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Abstract

Sodium Glucose co-Transporter 2 (SGLT2) enables glucose and sodium reabsorption in the 

kidney. SGLT2-inhibitors (gliflozins, which include canagliflozin, dapagliflozin, empagliflozin, 

and ertugliflozin) act by increasing glycosuria, thereby reducing glycemia. These drugs are critical 

to reach and keep glycemic control, a crucial feature especially in patients with comorbidities, 

like frail individuals. A number of studies evaluated the effects of SGLT2-inhibitors in different 

settings beyond diabetes, revealing that they are actually pleiotropic drugs. We recently evidenced 

the favorable effects of SGLT2-inhibition on physical and cognitive impairment in frail older 

adults with diabetes and hypertension. In the present overview, we summarize the latest clinical 

and preclinical studies exploring the main effects of SGLT2-inhibitors on kidney and heart, 

emphasizing their potential beneficial actions in frailty.
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Sodium Glucose co-Transporter 2 (SGLT2) inhibitors (also known as gliflozins) are oral 

antidiabetic drugs that have emerged as a cornerstone to reach and keep glycemic control1–4, 

particularly in older adults5–7. SGLT2 is a co-transporter that induces glucose and sodium 

(Na+) reabsorption in the kidney; hence, SGLT2-inhibitors act interfering with this process, 

reducing glycemia8, 9.

The first SGLT2 inhibitor to be approved by the Food and Drug Administration (FDA) as 

antihyperglycemic agent for patients with T2DM was canagliflozin in 2013, followed by 
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dapagliflozin and empagliflozin in 2014, and ertugliflozin in 201710. The effects of SGLT2-

inhibitors in type 2 diabetes mellitus (T2DM) have been evaluated by a plethora of studies, 

leading to groundbreaking results in cardiovascular disease and chronic kidney disease 

(CKD); SGLT2-inhibitors have been extensively studied beyond diabetes and are now 

considered pleiotropic drugs (Figure 1)11–13, having shown favorable effects in non-diabetic 

patients with heart failure (HF) with reduced ejection fraction (HFrEF) and preserved 

ejection fraction (HFpEF).

Frailty and SGLT2-inhibitors

Frailty is a condition of vulnerability to stressors, which increases the risk of adverse health 

outcomes such as falls, disability, and hospitalization.

Our group has recently demonstrated the beneficial effects of the SGLT2 inhibitor 

empagliflozin on cognitive and physical impairment in frail older adults with diabetes and 

hypertension, highlighting how SGLT2-inhibition could attenuate mitochondrial oxidative 

stress in human endothelial cells14. Consistent with our findings, the efficacy and safety of 

SGLT2-inhibitors has been confirmed in frail elderly subjects by several investigators15–18, 

underscoring the large absolute benefits of treatment in these vulnerable patients, who are 

often needlessly denied therapy19, 20. Besides, a clinical trial known as EMPA-ELDERLY 

(NCT04531462), which includes 128 elderly Japanese patients with T2DM receiving 

Empagliflozin (10 mg) for 52-weeks has been completed in August 2022 but has yet to 

publish their findings21.

Clinical relevance of SGLT2-inhibitors in patients with comorbidities

Cardiovascular and renal disorders, including atherosclerotic cardiovascular disease, HF, 

and CKD, represent leading causes of death in patients with diabetes, and are prevailing 

comorbidities in frail patients22, 23. Analyses conducted by the US Diabetes Collaborative 

Registry found that among individuals with T2DM 94% have at least one comorbidity of 

which the most common are cardiovascular (32%) and renal (20%) diseases24. Likewise, 

over half of all patients living with HF have CKD, a decisive aspect, since the severity of 

renal dysfunction is associated with a graded increased risk of death25.

Pharmacology of SGLT2-inhibitors: main effects on the kidney

SGLT2 and glucose reabsorption

The kidney plays indispensable roles in the regulation of glucose level in the blood (Figure 

2). It serves as the second largest producer of glucose in the organism after the liver, 

accounting for 20% of gluconeogenesis. No less important is glucose filtration in the 

renal glomeruli and further reabsorption in the proximal tubule of the nephron. Glucose 

freely passes through the glomerular filter and without reabsorption glucose excretion is 

estimated to reach 180g/day, which is roughly equal to its daily consumption. However, 

virtually all glucose is later reabsorbed, and a key role in this process is played by the two 

glucose transporters SGLT1 and SGLT2, which decrease glycemia by reducing renal glucose 
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reabsorption and promoting glucosuria. Approximately 90% of the glucose filtered by the 

glomerulus is estimated to be reabsorbed via this mechanism.

SGLT2 is mainly localized at the apical membrane in the S1 and S2 segments of the 

proximal tubule while SGLT1 in the S3 segment, both in human and rodents. Remarkably, a 

higher expression of SGLT2 in females than in males has been described in rats, whereas no 

sex differences in this sense seem to be present in humans26, 27.

SGLT2 plays a major role in glucose reabsorption. Analysis of glomerular ultrafiltrate 

composition at different levels of nephron revealed that 93-97% of glucose is reabsorbed by 

SGLT2 and only 3% by SGLT128. However, in absence of SGLT2, SGLT1 can reabsorb a 

significant amount of glucose. Sglt2−/− mice develop glucosuria but maintain normal plasma 

glucose concentrations29. To achieve hypoglycemia in non-diabetic animals, the knockout of 

both transporters is required. Indeed, pharmacological inhibition of SGLT2 in euglycemic 

mice failed to induce hypoglycemia in wild-type but not in Sglt1−/− mice30. This partial 

backup of SGLT2 function by SGLT1 plays a vital role in the safety of SGLT2-inhibitors.

Glucose lowering effects of SGLT2-inhibitors can be partly attributed to the increased 

demand for glucose reabsorption observed in diabetes. As noted earlier, glucose passively 

flows through glomerular capillaries barrier, which means that hyperglycemia results in an 

increased amount of glucose filtered. In order to prevent glycosuria, SGLT2 expression in 

the kidneys is upregulated, thus enhancing glucose reabsorption31. Intriguingly, in diabetic 

kidneys, mainly SGLT2 expression is increased; the preferential overexpression of SGLT2 

over SGLT1 is essentially explained by the fact that SGLT2 uses one Na+ ion to transport 

one glucose molecule, whereas SGLT1 uses two Na+ ions, making SGLT2 energetic 

favorable.

SGLT2 upregulation allows to prevent glycosuria in the majority of diabetic patients. 

However, when SGLT2 is pharmacologically inhibited in diabetes, SGLT1 is no 

longer capable of coping with the augmented reabsorption demand; hence, moderate 

glucosuria develops together with lowering glucose levels, but without significant risks of 

hypoglycemia31.

SGLT2 regulates glomerular filtration rate

SGLT2-inhibition exerts a number of effects on kidney function in diabetes and these 

effects are independent from lowering blood glucose level. First, SGLT2-inhibitors decrease 

Na+ reabsorption in proximal tubule. This action results in increased delivery of Na+ to 

the macula densa with subsequent normalization of the tubule-glomerular feedback32, 33, 

which is activated in diabetes due to augmented reabsorption of Na+ that is falsely sensed 

as a decrease in circulating blood volume. Low levels of Na+ at the macula densa level 

triggers adenosine-dependent relaxation of afferent arterioles and constriction of efferent 

arterioles, resulting in increased blood pressure in glomerular capillaries, ensuring increased 

filtration34. Inhibition of SGLT2 may counteract this pathological loop, also acting on the 

ROS-induced quenching of bioavailable nitric oxide35–38. In fact, treatment with SGLT2-

inhibitors acutely decreases glomerular filtration rate (GFR), but this effect is reversible. 

Moreover, during the progression of diabetes, the initial increase of GFR is superseded 
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by a decrease of GFR, as a result of CKD development. However, treatment with SGLT2-

inhibitors prevents GFR decline in the longterm39.

Hyperfiltration is considered to be detrimental due to increased tensile stress applied to 

the capillary wall structures and heightened shear stress on the podocyte foot processes 

and body surface. These forces compromise the architecture of the glomerular filtration 

barrier, including but not limited to “stretching” the glomerular basement membrane, 

leading to a mismatch of the areas of glomerular basement membrane and podocyte 

foot processes, hypertrophy, and subsequent dysfunction of different type of cells in the 

glomeruli. Preclinical studies revealed that SGLT2-inhibitors are able to preserve normal 

architecture and function of the glomerular barrier in diabetes40.

Reduction of Na+ reabsorption by SGLT2-inhibitors is not limited to the decreased activity 

of the transporter per se. The inhibition of SGLT2 is coupled with a decreased activity 

of the Na+/H+ exchanger (NHE)41. This protein is expressed by various cells, including 

the apical membrane of renal epithelial cells, transporting Na+ inside and H+ outside the 

cell. The exact mechanism of NHE inhibition by gliflozins is not fully understood. NHE 

upregulation seems to be triggered by the enhancement of glycolysis and SGLT2-inhibitors 

diminish glucose influx. Nonetheless, microperfusion studies demonstrated the ability of 

SGLT2-inhibitors to inhibit NHE even in the absence of glucose42. A possible explanation 

for glucose-independent NHE with SGLT2-inhibitors may be the physical coupling of NHE 

and SGLT2 via scaffolding proteins, including PDZK1IP1/MAP1743.

SGLT2 and renal oxygen consumption

Inhibition of SGLT2 exerts dual effects on tubule oxygen consumption. The vast majority 

of ATP produced by oxidative phosphorylation in the renal tubular epithelium is consumed 

by the Na+/K+-ATPase, localized in the basal membrane, which uses ATP energy to pump 

Na+ out of the cell in order to allow Na+ to enter the cell via the apical membrane; in 

this manner, Na+ reabsorption is achieved. Inhibition of SGLT2 significantly decreases the 

amount of Na+ entering the cell, decreasing the energetic demand. This effect becomes 

even more meaningful in diabetes, when hyperperfusion augments the amount of Na+ in the 

ultrafiltrate44.

A marked accumulation of hypoxia-inducible factor 1 (HIF1) has been observed in the 

diabetic kidney, which was prevented by SGLT2-inhibition45. A direct measurement of 

oxygen tension in the kidney corroborated these results44. Interestingly, SGLT2-inhibitors 

were also capable to reduce hypoxic signaling in vitro45, a finding that may be explained 

by a reduced oxygen consumption by glycolysis. Yet, gliflozins evoke an increased energy 

demand in the lower segments of the nephron. An increased amount of glucose due to 

the SGLT2-inhibition upstream the nephron results in manifold augmented Na+ influx. 

Additionally, oxygen tension in peritubular capillaries is falling along the length of the 

nephron. Collectively, these processes eventually result in the activation of hypoxic signaling 

in distal parts of proximal tubule and in the loop of Henle46.
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Effects of SGLT2-inhibition on nutrient sensing and renal mitochondria

Inhibition of SGLT2 diminishes glucose influx into the renal epithelium cells, thus 

mimicking the effects of caloric restriction, triggering akin protective signaling pathways. 

Several studies demonstrated that gliflozins can inhibit the mammalian target of rapamycin 

(mTOR)47, 48. Since the inhibition of SGLT2 cannot directly modify the availability of 

amino acids, a direct regulator of mTOR49, SGLT2-inhibitors are thought to inactivate 

mTOR utilizing upstream kinases, plausibly via AMP-activated protein kinase (AMPK), 

whose activation was demonstrated upon SGLT2-inhibition47, 50. Inhibition of mTOR is 

known to activate autophagy and indeed SGLT2-inhibitors have been shown to stimulate the 

autophagosome flux in renal epithelium47, 51.

Mitochondrial fragmentation accompanies renal injury of different etiologies and its 

prevention by pharmacological inhibition or genetic ablation of fission protein dynamin-

related protein 1 (DRP1) is considered nephroprotective52. Pharmacological inhibition of 

SGLT2 has been shown to preserve an elongated mitochondrial architecture, mostly due 

to the downregulation of mitochondrial DRP1 and upregulation of the fusion protein 

mitofusin1 (MFN1)47, 48. Another positive effect of SGLT2-inhibitors on mitochondria 

relates to the upregulation of Nuclear factor erythroid 2-related factor 2 (NRF2)50, a 

transcriptional factor that induces the expression of a variety of enzymes controlling the 

redox status of the cell, ultimately preventing oxidative stress53. Indeed, gliflozins were 

shown to reduce the generation of reactive oxygen species (ROS) in several models of 

kidney disease47, 50. Inhibition of SGLT2 was found to ameliorate mitochondrial fatty acid 

metabolism and prevent lipid accumulation in the kidney48. Finally, treating rodents with 

SGLT2-inhibitors diminished mitochondrial apoptosis by downregulating bcl-2-like protein 

4 (BAX) and upregulating B-cell lymphoma 2 (BCL-2) expression45, 47, 51.

SGLT2-inhibitors and the Kidney: Clinical Evidence

Diabetic nephropathy, the leading cause of CKD worldwide, exacerbates the progression of 

atherosclerotic cardiovascular disease, systemic hypertension, and cardiac dysfunction54. 

In addition to demonstrating decisive findings regarding cardiovascular outcomes, the 

EMPA-REG OUTCOME trial was also the first major trial to demonstrate the valuable 

effects of an SGLT2 inhibitor on kidney function. The investigators reported a reduction 

of incident or worsening nephropathy, defined as the development of macroalbuminuria 

(urinary albumin-to-creatinine ratio >300mg/g), a two-fold increase in serum creatinine 

levels accompanied by an estimated GFR of 45 ml/min/1.73m2 or less, initiation of renal 

replacement therapy, or death resulting from renal disease. They found that patients in the 

experimental group were at significantly lower risk for incident or worsening nephropathy39. 

A meta-analysis totaling 38723 participants, revealed that SGLT2-inhibitors significantly 

reduce the risk of dialysis, transplantation, or death due to kidney disease55. This benefit 

was evident in each of the four trials and across a wide range of baseline albuminuria and 

GFR. Follow-up studies by the investigators of other trials—Dapagliflozin in Patients with 

CKD (DAPA-CKD) and Empagliflozin in Patients with CKD (EMPA-KIDNEY), which was 

stopped early for efficacy—confirmed that patients with and without T2DM benefit from 

the reno-protective effects of dapagliflozin and empagliflozin56, 57. It should be noted that 
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these studies reported statistically similar differences in safety outcomes between groups, 

which had initially been a concern in several of the trials assessing cardiovascular outcomes 

that reported an increased incidence of lower-limb amputation, diabetic ketoacidosis, and 

genital mycotic infections in SGLT2-inhibitor treated groups58, 59. Although some patients 

with type 1 diabetes were included in some of these trials (e.g. EMPA-KIDNEY), focused 

analyses of these drugs in this population remain limited.

Dapagliflozin and canagliflozin have been approved by the FDA for reducing the risk of 

end-stage kidney disease in patients with GFR ≥25 ml/min/1.73m2. Dapagliflozin is not 

limited to patients with diabetic nephropathy as it is also indicated for those with CKD 

secondary to ischemic nephropathy, focal segmental glomerulosclerosis, IgA nephropathy, 

and chronic interstitial nephritis. Although SGLT2-inhibitors have shown benefits in treating 

IgA nephropathy and focal segmental glomerulosclerosis, we want to underscore that these 

drugs should not be considered a replacement for immunosuppression in cases where it is 

medically necessary.

The effects of dapagliflozin on kidney outcomes were similar in both diabetic and non-

diabetic patients. This finding could imply that the protective effects of SGLT2-inhibitors on 

the kidney are mediated by mechanisms beyond systemic and/or tubulointerstitial glycemic 

control. Indeed, renovascular hemodynamics are thought to play a central role in the 

reno-protective effects of SGLT2-inhibitors. The drug class acts by reducing glomerular 

pressure through the above-mentioned glomerulo-tubular feedback pathways. The macula 
densa/adenosine-mediated reduction in filtration pressure in patients treated with SGLT2-

inhibitors accounts for an early drop in GFR, reaching a nadir within the first two weeks of 

treatment, an event consistent across all major trials.

SGLT2-inhibitors have been proven effective not only in controlling glycemia, showing 

insulin-independent glucose-lowering effects (with low hypoglycemia rates), but also in 

protecting heart and kidneys. Patients with diabetes have an increased risk of developing 

cardiovascular and renal disorders, and SGLT2-inhibitors offer significant protective effects. 

Several large-scale clinical outcome trials have demonstrated that these agents reduce the 

risk of hospitalizations due to HF and CKD progression. In addition to their established 

cardiovascular benefits, randomized data examined by Colin Baigent and collaborators 

in a recent meta-analysis, support the use of SGLT2-inhibitors for modifying risk of 

kidney disease progression and acute kidney injury, not only in T2DM patients at high 

cardiovascular risk, but also in patients with CKD or HF, irrespective of diabetes status 

and kidney function60. While the underlying mechanisms behind these effects are not fully 

understood, the benefits of SGLT2-inhibitors are clear, making them a mainstay of modern 

treatment paradigms for patients with diabetes, HF, and—more recently—CKD.

Gliflozins increase hemoglobin and hematocrit levels

Mounting evidence suggests a link between SGLT2-inhibitors and increased hematocrit 

(Hct)/hemoglobin/erythropoietin levels. Indeed, in the DAPA-HF trial, anemia was 

more frequently corrected by dapagliflozin than placebo; similarly, dapagliflozin and 

empagliflozin were associated with increased Hct in the DECLARE-TIMI 58 and in the 

EMPA-REG OUTCOME, respectively61.
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Whether this phenomenon reflects hemoconcentration due to diuretic effects, expansion 

of red blood cell (RBC) mass due to increased erythropoietin (EPO), a modulation of 

the sympathetic hyperactivity, or other mechanisms remains unclear. Notwithstanding, it 

may be functionally linked to a reduced CKD progression, a lower risk of heart failure 

hospitalization, lower mortality, and potentially advantageous effects in frail populations.

EPO is synthesized in the renal cortex by EPO-producing fibroblasts. As mentioned above, 

patients with diabetes have increased glucose filtration, resulting in the upregulation of 

SGLT1 and SGLT2 in order to increase glucose resorption capacity. However, this process is 

energy-consuming: the resulting relative cortical hypoxia and increased oxidative stress from 

higher energy demands of these transporters in the renal cortex cause the cortical fibroblasts 

to transform into myofibroblasts, which no longer produce EPO. By blocking these 

transporters, SGLT2-inhibitors reduce energy demands: henceforth, the cortical injury is 

reduced, the transformation reverses, and EPO production capacity is restored. Additionally, 

SGLT2-inhibition increases Na+ delivery to the distal portions of the nephron, which evokes 

the upregulation of medullary Na+ transporters in the loop of Henle and terminal nephron 

eventually resulting in relative medullary hypoxia, which stimulates erythropoiesis.

SGLT2-inhibitors and Cardiovascular Disease

Main clinical trials assessing the effects of SGLT2-inhibitors on cardiovascular outcomes

One of the first large placebo-controlled trials assessing the effects of an SGLT2 inhibitor 

specifically on cardiovascular outcomes was the Empagliflozin Cardiovascular Outcome 

Event Trial in T2DM Patients–Removing Excess Glucose (EMPA-REG OUTCOME) trial. It 

paired 4687 patients with T2DM at high risk for cardiovascular events taking 10 mg or 25 

mg of empagliflozin once daily with 2333 in the placebo group. The primary endpoint was 

a composite of death from cardiovascular causes, nonfatal myocardial infarction, or nonfatal 

stroke, which was found to be significantly lower in the empagliflozin group. As adverse 

events, an increased rate of genital infection was observed in the empagliflozin group, but no 

increase in other side effects was reported62.

In 2017, with the CANVAS Program, data from two trials, the CANVAS and the CANVAS-

Renal (CANVAS-R)63, were integrated, totaling 10142 participants with T2DM and high 

cardiovascular risk, who were randomized to receive canagliflozin or placebo. The risk of 

the primary outcome, a composite of death from cardiovascular causes, nonfatal myocardial 

infarction, or nonfatal stroke, was higher in the placebo than in the treated group. Adverse 

reactions observed were genito-urinary infections, volume depletion, diuresis, and increased 

risk of amputation; the highest absolute risk of amputation was observed in patients with 

a previous history of peripheral artery disease64. Over the following decade, these findings 

would have been validated by several other trials drawing from populations with distinct 

risk factors. The most prominent examples include the Canagliflozin and Renal Events 

in Diabetes with Established Nephropathy Clinical Evaluation (CREDENCE) trial65, the 

Multicenter Trial to Evaluate the Effect of Dapagliflozin on the Incidence of Cardiovascular 

Events (DECLARE-TIMI 58)66, the Design and Baseline Characteristics of the Evaluation 

of Ertugliflozin Efficacy and Safety Cardiovascular Outcomes trial (VERTIS-CV)13, and 

the Effect of Sotagliflozin on Cardiovascular and Renal Events in Participants with Type 
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2 Diabetes and Moderate Renal Impairment Who Are at Cardiovascular Risk (SCORED) 

trial.67 A meta-analysis of some of these studies, except the SCORED, has shown 

that SGLT2-inhibitors significantly reduce the hazard for major adverse cardiovascular 

events (MACE; HR:0.90; 95%CI:0.85-0.95). Furthermore, the presence of atherosclerotic 

cardiovascular disease did not modify the treatment outcome on MACE68. There was a 

marked variability in MACE among each of the four gliflozins studied, which still needs 

further exploration. However, the predominant cardiovascular benefit across all these trials 

was noted to be a reduction in HF hospitalizations.

The cardiovascular safety profile of dapagliflozin was assessed by Wiviott and collaborators: 

17,160 patients with T2DM were randomly assigned to dapagliflozin or placebo. The 

primary safety outcome was a composite of MACE, for which dapagliflozin resulted non-

inferior to placebo (P<0.001). The primary efficacy outcomes were MACE plus a composite 

of cardiovascular death or hospitalization for HF; patients in dapagliflozin group had a lower 

rate of cardiovascular death or hospitalization for HF versus placebo group. Thus treatment 

with dapagliflozin resulted in a lower rate of hospitalization for HF66.

The main clinical trials substantiating the cardioprotective effects of SGLT2-inhibitors in 

HF are summarized in Table 1. These trials also confirmed that the main adverse effects 

of gliflozins were infections of the genito-urinary tract and volume depletion, without an 

increased risk of hypoglycemia69–71.

Potential mechanisms underlying the cardioprotective effects of SGLT2-inhibitors

Numerous theories exist regarding the cardiovascular benefits of SGLT2-inhibitors, which 

are attributed to both direct and indirect mechanisms (Figure 2). The results of the DAPA-

HF trial were among the first to imply that the advantages observed in HF cannot be 

attributed solely to the blood glucose-lowering effects. However, the most significant impact 

of this innovative drug class on heart and vascular function has yet to be established. 

Currently, the primary pathways thought to be involved are the reduction of blood 

pressure (also via increased diuresis and natriuresis), weight loss (more so in patients with 

T2DM), decreased insulin resistance, improved cardiomyocyte Ca2+ handling, induction 

of autophagy and lysosomal degradation, reduced epicardial fat, suppression of adipokine 

and cytokine-mediated inflammation, promotion of autophagy/mitophagy, prevention of 

adverse cardiac remodeling, inhibition of NHE, reduction of ROS production and NLRP3-

inflammasome activity, and improved cardiac mitochondrial bioenergetics—partly through 

an increase of circulating ketone bodies, which have been shown to play a positive adaptive 

role in H9, 41, 72–75.

We demonstrated that empagliflozin significantly reduces mitochondrial calcium overload 

through many of these pathways in human vascular endothelium; of note, ROS production 

triggered by high glucose in endothelial cells was ameliorated by empagliflozin, improving 

cell viability in response to oxidative stress14, 76. Additionally, the relationship between 

weight redistribution and local inflammation cannot be overlooked. In many patients with 

T2DM, excessive epicardial adipose tissue surrounds the aorta, coronary arteries, and 

ventricles, leading to the release of proinflammatory mediators (including leptin, tumor 

necrosis factor-α, resistin, interleukin-1β and interleukin-6) that can impair ventricular 
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function and lead to myocardial fibrosis77–79. A 2021 meta-analysis reported that SGLT2-

inhibitors markedly decrease epicardial adipose tissue in patients with T2DM (standardized 

mean difference 0.82; 95%CI:0.15-1.49)80. Larger studies are warranted to confirm these 

aspects.

The cardiovascular benefit of SGLT2-inhibitors may also be tied to their effects on 

renovascular hemodynamics. By increasing Na+ delivery to the macula densa, SGLT2-

inhibitors increase the vasoconstriction of the afferent renal arterioles, thereby reducing 

hyperfiltration-mediated inflammatory pathways and renal tubule oxygen requirements78. 

Enhancing renal function and/or mitigating renal stress can indirectly slow the progression 

of HF through multiple canonical pathways, such as decreasing afferent sympathetic nervous 

system activation, alleviating inflammation, and further minimizing ROS production81.

Conclusions

Several major clinical trials have spotlighted the cardiac and renal protective effects of 

gliflozins. Nowadays, SGLT2-inhibitors are well-known not only for their efficacy in 

glycemic control but are also proven to decrease atherosclerotic events, hospitalizations 

for HF, cardiovascular mortality, and the advancement of CKD. Given the correlation 

between diabetes, CKD, and cardiovascular disease including HFrEF and HFpEF, these 

agents already play a crucial role in modern treatment paradigms.
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Figure 1. 
Pleiotropic actions of SGLT2-inhibitors.
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Figure 2. 
Main effects of SGLT2-inhibitors on kidney and heart.
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Table 1.

Main clinical trials assessing the efficacy and safety of SGLT2-inhibitors in HF.

Trial name Regimen Number of 
patients Primary outcome(s) Results

CANVAS63 Canagliflozin 100 or 
300 mg

10142 composite of death from cardiovascular 
causes, nonfatal MI, or nonfatal stroke

HR:0.86; 95%CI: 0.75 to 
0.97; P<0.001 for non-
inferiority; P=0.02 for 
superiority

CREDENCE82 Canagliflozin 100 mg 4401 composite of end-stage kidney disease, a 
doubling of the serum creatinine level, or 
death from renal or cardiovascular causes

HR:0.70; 95%CI: 0.59 to 
0.82; P=0.00001

DAPA-CKD57 Dapagliflozin 10 mg 4304 composite of a sustained decline in the 
estimated GFR of at least 50%, end-stage 
kidney disease, or death from renal or 
cardiovascular causes

HR:0.61; 95%CI: 0.51 to 
0.72; P<0.001

DAPA-HF83 Dapagliflozin 10 mg 4744 composite of cardiovascular death or 
episode of worsening HF

HR:0.74; 95%CI: 0.65 to 
0.85; P<0.001

DECLARE-TIMI 
5884

Dapagliflozin 10 mg 17160 composite of MACE and cardiovascular 
death or hospitalization for HF

HR:0.83; 95%CI: 0.73 to 
0.95; P=0.005

EMPA-REG 
OUTCOME 
reported62

Empagliflozin 10 or 25 
mg

7020 composite of death from cardiovascular 
causes, nonfatal MI, or nonfatal stroke

HR:0.86; 95.02%CI: 0.74 
to 0.99; P=0.04

EMPEROR-
REDUCED85

Empagliflozin 10 mg 3730 composite of adjudicated cardiovascular 
death or hospitalization for HF

HR:0.76; 95%CI: 0.67–
0.87; P<0.0001

VERTIS-CV13 Ertugliflozin 5 or 15 
mg

8246 composite of MACE HR:0.97; 95.6%CI: 0.85 to 
1.11; P<0.001

CI: Confidence Interval; GFR: Glomerular Filtration Rate; HF: Heart Failure; HR: Hazard Ratio; MACE: Major Adverse Cardiovascular Events; 
MI: Myocardial Infarction.
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