (0.32). While our study took place only during 

warmer months, other studies have reported seasonal differences in particle infiltration 

and suggest outdoor temperature impacts particle infiltration across longer timeframes42,43. 

Although indoor PM2.5 in our study was 30% lower on days with outdoor temperature above 

24 C (Table 3), we believe this is primarily because outdoor PM2.5 was 29% lower on days 
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with outdoor temperature above 24 C (Table S1). To summarize, although higher outdoor 

temperatures were not associated with higher indoor or outdoor PM2.5 concentrations, 

higher outdoor temperatures did result in more PM2.5 infiltrating to the indoor environment.

We also found that presence of a PAC in the home is associated with lower indoor PM2.5 

(Table 3), and that Finf among homes without a PAC was over twice as high as households 

with a PAC (0.25 vs 0.57). While using PACs will not reduce how much PM2.5 infiltrates 

indoors, they will reduce the amount of PM2.5 that remains suspended in the indoor 

environment by filtering out the particles that infiltrate indoors. Our results, along with other 

studies on PAC use and indoor air quality37,44, demonstrate the utility of these devices at 

reducing indoor PM2.5. We also observed differences in PAC ownership across categories of 

participant education level. Of the 20 participants in the study, 10 had a graduate degree and 

14 reported that they owned a PAC. Of those with a graduate degree, 9 (90%) participants 

had a PAC; of the 10 participants with less than a graduate education, 5 (50%) reported 

owning a PAC. We observed similar trends between PAC ownership and household income. 

Of the participants who reported household income less than $75,000 USD, 3 (38%) 

reported owning a PAC. In contrast, 10 (91%) of the participants with household income 

greater than $75,000 USD reported owning a PAC. Although our sample size of participants 

was small, these findings giver further insight into the results from Table 3 that show 

differences in indoor PM2.5 and Finf across categories of education and household income. 

From a community perspective, educational approaches or reimbursement programs could 

be strategies to increase PAC use and improve indoor air quality.

Although the focus of this study was on measuring and assessing wildfire-related air 

pollution, the Graphical Abstract highlights another important finding: even during periods 

with low ambient PM2.5 concentrations, there are still short-term spikes in indoor PM2.5 that 

likely come from indoor sources. We also found that some participant-reported behaviors, 

such as opening doors and windows, incense burning, and construction activities near the 

home, were associated with higher indoor PM2.5 concentrations (Table 2). While not related 

to wildfires specifically, these activities demonstrate potential areas for education and other 

intervention strategies that can help individuals further improve their indoor air quality. 

These findings add to a growing body of literature focused on monitoring and improving 

indoor air quality, particularly among households with vulnerable individuals who have pre-

existing conditions that make them more susceptible to the adverse effects of air pollution 

exposures45–47.

Indoor environments and air pollution sources vary substantially from household to 

household, but our results help highlight potentially modifiable characteristics and behaviors 

that can be incorporated into future educational intervention strategies. Given the complexity 

of indoor environments and behaviors across different households, we believe there is a 

benefit to using PACs continuously rather than just during extreme events such as wildfires. 

Although cost may be a barrier for some, our results suggest that use of a portable AC 

unit may be an effective solution to improve indoor air quality in homes without a central 

AC system. We also found that participants reported observing ambient air pollution or 

haze near their home on 72% of wildfire days, and that this observation was associated 

with higher indoor PM2.5 concentrations (Table 2). Even without access to quantitative 
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air pollution data, visual observation of ambient air pollution may be a useful que for 

individuals to stay indoors and implement practices such as PAC use.

Somewhat counterintuitively, presence and use of a gas stovetop was not associated with 

indoor PM2.5 (Tables 2 and 3). However, only 6 homes in our study had gas stovetops. We 

also encouraged participants to set up their sensors away from potential pollution sources, 

so it is likely that sensors were not located near the gas stoves. In general, measuring air 

pollution from gas stovetops was not the focus of our study and these findings should be 

interpreted with caution.

There are limitations in our study, including the small sample size (n=20). However, this 

smallscale pilot study demonstrates the feasibility of an entirely remote field study using 

low-cost sensors that require minimal setup by participants. Our study methods also resulted 

in minimal missing data and a robust dataset of continuously monitored PM2.5. We have 

demonstrated a method in which the impacts of wildfires can be studied in a field setting 

at a household level with minimal personnel. Another limitation in this study is the source 

we recruited participants from (a local climate advocacy organization). The participants 

who enrolled in our study generally had high education and household income and were 

predominantly White and female. It should be acknowledged that our results may not be 

generalizable to the entire Western Montana population. However, one of our primary aims 

was to collect high-quality PM2.5 data and participant-reported outcomes over the course 

of an entire wildfire season to help inform larger-scale studies among more vulnerable 

populations. While the methods we implemented may be less feasible in populations with 

different demographics, we have successfully demonstrated the feasibility of using low-cost 

PM2.5 sensors in participant households during wildfire season. The framework we have 

described could also be modified to enhance equipment setup and participant engagement 

among different study populations. For example, rather than setting up a Wi-Fi hotspot and 

real-time data retrieval, study personnel could use more passive data collection by relying 

on the SD card data in the PurpleAir sensors. Potential recall bias is also a limitation in our 

study, as we had participants report number of days between weekly surveys in which they 

did certain activities. Daily activity logs can help improve recall in such surveys, but they 

also add substantial participant time involvement. It may be unrealistic for participants to 

complete daily activity logs over the course of a long-term research study.

Low-cost sensors can be ideal for studying the localized effects of air pollution at the 

household level, although it is important to acknowledge that these sensors also have 

limitations. Low-cost, light-scattering sensors are typically not as accurate as reference 

monitors that are usually used at fixed sights and have a much higher up-front cost. 

However, our group and others have worked to develop correction factors that can be 

applied to PM2.5 data from low-cost sensors to improve their accuracy. Many benefits also 

come with using low-cost sensors, such as much better spatial and temporal resolution due 

to the portability of the sensors, and ability to conduct real-time, continuous, cloud-based 

data collection methods. In combination with the Wi-Fi hotspots we deployed, our exposure 

assessment system required very little hands-on setup by study participants.
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Although this study was implemented in Montana, the methodology is adaptable and 

applicable to other settings. Provided households have a signal from a cellular data tower, 

this method we have developed can be deployed to households that may otherwise be 

under-represented in research due to barriers such as Wi-Fi access or distance from study 

coordination sites. In areas without cellular or Wi-Fi access, the option to use offline data 

collection on internal sensor storage further increases flexibility of sensor placement. From 

a global perspective, low-cost sensors increase the feasibility of conducting air quality 

research not only during wildfires, but also for household air pollution studies aimed at 

assessing cookstove-related air pollution that is prevalent in many lower- and middle-income 

countries. One study of 7 sub-Saharan African countries found the implementation of low-

cost air quality sensors to be feasible, with a median data recovery rate of 94%, despite 

electrical outages48. Low-cost sensors have also been used to identify strategies to improve 

building design, ventilation, and air filtration during bushfires in Australia49.

Overall, we have reported several key findings from this study. We have demonstrated the 

feasibility of using low-cost sensors to measure indoor and outdoor PM2.5 at individual 

households over the course of an entire wildfire season. When implemented in wildfire 

prone areas, these methods can help researchers study wildfire exposures and individual-

level health outcomes prospectively by having sensors deployed and sampling before, 

during, and after wildfire smoke impacts the study area. We have also shown that wildfire-

related PM2.5 infiltrates into residences and that the amount of infiltration varies by 

demographic and household characteristics. Finally, we have reported on other participant 

characteristics and behaviors that adversely impact indoor air quality even during periods 

with minimal ambient air pollution. These findings will help inform future studies and 

intervention strategies aimed at improving indoor air quality and related health outcomes.
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Highlights

Distance-based field study with low-cost sensors at residences during wildfire season

Indoor and outdoor fine particulate matter increased markedly during wildfire events

Indoor air quality and particle infiltration varied across household subsets

Newer homes and those with air conditioners/cleaners had lower particle infiltration
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Figure 1: 
24-hour mean indoor (dark blue, left columns) and outdoor (light blue, right columns) 

fine particulate matter concentrations at 20 Western Montana households during the 2022 

wildfire season
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Figure 2: 
24-hour mean indoor fine particulate matter concentrations across subcategories of 20 

Western Montana residences during the 2022 wildfire season

m2 = square meters; C = degrees Celsius; $75k = 75 thousand United States Dollars

Outdoor temperature categorized by median daily outdoor temperature measured by 

PurpleAir sensors over the duration of the study (24 C).

The lower and upper hinges correspond to the first and third quartiles (the 25th and 75th 

percentiles). The upper whisker extends from the hinge to the largest value no further than 

1.5 * IQR from the hinge (where IQR is the interquartile range, or distance between the first 

and third quartiles). The lower whisker extends from the hinge to the smallest value at most 

1.5 * IQR of the hinge. Data beyond the end of the whiskers are called “outlying” points and 

are plotted individually.
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Table 1:

Household and demographic characteristics among 20 study households in Western Montana

Participant or household characteristic Summary statistic (N = 20)

Age in years, mean (sd) 49 (16)

 Unknown, n (%) 3 (15)

Sex

 Female, n (%) 17 (85)

 Male, n (%) 3 (15)

Race

 White, n (%) 20 (100)

 Other, n (%) 0 (0)

Ethnicity

 Not Hispanic, n (%) 19 (95)

 Unknown, n (%) 1 (5)

Household income, USD

 <$20,000, n (%) 0 (0)

 $20,000 to $34,999, n (%) 2 (10)

 $35,000 to $49,999, n (%) 2 (10)

 $50,000 to $74,999, n (%) 4 (20)

 $75,000 to $99,999, n (%) 4 (20)

 $100,000+, n (%) 7 (35)

 Unknown, n (%) 1 (5)

Education

 High school or less, n (%) 0 (0)

 Some college, no degree, n (%) 1 (5)

 Bachelor’s degree, n (%) 9 (45)

 Master’s degree, n (%) 6 (30)

 Doctorate or professional degree, n (%) 4 (20)

Employment

 Up to 39 hours per week, n (%) 2 (10)

 40 or more hours per week, n (%) 10 (50)

 Retired, n (%) 4 (20)

 Self-employed, n (%) 3 (15)

 Other, n (%) 1 (5)

Total residents living in household

 1, n (%) 2 (10)

 2, n (%) 12 (60)

 3, n (%) 3 (15)

 4, n (%) 2 (10)

 Unknown, n (%) 1 (5)

Type of home

 Multi-level apartment/condo, n (%) 2 (10)
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Participant or household characteristic Summary statistic (N = 20)

 Single family home with basement, n (%) 10 (50)

 Single family home without basement, n (%) 4 (20)

 Other, n (%) 4 (20)

Home age in years, mean (sd) 51 (37)

Home area in square meters, mean (sd) 171 (93)

 Unknown, n (%) 1 (5)

Home levels including basement

 1, n (%) 8 (40)

 2, n (%) 12 (60)

Windows in home, mean (sd) 15 (10)

Doors in home

 1, n (%) 2 (10)

 2, n (%) 6 (30)

 3, n (%) 8 (40)

 4, n (%) 3 (15)

 7, n (%) 1 (5)

Bedrooms in home

 1, n (%) 3 (15)

 2, n (%) 3 (15)

 3, n (%) 8 (40)

 4, n (%) 4 (15)

 5, n (%) 3 (15)

Pets in home

 0, n (%) 7 (35)

 1, n (%) 7 (35)

 2, n (%) 3 (15)

 3, n (%) 1 (5)

 4, n (%) 2 (10)

Central air conditioning in home

 No, n (%) 15 (75)

 Yes, n (%) 5 (25)

Air conditioning in home (any type - central, window, portable, or mini-split)

 No, n (%) 8 (40)

 Yes, n (%) 12 (60)

Wood heating stove or fireplace in home

 No, n (%) 17 (85)

 Yes, n (%) 3 (15)

Gas stovetop

 No, n (%) 14 (70)

 Yes, n (%) 6 (30)

Portable air cleaner in home
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Participant or household characteristic Summary statistic (N = 20)

 No, n (%) 6 (30)

 Yes, n (%) 14 (70)

sd = standard deviation; USD = United States Dollars;
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Table 3:

Summary of 24-hour indoor fine particulate matter concentrations and infiltration efficiency across 

subcategories of 20 households in Western Montana, June through October 2022

Indoor PM2.5 (μg/m3) Infiltration efficiency 
(95% CI)

Sampling 
Days

mean (sd) min, P25, median, P75, 
max

Estimatea (95% 
CI)

All study days/households 1860 5.6 (8.7)
1.0, 1.3, 2.5, 5.5, 117.7

0.34
(0.33, 0.35)

Non-Wildfire period 1567 3.6 (5.2)
1.0, 1.1, 2.1, 3.9, 55.3

Reference 0.39
(0.37, 0.42)

Wildfire period 293 15.9 (14.7)
1.0, 5.6, 10.4, 21.0, 117.7

358.3
(311.4, 410.6)

0.32
(0.28, 0.36)

Participant age <43 years 
(median)

707 5.7 (8.9)
1.0, 1.4, 2.7, 5.9, 117.7

Reference 0.33
(0.31, 0.35)

Participant age 43+ years 
(median)

867 5.6 (9.3)
1.0, 1.2, 2.2, 4.8, 68.7

−11.2
(−20.0, −1.5)

0.36
(0.34, 0.38)

Household income <$75,000 / 
year

715 7.2 (11.0)
1.0, 1.6, 3.0, 7.3, 117.7

Reference 0.52
(0.49, 0.54)

Household income $75,000+ / 
year

1040 4.8 (7.1)
1.0, 1.2, 2.4, 5.1, 68.7

−26.8
(−33.6, −19.2)

0.24
(0.23, 0.26)

Education bachelor’s or less 989 5.5 (9.1)
1.0, 1.3, 2.5, 5.3, 117.7

Reference 0.41
(0.39, 0.43)

Education advanced degree 871 5.7 (8.3)
1.0, 1.3, 2.5, 5.7, 68.7

4.4
(−4.9, 14.7)

0.27
(0.25, 0.29)

Home built before 1975 
(median)

902 6.8 (9.8)
1.0, 1.8, 3.3, 6.9, 117.7

Reference 0.41
(0.39, 0.43)

Home built 1975 (median) or 
later

958 4.4 (7.4)
1.0, 1.1, 1.9, 4.2, 62.9

−36.9
(−42.4, −30.9)

0.27
(0.26, 0.29)

Home area <167 sqm (median) 941 6.2 (9.6)
1.0, 1.5, 2.8, 5.9, 117.7

Reference 0.43
(0.41, 0.45)

Home area 167+ sqm (median) 824 5.3 (8.0)
1.0, 1.3, 2.5, 5.2, 68.7

−12.3
(−20.3, −3.5)

0.26
(0.24, 0.29)

Home <10 windows (median) 854 6.1 (9.6)
1.0, 1.4, 2.7, 5.8, 117.7

Reference 0.39
(0.37, 0.41)

Home 10+ windows (median) 1006 5.2 (7.9)
1.0, 1.2, 2.4, 5.1, 68.7

−12.7
(−20.5, −4.1)

0.29
(0.27, 0.31)

Home <3 doors 696 6.0 (9.4)
1.0, 1.3, 2.6, 6.0, 117.7

Reference 0.36
(0.33, 0.38)

Home 3+ doors 1164 5.3 (8.3)
1.0, 1.3, 2.5, 5.1, 68.7

−8.0
(−16.5, 1.3)

0.33
(0.31, 0.35)

No pets in home 631 5.0 (8.1)
1.0, 1.0, 2.0, 4.6, 55.3

Reference 0.24
(0.22, 0.27)

1+ pets in home 1229 5.9 (9.1)
1.0, 1.4, 2.8, 5.9, 117.7

27.6
(15.7, 40.7)

0.39
(0.37, 0.40)

Central AC in home 504 5.2 (9.3)
1.0, 1.1, 1.9, 4.0, 62.9

Reference 0.32
(0.29, 0.35)

No Central AC in home 1356 5.7 (8.5)
1.0, 1.4, 2.8, 5.9, 117.7

27.8
(15.1, 41.9)

0.35
(0.34, 0.37)

Any type of AC unit 1155 5.1 (8.9)
1.0, 1.1, 2.2, 4.6, 117.7

Reference 0.30
(0.28, 0.32)
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Indoor PM2.5 (μg/m3) Infiltration efficiency 
(95% CI)

Sampling 
Days

mean (sd) min, P25, median, P75, 
max

Estimatea (95% 
CI)

No AC unit of any kind 705 6.4 (8.5)
1.0, 1.7, 3.2, 6.9, 68.7

41.9
(29.0, 56.0)

0.42
(0.40, 0.45)

No wood stove or fireplace in 
home

1593 5.5 (8.8)
1.0, 1.2, 2.4, 5.2, 117.7

Reference 0.33
(0.31, 0.34)

Wood stove or fireplace in 
home

267 6.1 (8.3)
1.0, 1.7, 3.6, 6.7, 68.7

25.1
(9.5, 42.9)

0.43
(0.40, 0.46)

No gas stovetop in home 1331 5.2 (8.1)
1.0, 1.3, 2.5, 5.3, 117.7

Reference 0.33
(0.31, 0.34)

Gas stovetop in home 529 6.4 (10.2)
1.0, 1.1, 2.5, 5.8, 68.7

3.1
(−7.1, 14.3)

0.37
(0.34, 0.40)

Portable air cleaner in home 1312 5.1 (7.4)
1.0, 1.3, 2.5, 5.3, 68.7

Reference 0.25
(0.24, 0.26)

No portable air cleaner in home 548 6.7 (11.3)
1.0, 1.4, 2.5, 5.9, 117.7

9.8
(−0.9, 21.6)

0.57
(0.54, 0.60)

Outdoor mean daily 

temperatureb <24 C

932 7.1 (10.8)
1.0, 1.4, 3.0, 7.9, 117.7

Reference 0.32
(0.30, 0.33)

Outdoor mean daily 

temperatureb 24+ C

910 4.0 (5.6)
1.0, 1.2, 2.2, 4.2, 47.5

−30.1
(−36.3, −23.3)

0.40
(0.37, 0.42)

PM2.5 = fine particulate matter; sqm = square meters; sd = standard deviation; min = minimum; P25 = 25th percentile; P75 = 75th percentile; max 

= maximum; CI = confidence interval; C = degrees Celsius

a
Estimates are from simple linear regression analyses with 24-hour mean PM2.5 as the outcome and household/demographic characteristics as 

predictor variables. Estimates are presented as percent difference in geometric mean PM2.5.

b
Outdoor temperature categorized by median daily outdoor temperature measured by PurpleAir sensors over the duration of the study (24 C).
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