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Abstract

Sound perception is highly malleable, rapidly adjusting to the acoustic environment and behavioral 

demands. This flexibility is the result of ongoing changes in auditory cortical activity driven by 

fluctuations in attention, arousal, or prior expectations. Recent work suggests that the orbitofrontal 

cortex (OFC) may mediate some of these rapid changes, but the anatomical connections between 

the OFC and the auditory system are not well-characterized. Here, we used virally-mediated 

fluorescent tracers to map the projection from OFC to the auditory midbrain, thalamus, and cortex 

in a classic animal model for auditory research, the Mongolian gerbil (Meriones unguiculatus). 

We observed no connectivity between the OFC and the auditory midbrain, and an extremely 

sparse connection between the dorsolateral OFC and higher-order auditory thalamic regions. In 

contrast, we observed a robust connection between the ventral and medial subdivisions of the 

OFC and the auditory cortex, with a clear bias for secondary auditory cortical regions. OFC axon 

terminals were found in all auditory cortical lamina but were significantly more concentrated in 

the infragranular layers. Tissue-clearing and lightsheet microscopy further revealed that auditory 

cortical-projecting OFC neurons send extensive axon collaterals throughout the brain, targeting 

both sensory and non-sensory regions involved in learning, decision-making, and memory. These 

findings provide a more detailed map of orbitofrontal-auditory connections and shed light on the 

possible role of the OFC in supporting auditory cognition.
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Introduction

Sensory perception is critical for survival, enabling organisms to find food and mates, 

evade predators, and navigate to safety. To perform these behaviors successfully, individuals 

must parse a seemingly endless array of complex time-varying sensory stimuli and respond 

appropriately. Accordingly, perceptual sensitivity is highly malleable, shifting from moment 

to moment as a result of fluctuations in attentional state (Ahissar & Hochstein, 1993; Luck 

& Ford, 1998; Shinn-Cunningham, 2008; Spitzer et al., 1988; Yotsumoto & Watanabe, 

2008), arousal level (Asutay & Västfjäll, 2012; Kim et al., 2017; Mather & Sutherland, 

2011; McGinley et al., 2015), and expectations (Ashton, 2014; Carcea et al., 2017; de 

Lange et al., 2018; Pinto et al., 2015; Stein & Peelen, 2015; Vangkilde et al., 2012). These 

dynamics allow organisms to filter out irrelevant information, make rapid predictions about 

upcoming sensory events, and more easily detect, discriminate, or identify signals of high 

interest or value.

Perceptual flexibility results from rapid changes in stimulus-driven activity within sensory 

cortices. Reductions in response variability (McGinley et al., 2015; von Trapp et al., 2016), 

adaptive transformations of receptive field properties (Atiani et al., 2009; David et al., 

2012; Fontanini & Katz, 2006; Fritz et al., 2003; Fritz et al., 2005, 2007; Yin et al., 

2014), reorganizations of neuronal networks (Cohen & Maunsell, 2009; Downer et al., 2017; 

Francis et al., 2018, 2022; Sheikhattar et al., 2018; Steinmetz et al., 2000), and shifts in 

response gain (Caras & Sanes, 2017; Chapman & Meftah, 2005; Davis, 1964; Hubel et al., 

1959; Niwa et al., 2012; Spitzer et al., 1988; Treue & Maunsell, 1999; Yoshida & Katz, 

2011) have all been reported. Many of these rapid changes are thought to be mediated by 

descending inputs from frontal cortical brain regions to sensory cortices. While significant 

attention has been devoted to studying the contribution of medial prefrontal cortical areas 

(Bahmani et al., 2019; Shinn-Cunningham, 2017), a growing body of work suggests that the 

orbitofrontal cortex (OFC) also plays an important role. OFC is unique in that it is the only 

prefrontal cortical region to receive input from all sensory modalities (Le Merre et al., 2021), 

suggesting its central involvement in sensory processing. More recent work has revealed its 

role in the top-down control of sensory cortical function (Banerjee et al., 2020; Liu et al., 

2020; Liu et al., 2021).

The OFC’s contribution to auditory cognition is particularly evident. OFC neurons 

respond to sounds (Sharma & Bandyopadhyay, 2020; Srivastava & Bandyopadhyay, 2020; 

Winkowski et al., 2013) and in humans, the magnitude of OFC activity predicts aspects 

of auditory perception and behavior. For example, increased OFC gain is associated 

with phantom sound perception during tinnitus (Lee et al., 2020; Vanneste et al., 

2012). Conversely, OFC lesions impair tone recognition and weaken auditory cortical 

responsiveness (Kam et al., 2018). This latter finding, which links OFC damage to a 

reduction in auditory cortical activity, is consistent with studies in mice that demonstrate 

that OFC activation can alter sound-evoked representations in the primary auditory cortex. 

Specifically, pairing sounds with electrical stimulation of the OFC (Winkowski et al., 2013) 

or with optogenetic stimulation of OFC axon terminals in the auditory cortex (Winkowski et 

al., 2018) shifts the frequency tuning of auditory cortical neurons and alters auditory cortical 
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network structure. These changes improve the ability of the auditory cortical neuronal 

population to discriminate the paired sound frequency.

While connections between the OFC and auditory regions have been identified in several 

species, including house mice (Mus musculus) (Sharma & Bandyopadhyay, 2020; Srivastava 

& Bandyopadhyay, 2020; Winkowski et al., 2018; Zingg et al., 2014), Lister-hooded rats 

(Rattus norvegicus) (Olthof et al., 2019), rhesus macaque monkeys (Macaca mulatta) 

(Cavada et al., 2000; Hackett et al., 1999; Romanski, Bates, et al., 1999; Romanski, Tian, et 

al., 1999), and humans (Cammoun et al., 2015), we lack a detailed characterization of these 

connections in a classic and well-established model for auditory research, the Mongolian 

gerbil (Meriones unguiculatus). Gerbils offer several unique advantages for auditory studies. 

Unlike other commonly used rodent models, like mice or rats, gerbils exhibit excellent 

low-frequency hearing capabilities, similar to humans (Ryan, 1976). Additionally, there 

is a large body of literature on gerbil auditory anatomy (Budinger et al., 2000a, 2000b, 

2008; Budinger & Scheich, 2009; Radtke-Schuller et al., 2016), development (Anbuhl et al., 

2022; Caras & Sanes, 2015, 2019; Müller, 1996; Rosen et al., 2010; Sanes, 1993; Sanes 

& Rubel, 1988), sound perception (Jüchter et al., 2022; von Trapp et al., 2016; Yao et al., 

2020), auditory skill learning (Caras & Sanes, 2017, 2019; Sarro & Sanes, 2011; Wetzel 

et al., 1998), hearing loss (Henry et al., 1980; Mills et al., 1990; Takesian et al., 2012; 

Tucci et al., 1999; von Trapp et al., 2017; Xu et al., 2007), and central nervous system 

function (Amaro et al., 2021; Belliveau et al., 2014; Buran et al., 2014; Franken et al., 2018; 

Kreeger et al., 2021; Lesica et al., 2010; Myoga et al., 2014; Yao & Sanes, 2021), spanning 

multiple decades. A more complete description of the inputs from the OFC to the gerbil 

auditory system would facilitate our understanding of the neural circuits that support rapid 

adjustments to the acoustic environment, and may additionally shed light on the mechanistic 

link between hearing status and cognitive function (Lin et al., 2011; Taljaard et al., 2016).

Here, we used virally mediated fluorescent tracers to characterize the descending projections 

from the OFC to the gerbil auditory cortex, thalamus, and midbrain. We report a 

heterogeneous pattern of auditory connectivity across the mediolateral axis of the OFC. 

Dorsolateral OFC (DLO) sends a sparse projection to the auditory thalamus and exhibits 

little to no connectivity with the auditory midbrain or cortex. In contrast, ventral (VO) and 

medial (MO) subdivisions of the OFC innervate primary auditory cortex (Au1) as well as 

the secondary dorsal (AuD) and ventral (AuV) cortices, with the densest labeling in the deep 

infragranular layers. Further investigation using tissue clearing and lightsheet microscopy 

revealed that auditory cortical-projection neurons also send collaterals to distant targets, 

including non-auditory sensory cortices and brain regions implicated in learning, decision-

making, and memory. Together, our findings reveal the organization of orbitofrontal-auditory 

connectivity in the gerbil brain and provide additional anatomical context for the OFC’s 

contribution to auditory cognition.

Materials and methods

Animals:

Mongolian gerbils were obtained from Charles River and bred in-house. Gerbils were group 

housed on a 12-hour light cycle and given ad libitum access to chow (Purina Mills Lab Diet 

Ying et al. Page 3

J Comp Neurol. Author manuscript; available in PMC 2024 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5001) and water. All procedures except one were conducted at the University of Maryland 

College Park, and were approved by the University of Maryland Institutional Animal Care 

and Use Committee. The remaining single procedure (subject ID_269953, see Table 1) 

was conducted at New York University and was approved by the New York University 

Institutional Animal Care and Use Committee.

Viral injections:

Subjects were injected with one or more viral tracers into the OFC, or into subcortical or 

cortical auditory regions. Viruses were injected at two depths in auditory cortical regions 

to ensure spread across cortical layers. Our injections were performed with the animal’s 

head level between bregma and lambda, rather than between lambda and the occipital 

ridge, as in Radtke-Schuller et al., 2016. Therefore, our reported anterior-posterior target 

coordinates differ from those of Radtke-Schuller and colleagues. For complete details about 

each injection, including the virus, injection volume, titer, and coordinates used, see Table 1.

A total of 44 animals (aged postnatal day 58-637) were used in this study. The data from 

off-target injections (N = 10), injections with excessive virus spread outside the region of 

interest (N = 5), and brains with excessive tissue damage (N = 2) were excluded from all 

analyses. Therefore, this report includes data from 27 animals (N = 16 female).

One day prior to surgery, animals were given meloxicam (1.5 mg/kg, 1.5 mg/mL) either via 

oral suspension or subcutaneous injection or a carprofen medigel cup as a preventative 

analgesic. On the day of surgery, animals were administered meloxicam or carprofen 

and dexamethasone (0.35 mg/kg, 0.5 mg/mL) subcutaneously to prevent edema. Subjects 

were placed in a small induction chamber in which isoflurane (5%) was continuously 

administered in O2 (2 L/min). After the animal was sedated, the fur on the animal’s head 

was shaved. The animal was then transferred to a warming pad on a stereotaxic device 

(Kopf) and secured in place with ear bars and a bite bar. A nose cone delivered a steady 

flow of isoflurane (1.5-2.5%) and oxygen at a flow rate of 2 L/min. Once a surgical plane of 

anesthesia was achieved (as evidenced by slow and steady respiration, and the absence of a 

toe-pinch response) ophthalmic ointment was applied to the eyes, and the surgical area was 

treated with alternating applications of betadine and alcohol. A midline incision was made, 

and the skin and fascia were retracted. The skull was cleaned and dried with H2O2 and a 

craniotomy was made over the region of interest using a 5mm drill bit. A glass injection 

pipette was filled with mineral oil and attached to a programmable injector (Nanoject III, 

Drummond). The virus was drawn up into the tip and positioned over the injection site. A 

durotomy was performed, and the pipette was inserted to the targeted depth. The virus was 

injected at a rate of 2 nL/sec and allowed to diffuse for 5-15 mins prior to pipette retraction. 

The craniotomy was covered with KwikSil and the skin was sutured along the incision. 

Immediately after the surgery, subjects were given a subcutaneous injection of Normosol 

(1-2 mL) and allowed to recover in their home cage. An additional dose of meloxicam or 

carprofen and dexamethasone were administered 24 hours after surgery, and subjects were 

closely monitored after the surgical procedure.
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Histology:

Subjects remained in their home cages for 3-5 weeks after injections to allow for protein 

expression, after which animals were perfused for histology. Animals were anesthetized with 

an intraperitoneal injection of ketamine (150 mg/kg, 25 mg/mL) and xylazine (6 mg/kg, 

1 mg/mL) or sodium pentobarbital (60-100 mg/kg, 50 mg/mL) in saline. After the subject 

was determined to be unresponsive to a toe pinch, the chest cavity was opened and the 

subject was perfused transcardially using 1x phosphate buffered saline (PBS) followed by 

4% paraformaldehyde.

Tissue processing and confocal microscopy:

Extracted brains were post-fixed in 4% paraformaldehyde at 4°C for at least one day, then 

embedded in 6% agar and sliced on a vibratome (Leica VT1000 S) at 70 μm thickness. 

Slices were mounted on gelatin subbed slides and dried overnight. Mounted sections were 

counterstained with NeuroTrace 435/455 Fluorescent Nissl (Invitrogen N21479). The slices 

were rehydrated with 1x PBS for at least 30 minutes. After a 5-minute wash in 1x PBS, the 

slices were incubated in 1x PBS with 0.1% Triton X for 20 minutes. The slides were washed 

three times for 5 minutes each in 1x PBS, then incubated in a 1:100 NeuroTrace dilution 

overnight at 4°C. After incubation, the slices were washed for 10 minutes in 1x PBS with 

0.1% triton, then twice in 1x PBS for 5 minutes each. The slides were then cover-slipped 

using ProLong Diamond Antifade Mountant and imaged using a confocal microscope (Zeiss 

LSM 980). Post-processing, including stitching and z-stack processing, were completed 

using Zeiss ZEN and FIJI software (Schindelin et al., 2012).

Tissue clearing and lightsheet microscopy:

For lightsheet imaging experiments, fixed brains were extracted, packaged in 1x PBS with 

0.02% sodium azide and sent to LifeCanvas Technologies in Cambridge, MA. Brains were 

cleared using SHIELD (Park et al., 2019) and delipified using Clear+ reagents (LifeCanvas 

Technologies). The mCherry signal was enhanced with eFLASH (Yun et al., 2019) in a 

SmartBatch+ device (LifeCanvas Technologies) using a primary rabbit anti-RFP antibody 

(7.5 μg, Rockland, 600-401-379, RRID: AB_11182807) and a secondary donkey anti-rabbit 

IgG (H+L) antibody (15 μg, biotium, 20178, RRID: AB_10854111). Brains were then 

incubated overnight at 37°C in 50% EasyIndex (Refractive Index = 1.52, LifeCanvas 

Technologies) followed by 24 hour incubation in 100% EasyIndex. Whole brains were 

imaged using a SmartSPIM axially-swept lightsheet microscope at 3.6X magnification. 

Regions of particular interest were imaged again at 15X magnification. Clearing and image 

acquisition was performed by LifeCanvas Technologies.

Cell body quantification in OFC:

Brain sections separated by 250-300μm along the rostral to caudal dimension were imaged. 

Each image was matched to a section in the brain atlas (Radtke-Schuller et al., 2016). The 

emergence of the claustrum distinguished anterior OFC (plates 8-11 in Radtke-Schuller et 

al., 2016) from posterior OFC (plates 12-16 in Radtke-Schuller et al., 2016), consistent with 

previous reports in rodents (Barreiros et al., 2021a; Barreiros et al., 2021b). Manual counts 

of labeled cells were performed for each image, and cell counts were independently verified 
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by another lab member. To determine whether the proportion of labeled cells differed 

between hemispheres, cell counts in each hemisphere were normalized to the total number 

of labeled cells across both hemispheres. To determine whether the proportion of labeled 

cells differed among different OFC subregions, labeled cells in each ipsilateral subregion 

were normalized to the total number of labeled cells within the ipsilateral hemisphere. For 

complete details about cell counts and corresponding plate numbers in the gerbil brain atlas, 

see Table 2.

Fiber analysis in the auditory cortex:

Intensity analysis was performed using FIJI. For each image, color channels were split 

into red, green, and blue, and the appropriate channel was converted to grayscale (red 

for turboRFP, green for EGFP). Excess background was removed using the Subtract 

Background and Subtract functions. The regions of interest were identified by comparing the 

Nissl stain and other gross morphological features to the gerbil brain atlas (Radtke-Schuller 

et al., 2016) and marked on the image. Intensity values were calculated using the Plot Profile 

tool along linear transects, drawn from the cortical surface through the cortical layers at 

roughly equal distances through the region of interest. Custom MATLAB code was written 

to bin intensity values (200 bins per sample) as a function of transect length. Intensity values 

were then normalized to the maximum intensity value for each image. For each subject, one 

image was taken in the anterior portion of the auditory cortex (plates 28-30 in the gerbil 

brain atlas) and one image from the posterior portion (plates 31-33). To compare between 

anterior and posterior sections, each set of anterior and posterior images was processed so 

that the intensity histogram range, median, and standard deviation between images were as 

similar as possible.

Axon collateral analysis:

Lightsheet images were reconstructed into a 3-D model in Imaris Viewer. Using anatomical 

borders and landmarks, we identified brain regions that exhibited labeled fibers in both 

subjects. The relative density of labeling within each brain region was manually categorized 

as either weak (+), moderate (++), or strong (+++) (Table 7). For representative examples of 

each density category, see Fig. S1.

Statistical analysis:

For analysis of cell bodies in the OFC, generalized linear mixed models (GLMs) and 

paired t-tests were performed in JMP Pro 15. Subject and subregion were included as 

nested categorical random effects (subregion within subject). To quantify the intensity of 

fiber labeling throughout the auditory cortex, we used R to construct a GLM using the 

‘glmmTMB’ (Brooks et al., 2017), DHARMa (Hartig, 2022), car (Fox & Weisberg, 2018), 

and emmeans (Lenth, 2023) packages. Subject, region (AuD/Au1/AuV), layer (1-6), and 

position (anterior/posterior) were included as categorical random effects and quadruple 

nested (position within layer within region within subject). Normal distribution of residuals 

was tested after running the GLM and an analysis of variance (ANOVA) was used to analyze 

the statistical significance of the GLM. Post-hoc pairwise comparisons were conducted after 

transforming data back to the original scale.
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We considered results statistically significant when p < 0.05. All p values were adjusted for 

multiple comparisons using a Bonferroni correction and were corrected for any violations of 

sphericity using the Greenhouse-Geisser method.

Results

Retrograde tracing from core auditory cortex

A previous study reported the presence of retrogradely labeled cell bodies in the OFC 

after small injections of fluorescent dextran tracers were delivered to gerbil Au1, but the 

distribution pattern of labeled soma within the OFC was not reported (Budinger et al., 

2008). Rodent OFC is classically divided into distinct subregions along its mediolateral 

axis, including the dorsolateral/agranular insular (DLO/AI), lateral (LO), ventral (VO), and 

medial (MO) areas (Krettek & Price, 1977; Üngür & Price, 2000; Price, 2006; Ray & Price, 

1992; Rempel-Clower, 2007). These subdivisions exhibit different patterns of anatomical 

connectivity, and are thought to mediate distinct behavioral and cognitive functions (for 

review see Barreiros et al., 2021a; Bradfield & Hart, 2020; Izquierdo, 2017; Rempel-Clower, 

2007). These observations raise the question of whether the OFC neurons that innervate the 

auditory cortex are evenly distributed across the mediolateral axis, or primarily originate in 

one or more discrete subregions.

To answer this question, we injected AAVrg-hSyn-EGFP, a viral vector in a serotype that 

allows for robust retrograde access to long-range projection neurons (Tervo et al., 2016), into 

left core auditory cortex. Correctly placed injections (N = 8; see Table 1) were centered in 

Au1 and/or the anterior auditory field (AAF) and spanned multiple cortical layers (Figure 

1a, b). In two cases, the injection site exhibited minimal upward spread, just beyond the 

border with secondary somatosensory cortex (S2) and AuD; in the remaining cases the 

injections were contained entirely within the boundaries of Au1/AAF.

To first confirm that our retrograde tracing approach worked as expected, we took advantage 

of the known interhemispheric connection between auditory cortices (Budinger et al., 2000a; 

Diamond et al., 1968; Imig & Reale, 1980), and examined the contralateral auditory cortex 

for the presence of labeled cell bodies. As expected, we observed many brightly labeled 

neurons throughout the contralateral auditory cortex (Figure 1c).

In the OFC, we observed clearly labeled cell bodies scattered throughout the region (Figure 

1d). A significantly higher proportion of the labeled neuron population was in the ipsilateral 

hemisphere compared to the contralateral hemisphere (t7 = −4.80, p = 0.002) (Figure 1e). 

Given that the proportion of contralateral labeled neurons was significantly smaller, we 

focused our subsequent analyses on the ipsilateral hemisphere only. Within the ipsilateral 

hemisphere, cell body labeling was unevenly distributed across OFC subregions (GLM, 

F3,28 = 45.31, p < 0.0001; Figure 1f). The highest proportion of labeled cell bodies was 

consistently observed in the VO, followed by MO. Very little labeling was evident in LO or 

DLO/AI. A complete statistical breakdown of these results is provided in Table 3.
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Retrograde tracing from secondary auditory cortices

Non-sensory processes, like attention and behavioral context, modulate the activity of 

higher-order auditory regions, and the magnitude of these modulations are often larger 

than those observed in Au1 (Atiani et al., 2014; Jäncke et al., 1999; Niwa et al., 2015; 

O’Sullivan et al., 2019; Yin et al., 2020). This finding suggests that non-sensory brain 

regions may differentially connect to primary and secondary auditory cortices. We therefore 

asked whether OFC neurons project to two secondary auditory cortical regions in the gerbil

—the dorsal (AuD) and ventral (AuV) auditory cortices.

First, we injected a retrograde tracer (AAVrg-hSyn-EGFP) into the left AuD. Well-placed 

injections (N = 3) spanned most or all cortical layers and exhibited little to no spread 

beyond the boundaries of AuD (Figure 2a, b). As expected, we identified cell bodies in the 

contralateral AuD, confirming the efficacy of retrograde expression (Figure 2c) (Budinger et 

al., 2000a). An examination of OFC revealed brightly labeled cell bodies densely clustered 

in the ventral portion of the region (Figure 2d). Similar to Au1-projecting neurons, the vast 

majority of AuD-projecting neurons were located in the ipsilateral hemisphere (t2 = 7.81, p 

= 0.016; Figure 2e).

We then quantified apparent differences in cell body labeling across the mediolateral axis of 

the ipsilateral OFC. Labeled neurons were unequally distributed across OFC subregions 

(GLM, F3,8 = 655.64, p < 0.0001), and the pattern was similar to that observed for 

Au1/AAF-projecting neurons: VO contained the highest proportion of labeled cell bodies, 

followed by MO, LO, and DLO/AI (Figure 2f). A complete statistical breakdown of these 

results is provided in Table 4.

We also injected retrograde tracers (AAVrg-hSyn-EGFP or AAVrg-CAG-tdTomato) into the 

AuV. Injections (N = 4) were centered in AuV, with one injection exhibiting minor spread 

upwards into AuD (Figure 3a, b). We identified cell bodies in the contralateral AuV to 

confirm the efficacy of the retrograde virus (Figure 3c) (Budinger et al., 2000a). As in Au1 

and AuD, cell bodies were present in the OFC, with a significantly higher proportion of 

cells on the ipsilateral side (t2 = 3.29, p = 0.047; Figure 3d, e). Across the mediolateral axis, 

we once again observed unequal distribution of labeled neurons (GLM, F3,12 = 62.35, p < 

0.0001; Figure 3f). VO contained the highest proportion of labeled cells, followed by MO, 

LO, and DLO. A complete statistical breakdown of these results is provided in Table 5.

Qualitatively, we observed that more OFC cell bodies were present after retrograde tracing 

from secondary auditory cortices than from Au1 (e.g., compare Figures 1d, 2d, and 3d). 

These results were not quantified due to uneven sample sizes across groups and variability in 

injection spread across cortical layers.

Retrograde tracing from the auditory thalamus and midbrain

Subcortical auditory regions, including the medial geniculate nucleus (MGN) and inferior 

colliculus (IC), also play important roles in sound processing, cognition, and multi-modal 

integration (Bartlett & Wang, 2007; Brainard & Knudsen, 1993; Ehret & Merzenich, 1988; 

Wang et al., 2008). Both of these structures exhibit context-dependent modulations of 

sound-evoked responses (Franceschi & Barkat, 2021; Gilad et al., 2020; Gruters & Groh, 
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2012; Mihai et al., 2021; Ryan et al., 1984; Ryan & Miller, 1977; Slee & David, 2015; 

von Kriegstein et al., 2008), and the activation of prefrontal cortex shapes neural activity 

in the MGN (Barry et al., 2017). These findings suggest that direct inputs from frontal 

cortical areas may influence subcortical auditory processing. In line with this idea, one 

previous study reported that neurons in the ventral and lateral OFC innervate the central 

nucleus of the rat IC (Olthof et al., 2019). These observations led us to ask whether a similar 

connection exists between the OFC and the gerbil IC and/or MGN.

Towards that end, we injected a retrograde tracer (AAVrg-hSyn-eGFP) into the left MGN 

of three subjects. Viral expression was primarily localized to the ventral subdivision of the 

MGN (MGV), which serves as the primary lemniscal input to Au1 (Budinger et al., 2000b), 

but exhibited some spread into the nearby non-lemniscal dorsal (MGD) subdivision and 

the medial zone of the medial geniculate (MZMG) (Figure 4a, b). To confirm retrograde 

expression, we documented labeled cell bodies in the IC, which provides the majority of 

ascending input to the MGN (Cant & Benson, 2007; Hackett, 2011; Kudo & Niimi, 1978; 

Ledoux et al., 1987; Morest, 1965) (Figure 4c).

Two of the three MGN injections resulted in sparse cell body labeling in the OFC, primarily 

in the ipsilateral DLO/AI (Figure 4d). The remaining injection did not result in any OFC 

cell body labeling. Notably, this injection was entirely confined to the MGV, with no 

spread into non-lemniscal areas (see purple striped injection pattern in Figure 4a). These 

data suggest that MGN-projecting neurons in the OFC primarily terminate in higher-order 

auditory thalamic subdivisions. Because these injections resulted in relatively few labeled 

cell bodies in the OFC, we did not quantify these findings.

To investigate whether OFC projects to 1C, we injected four animals with AAVrg-hSyn-

eGFP into the left 1C. All injections were centered in the central nucleus of the 1C (CIC), 

which serves as the primary ascending input to the MGV (Hackett, 2011; Morest, 1965), 

with moderate spread into the overlying external and dorsal IC cortices (Figure 5a,b). As 

expected from decades of previous work characterizing a prominent corticofugal pathway 

from Au1 to IC (Bajo et al., 2010; Bajo & Moore, 2005; Budinger et al., 2000b; Cooper 

& Young, 1976; Games & Winer, 1988; Suga et al., 2000; Williamson & Polley, 2019) we 

observed distinct cell body labeling in layer 5 of Au1 (Figure 5c). Despite this confirmation 

of successful retrograde cortical expression, and in contrast to an earlier report in rat 

(Olthof et al., 2019), no cell bodies were observed in any of the OFC subregions in either 

hemisphere (Figure 5d).

Anterograde tracing from OFC

Context-dependent changes in sound-evoked activity exhibit a distinct laminar profile in 

the auditory cortex (Atencio & Schreiner, 2010; Franceschi & Barkat, 2021; Francis et 

al., 2018; O’Connell et al., 2014; Sugimoto et al., 1997). Determining the pattern of OFC 

innervation across auditory cortical layers could therefore provide insight into the potential 

functional role of the OFC in guiding sound-driven behavior. We injected an anterograde 

tracer (AAV1-hSyn-TurboRFP) into the left OFC of four animals to confirm our retrograde 

tracing results and to characterize the translaminar pattern of OFC axon distribution in the 

gerbil auditory cortex. Well-placed injections were centered within the boundaries of OFC 
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(generally LO and VO), with minimal upward spread into the prelimbic and motor cortices 

and/or downward spread into the piriform cortex (Figure 6a, b).

As shown in Figure 6c, brightly labeled fibers were observed in both primary (Au1) and 

secondary (AuD and AuV) auditory cortices, and the labeling intensity differed significantly 

across these regions (GLM/ANOVA, X2(2) = 22.87, p < 0.0001) (Figure 6d, e). Post-hoc 

tests revealed that overall label intensity was similar in AuD and AuV (t103 = 0.517, p = 

0.8632), and significantly stronger in both regions compared to Au1 (AuD: t103 = 3.514, 

p = 0.0019; AuV: t103 = 3.206, p = 0.005). These findings indicate that OFC neurons 

preferentially target higher-order auditory cortical areas over Au1, consistent with our 

qualitative retrograde tracing observations. Fiber labeling intensity significantly differed 

overall across cortical layers (GLM/ANOVA, χ2(5) = 119.0933, p < 0.0001; Figure 6d, e). 

Post-hoc tests showed that in contrast to the relatively sparse fibers observed in superficial 

and granular layers, the infragranular layers (5 and 6) exhibited robust labeling. A full 

statistical breakdown of these results is provided in Table 6. There was no significant 

difference in terminal intensity along the anterior-posterior axis (GLM/ANOVA, χ2(1) = 

0.3890, p = 0.5328; not shown).

Our retrograde tracing experiments revealed a sparse connection between the OFC and 

MGN (Figure 4) and no connection between OFC and IC (Figure 5). To determine whether 

these observations are genuine, or whether they instead reflect a limited ability of the 

AAV-retro serotype to access corticothalamic and corticocollicular projections (Tervo et 

al. 2016), we asked whether anterogradely labeled axon fibers were present in the MGN 

and/or IC of subjects injected with AAV1-hSyn-TurboRFP into the OFC. In line with our 

retrograde findings, three injections resulted in sparse labeling throughout the MGN (Figure 

7a), with the fourth animal excluded as images were not taken of subcortical auditory areas 

in this subject. These findings confirm that OFC does in fact innervate MGN, albeit weakly. 

No clear labeling was observed in the IC (Figure 7b).

Auditory cortical-projecting neurons in the OFC send axon collateral to other brain regions

Individual frontal cortical neurons often project to multiple downstream targets, consistent 

with their role in coordinating brain-wide activity (Gao et al., 2022). To gain insight into 

how the OFC might specifically orchestrate sound-guided behavior, we asked whether 

Au1-projecting neurons in the OFC also send axon collaterals to other brain regions. To 

do so, we injected left Au1 with a virus to drive retrograde expression of Cre-recombinase 

(AAVrg-hSyn-Cre) and injected left OFC with a virus to drive Cre-dependent expression of 

mCherry (AAV1-hSyn-DIO-mCherry) in two animals (see Table 1). This intersectional viral 

strategy selectively labels just the OFC neurons that project to Au1, along with their axon 

collaterals. We then used tissue clearing and lightsheet microscopy to look for the presence 

of mCherry fluorescence throughout the intact gerbil brain. In both injected subjects, we 

observed a dense cluster of brightly labeled cell bodies localized to the ipsilateral OFC 

(primarily VO and LO; Figure 8a, b), and three distinct axon tracts emanating from these 

neurons (Figure 8c-f).

One tract extended dorsally, through the ipsilateral caudate putamen (Figure 9a, b) and 

through the external capsule to various cortical regions, including the cingulate cortex 
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(Figure 9a, c), somatosensory cortex (Figure 9a, d), auditory cortex (Figure 9e, f), and visual 

cortex (Figure 9g, h). Within these regions, collaterals targeted multiple cortical layers, 

and higher-magnification imaging revealed en passant boutons in all regions and terminal 

boutons in auditory cortex and visual cortex, indicating probable synapses. Additional 

areas of notable fiber labeling stemming from this axon tract include prelimbic cortex, 

retrosplenial cortex, and parietal cortex, although we did not confirm the presence of 

boutons in these regions.

A second axon tract traveled ventrally to the ipsilateral parahippocampal region (Figure 

8c-f). Fibers were observed in the ectorhinal, perirhinal, and entorhinal cortices (Figure 9e, 

g, i, j), and particularly dense labeling was observed in the subiculum (Figure 9i, k). These 

fibers exhibited en passant and terminal boutons, suggesting the presence of functional 

synapses.

A final axon tract crossed the midline and then branched extensively, targeting the 

contralateral OFC, cingulate cortex, caudate putamen, auditory cortex, and parahippocampal 

region (Figure 8c, d). A complete list of regions where we observed labeled fibers, along 

with a qualitative estimate of the intensity of labeling is provided in Table 7.

Discussion

Using anterograde and retrograde AAV tracers, we characterized the descending projections 

from the OFC to cortical and subcortical auditory regions in an established model organism 

for auditory research, the Mongolian gerbil. We found that the OFC exhibits little to no 

connectivity with the MGN and IC, but robustly innervates auditory cortices. The pattern 

of connectivity varied across OFC’s mediolateral axis, such that nearly all auditory cortical-

projecting neurons were observed in the ventral and medial subdivisions. These neurons 

preferentially targeted infragranular layers, with the densest innervation in secondary 

auditory cortices. An intersectional viral strategy, tissue clearing, and lightsheet microscopy 

further revealed that the OFC neurons that project to the auditory cortex also send wide-

ranging axon collaterals to distant targets, including many non-sensory areas. Our results 

provide an anatomical basis for understanding the role of the OFC in shaping auditory 

function and sound-guided behavior.

We observed a very sparse connection between the dorsolateral OFC and MGN, and no 

connectivity between OFC and IC. While our findings are broadly consistent with prior 

rodent work (Allen Mouse Brain Connectivity Atlas, experiments 158435116, 112423392; 

Hoover & Vertes, 2011), they stand in contrast to a recent study that reported the presence 

of labeled cell bodies in the OFC after retrograde tracers were injected into the IC (Olthof 

et al., 2019). One possible explanation for this discrepancy is methodological: Olthof and 

colleagues used retrograde beads to label connections, whereas we relied on AAV-mediated 

tract tracing. AAV efficiency can vary considerably across species and cell types (for 

reviews see Haery et al., 2019; Saleeba et al., 2019) and the retrograde virus we used 

has limited access to some corticocollicular pathways (Tervo et al., 2016). We therefore 

confirmed the absence of an OFC-IC connection via anterograde tracing with an AAV1 

serotype. AAV1 is commonly used for anterograde targeting (Saleeba et al., 2019) including 
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in the gerbil (Kotak et al., 2017; Masri et al., 2023; Mowery et al., 2017), and successfully 

labels projections from the OFC to other midbrain regions (Babalian et al., 2019; Benavidez 

et al., 2021). We therefore believe that the discrepancy between our results and those of 

Olthof et al. is likely explained by species-specific anatomical differences.

In Au1, we found OFC axons in all cortical layers, suggesting that OFC is well-positioned to 

directly shape sensory-evoked responses throughout the cortical column. Indeed, optogenetic 

stimulation of OFC axon terminals in mice activates multiple Au1 laminae and alters 

L2/3 receptive fields (Winkowski et al., 2018). Our data suggest that OFC’s influence on 

Au1 sound processing may be largely mediated via infragranular activation, as OFC fiber 

innervation is strongest in L5/6. Neurons in L5/6 provide extensive feedback to subcortical 

auditory structures (for review see Winer, 2006), and make local connections within Au1 

(Guo et al., 2017; Onodera & Kato, 2022; Prieto & Winer, 1999; Williamson & Polley, 

2019). These pathways shape spectrotemporal tuning and response gain in the inferior 

colliculus, medial geniculate body, and auditory cortex (Antunes & Malmierca, 2021; Gao & 

Suga, 1998; Ma & Suga, 2001; Malmierca et al., 2015; Saldeitis et al., 2021; Zhang & Yan, 

2008), and directly impact behavioral performance on auditory detection and discrimination 

tasks (Guo et al., 2017; Homma et al., 2017). In addition, layer 6 corticothalamic circuits 

have been hypothesized to gate the transmission of behaviorally-relevant information from 

the periphery to the cortex (He, 1997; Sherman & Koch, 1986; Yu et al., 2004; Zhang 

et al., 1997). Taken together, these findings suggest that OFC may mediate rapid changes 

in stimulus salience by activating both intracortical and subcortical feedback projections 

originating in the deep layers of auditory cortex. Future experiments examining OFC’s 

impact on auditory cortical infragranular activity in vivo are needed, as prior reports have 

exclusively monitored and/or manipulated OFC axon terminals in L2/3 (Liu et al., 2021; 

Winkowski et al., 2018).

Sound-evoked representations are transformed as they traverse the auditory cortical 

hierarchy, gradually incorporating information about stimulus meaning or emotional valence 

as the signals move from primary to secondary and tertiary regions (Atiani et al., 2014; 

Elgueda et al., 2019; Grosso et al., 2015; Takahashi et al., 2010, 2011; Yin et al., 2020). 

Our finding that OFC sends a larger projection to secondary auditory cortical regions than 

to Au1 suggests one anatomical basis for these observations. Higher-order auditory regions 

also exhibit stimulus-evoked activity that persists for hundreds of milliseconds after sound 

offset (Atiani et al., 2014; Elgueda et al., 2019) and long temporal integration windows 

(Bendor & Wang, 2007; Boemio et al., 2005; Scott et al., 2011), both of which offer 

an increased opportunity for signals encoding behavioral outcomes to be combined with 

sensory input. These findings, coupled with VO’s proposed role in signaling reward history, 

prediction error, and value (Riceberg & Shapiro, 2017; Steiner & Redish, 2012; Stolyarova 

& Izquierdo, 2017; Young & Shapiro, 2011), suggest that OFC’s robust projection to 

secondary auditory cortices may serve to rapidly update sensory representations during 

sound-guided behavior. Recent work suggests that OFC inputs to primary sensory cortical 

regions may also serve a similar function (Banerjee et al., 2020; Liu et al., 2020; Liu et al., 

2021).
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We found that auditory cortical-projecting OFC neurons also send wide-ranging axon 

collaterals to various brain regions involved in learning, memory, and decision making. 

One downstream target that receives substantial collateral innervation is a striatal area 

strongly implicated in auditory behavior—the posterior portion of the caudate putamen 

(CPu). The posterior CPu receives direct projections from Au1 (Budinger et al., 2000a, 

2008; Roger & Arnault, 1989), and these inputs support associative learning by integrating 

information about sound identity, behavioral choice, and expectation of reward (Guo et al., 

2018, 2019; Xiong et al., 2015; Znamenskiy & Zador, 2013). These findings have led some 

to hypothesize that many of the response properties exhibited by the posterior CPu are 

inherited directly from Au1 (Guo et al., 2019). Our results suggest an alternative, though not 

mutually exclusive, model in which Au1 and posterior CPu exhibit similar responses in part 

because they receive input from the same OFC neurons. It is also interesting to note that 

within the CPu, the pattern of Au1 innervation matches the pattern of innervation from axon 

collaterals branching from the OFC to Au1 projection (Budinger et al., 2000b; Roger & 

Arnault, 1989). Taken together, these results suggest that Au1 and OFC may work in tandem 

to generate stable striatal representations of learned stimulus values during sound-guided 

behavior.

We also observed a significant collateral projection to the parahippocampal region, which 

is comprised of entorhinal, ectorhinal, and perirhinal cortices, as well as the subiculum. 

These structures are critical for working memory (Nemanic et al., 2004; Young et al., 1997). 

Though the anatomical connection between the OFC and the parahippocampal region is well 

documented (Burwell & Amaral, 1998; Hoover & Vertes, 2011; Kondo & Witter, 2014; 

Witter et al., 2017), our understanding of the function of this pathway is limited. OFC, 

sensory cortices, and the parahippocampal region all display stimulus-selective activity 

when sensory stimuli are held in working memory (Gottlieb et al., 1989; Ramus & 

Eichenbaum, 2000; Young et al., 1997). Our observation that the same OFC neurons that 

project to the auditory cortex also project to the parahippocampal region suggests that 

these neurons are particularly well-positioned to coordinate activity between these two areas 

during working memory. Future experiments employing targeted manipulations of OFC 

axon terminals will be needed to reveal whether these pathways do indeed form part of a 

sensory mnemonic circuit.

Collectively, our data reveal a long-range projection from the OFC that is particularly 

well-positioned to rapidly update stimulus representations in the gerbil auditory cortex 

and orchestrate brain-wide changes during auditory learning. These findings advance 

our understanding of the neural circuits that support auditory cognition and perceptual 

flexibility.
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Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

AAF Anterior auditory field

AuD Dorsal auditory cortex

AuV Ventral auditory cortex

Au1 Primary auditory cortex

CIC Central nucleus of the inferior colliculus

Cg Cingulate cortex

CPu Caudate putamen (striatum)

DCIC Dorsal cortex of the inferior colliculus

DLO/AI Dorsolateral orbitofrontal cortex/agranular insular cortex

DMIC Dorsomedial nucleus of the inferior colliculus

ECIC External cortex of the inferior colliculus

Ect Ectorhinal cortex

Ent Entorhinal cortex

IC Inferior colliculus

LO Lateral orbitofrontal cortex

PRh Perirhinal cortex

MGN Medial geniculate nucleus

MGD Medial geniculate nucleus, dorsal part

MGM Medial geniculate nucleus, medial part

MGV Medial geniculate nucleus, ventral part

MZMG Marginal zone of the medial geniculate

MO Medial orbitofrontal cortex

Sub Subiculum translational area

S1 Primary somatosensory cortex

S2 Secondary somatosensory cortex
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OFC Orbitofrontal cortex

VO Ventral orbitofrontal cortex

V1 Primary visual cortex

V2 Secondary visual cortex
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Orbitofrontal cortex may modulate changes in auditory processing. Using virally-

mediated tracers, we found that projections from the orbitofrontal cortex to the 

auditory system primarily originate in the ventromedial subdivisions, preferentially target 

secondary auditory cortices and infragranular layers, and send axon collaterals to brain 

regions implicated in learning and memory.
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Figure 1. Retrograde tracer into Au1 reveals distinct profile of cell body labeling across the OFC 
mediolateral axis.
a. Schematic of all injection sites in Au1 (N = 8). Plate references from anterior to posterior: 

29, 30, 32 (Radtke-Schuller et al., 2016). b. Injection site of representative subject. Scale bar 

= 1000 μm. c. In the same subject as B, expected labeling observed in the contralateral Au1. 

Scale bar = 500 μm, inset =100 μm. d. Representative OFC slice in the same subject as B. 

High magnification images depict cell bodies in the ipsilateral (left) and contralateral (right) 

hemispheres. Scale bar = 500 μm, high-mag = 100 μm. e. Proportion of total labeled cells 

in each hemisphere. Bars represent means ± standard error; lines connect data points from 

individual animals. f. Proportion of cell bodies within the ipsilateral hemisphere localized to 

each OFC subregion. Bars represent means ± standard error. **p<0.01, ***p<0.001.
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Figure 2. Retrograde tracer into AuD labels cell bodies in OFC.
a. Schematic of all injection sites in left AuD (N = 3). Plate references from anterior to 

posterior: 33, 34 (Radtke-Schuller et al., 2016). b. Injection site of representative subject. 

Scale bar = 1000 μm. c. In the same subject as in B, expected labeling observed in 

contralateral AuD. Scale bar = 500 μm, inset =100 μm. d. Labeled OFC cell bodies in the 

same subject as B. High magnification images depict cell bodies in the ipsilateral (left) and 

contralateral (right) OFC. Scale bar = 500 μm, high-mag = 100 μm. e. Proportion of total 

labeled cells in each hemisphere. Bars represent means ± standard error; lines connect data 

points from individual animals. f. Proportion of cell bodies within the ipsilateral hemisphere 

localized to each OFC subregion. Bars represent means ± standard error. *p<0.05
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Figure 3. Retrograde tracer into AuV labels cell bodies in OFC.
a. Schematic of all injection sites in left AuV (N = 4). Plate references from anterior 

to posterior: 34, 35, 36 (Radtke-Schuller et al., 2016). b. Injection site of representative 

subject. Scale bar = 1000 μm. c. In the same subject as in B, expected labeling observed 

in contralateral AuV. Scale bar = 500 μm, inset =100 μm. d. Labeled OFC cell bodies in 

the same subject as B. High magnification images depict cell bodies in the ipsilateral (left) 

and contralateral (right) OFC. Scale bar = 500 μm, insets = 100 μm. e. Proportion of total 

labeled cells in each hemisphere. Bars represent means ± standard error; lines connect data 

points from individual animals. f. Proportion of cell bodies within the ipsilateral hemisphere 

localized to each OFC subregion. Bars represent means ± standard error. *p<0.05
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Figure 4. Retrograde tracer into MGN sparsely labels cell bodies in OFC.
a. Schematic of all injection sites in MGN (N = 3). Plate references from anterior to 

posterior: 34, 35 (Radtke-Schuller et al., 2016). Striped pattern denotes an injection that 

resulted in no observed cell body labeling in the OFC. b. Injection site of representative 

subject. Scale bar = 500 μm. c. In the same subject as B, expected labeling observed in IC. 

Scale bar = 500 μm. d. Representative OFC slice in the same subject as B. Scale bar = 500 

μm, inset =100 μm.
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Figure 5. Retrograde tracer into IC does not label cell bodies in OFC.
a. Schematic of all injection sites in IC (N = 3). Plate reference: 42 (Radtke-Schuller et al., 

2016) b. Injection site of representative subject. Scale bar = 500 μm. c. Expected labeling 

observed in Au1. Scale bar = 500 μm. d. Representative OFC slice in the same subject as B 

showing no cell bodies. Scale bar = 500 μm.
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Figure 6. Anterograde tracer into OFC reveals region- and layer-specific innervation pattern in 
auditory cortex.
a. Schematic of all injection sites in OFC (N = 4). Plate references from anterior to 

posterior: 11, 12, 13 (Radtke-Schuller et al., 2016). b. Injection site of representative subject. 

Scale bar = 500 μm. c. Labeled terminals in the auditory cortex. Scale bar = 500 μm. 

d. From the same subject as in C, close-up images of terminals through AuD (top), Au1 

(middle), and AuV (bottom). Scale bars = 250 μm. e. Normalized label intensity (arbitrary 

value, AV) for each subregion as a function of relative distance from the cortical surface. 

Lines represent means across animals; shading represents standard error.
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Figure 7. Anterograde tracer into OFC reveals sparse fiber labeling in MGN.
a. Sparse labeling observed in the MGN in subjects with anterograde tracers injected into the 

OFC. Scale bar = 500 μm, inset = 100 μm. b. No labeling was observed in the IC. Scale bar 

= 500 μm.
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Figure 8. OFC neurons that project to auditory cortex send axon collaterals to other brain 
regions.
a-b. Coronal schematic (a) and section (b) depicting location of identified cell bodies in a 

representative subject. Section is a 175 μm thick coronal z-stack. Scale bar = 500 μm. c-d. 
Horizontal schematic (c) and view (d) depicting notable axon tracts emanating from OFC 

neurons in a representative subject. Scale bar = 1000 μm. e-f. Sagittal view (e) and section 

(f) depicting axon tracts in representative subject. Scale bar = 1000 μm.
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Figure 9. OFC neurons that project to auditory cortex exhibit synaptic boutons in many non-
auditory brain regions.
a-d. Low magnification (a) and high magnification (b-d) images depicting labeled axon 

fibers in the anterior caudate putamen (b), cingulate cortex (c) and the somatosensory 

cortex (d). In b-d, scale bar = 100 μm. Here, and in all following panels, yellow arrows 

highlight likely synaptic boutons. e. Low magnification image depicting labeled axon fibers 

in the anterior auditory cortex, parahippocampal region, and caudate putamen. f. High 

magnification images depicting labeled axon fibers in the auditory cortex. Scale bars = 

100 μm (left), and 50 μm (right). g. Low magnification image depicting labeled axon 

fibers in visual cortex, posterior auditory cortex, and the parahippocampal region. h. High 

magnification images depicting labeled axon fibers in the visual cortex. Scale bars = 100 μm 

(left), and 50 μm (right). I. Low magnification image depicting labeled axon fibers in the 

subiculum translational area. j-k. High magnification images depicting labeled axons fibers 

in the perirhinal and entorhinal cortices (j) and the subiculum (k). Scale bars = 50 μm. In 

panels a, e, g, and i, images are 175 μm thick coronal z-stacks with 1000 μm scale bars.
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Table 1.

Subjects and injection coordinates. Pipette angle = 0° unless otherwise noted. * denotes representative subject 

used for figure.

Subject Sex Age
(days)

Injection
site

Virus Coordinates (mm)
ML, from lambda, 
unless
otherwise noted
RC, from lambda
DV, from pial 
surface

Volume
(nL)

Titer
(GC/m
L)

ID_269953 M 58 OFC AAV1/pENN.AAV.hSyn.TurboRFP.WPRE.RBG 
(Addgene 105552)

−1.5 ML, 8.75 RC, 
−3.5 DV

90 2.6 x 
1014

SUBJ-
ID-122

M 365 OFC AAV1/pENN.AAV.hSyn.TurboRFP.WPRE.RBG 
(Addgene 105552)

−1.5 ML, 8.94 RC, 
−3.2 DV

150 1.5 x 
1013

SUBJ-
ID-123*

M 365 OFC AAV1/pENN.AAV.hSyn.TurboRFP.WPRE.RBG 
(Addgene 105552)

−1.5 ML, 8.95 RC, 
−3.2 DV

100 1.5 x 
1013

SUBJ-
ID-294*

F 230 OFC AAV1/pENN.AAV.hSyn.TurboRFP.WPRE.RBG 
(Addgene 105552)

−1.2 ML, 9.45 RC, 
−3.2 DV

80 1.5 x 
1013

SUBJ-
ID-353*

F 271 AuD AAVrg/pAAV-hSyn-EGFP (Addgene 50465) −6.4 ML, 1.05 RC, 
−0.9 DV

200 1.7 x 
1013

−6.4 ML, 1.05 RC, 
−0.45 DV

200

45° M-L

SUBJ-
ID-354

F 271 AuD AAVrg/pAAV-hSyn-EGFP (Addgene 50465) −6.45 ML, 1.05 
mm RC, −0.9 DV

200 1.7 x 
1013

−6.45 ML, 1.05 
mm RC, −0.45 DV

200

45° M-L

SUBJ-
ID-355

F 271 AuD AAVrg/pAAV-hSyn-EGFP (Addgene 50465) −1.25 ML from 
temporal ridge, 
1.34 RC, −0.9 DV

200 1.7 x 
1013

−1.25 ML from 
temporal ridge, 
1.34 RC, −0.45 DV

100

45° M-L

SUBJ-ID-56 M 233 Au1 AAVrg/pAAV-hSyn-EGFP (Addgene 50465) −1.4 ML from 
temporal ridge, 3.5 
RC, −0.75 DV

200 1 x 1013

−1.4 ML from 
temporal ridge, 3.5 
RC, −0.35 DV

200

45° M-L

SUBJ-
ID-110

F 637 Au1 AAVrg/pAAV-hSyn-EGFP (Addgene 50465) −1 ML from 
temporal ridge, 3.5 
RC, −0.9 DV

200 1 x 1013

−1 ML from 
temporal ridge, 3.5 
RC, −0.45 DV

200

45° M-L

SUBJ-
ID-111

F 637 Au1 AAVrg/pAAV-hSyn-EGFP (Addgene 50465) −1 ML from 
temporal ridge, 
3.45 RC, −0.9 DV

200 1 x 1013
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Subject Sex Age
(days)

Injection
site

Virus Coordinates (mm)
ML, from lambda, 
unless
otherwise noted
RC, from lambda
DV, from pial 
surface

Volume
(nL)

Titer
(GC/m
L)

−1 ML from 
temporal ridge, 
3.45 RC, −0.45 DV

200

45° M-L

SUBJ-
ID-121

M 365 Au1 AAVrg/pAAV-hSyn-EGFP (Addgene 50465) −1 ML from 
temporal ridge, 3.3 
RC, −0.75 DV

200 1 x 1013

−1 ML from 
temporal ridge, 3.3 
RC, −0.35 DV

200

45° M-L

SUBJ-
ID-133

F 328 Au1 AAVrg/pAAV-hSyn-EGFP (Addgene 50465) −1 ML from 
temporal ridge, 3.5 
RC, −0.75 DV

200 1 x 1013

−1 ML from 
temporal ridge, 3.5 
RC, −0.35 DV

200

SUBJ-
ID-297

F 263 Au1 AAVrg/pAAV-hSyn-EGFP (Addgene 50465) −1 ML from 
temporal ridge, 3.5 
RC, −0.75 DV

200 1 x 1013

−1 ML from 
temporal ridge, 3.5 
RC, −0.35 DV

200

SUBJ-
ID-298*

F 181 Au1 AAVrg/pAAV-hSyn-EGFP (Addgene 50465) −1.05 ML from 
temporal ridge, 3.5 
RC, −0.9 DV

200 1.7 x 
1013

−1.05 ML from 
temporal ridge, 3.5 
RC, −0.45 DV

200

30° M-L

SUBJ-
ID-299

F 181 AuV AAVrg-CAG-tdTomato (Addgene 59462) −1.25 ML from 
temporal ridge, 
1.34 RC, −0.9 DV

200 2.5 x 
1013

−1.25 ML from 
temporal ridge, 
1.34 RC, −0.45 DV

200

45° M-L

SUBJ-
ID-300

F 181 Au1

AuV

AAVrg/pAAV-hSyn-EGFP (Addgene 50465)

AAVrg-CAG-tdTomato (Addgene 59462)

−1.25 ML from 
temporal ridge, 
3.55 RC, −0.9 DV

200 1 x 1013

−1.25 ML from 
temporal ridge, 
3.55 RC, −0.45 DV

200

−1.25 ML from 
temporal ridge, 
1.34 RC, −0.9 DV

200 2.5 x 
1013

−1.25 ML from 
temporal ridge, 
1.34 RC, −0.45 DV

200

45° M-L

J Comp Neurol. Author manuscript; available in PMC 2024 October 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ying et al. Page 37

Subject Sex Age
(days)

Injection
site

Virus Coordinates (mm)
ML, from lambda, 
unless
otherwise noted
RC, from lambda
DV, from pial 
surface

Volume
(nL)

Titer
(GC/m
L)

SUBJ-
ID-391

M 346 AuV AAVrg/pAAV-hSyn-EGFP (Addgene 50465) −8.0 ML, 1.38 RC, 
−0.9 DV

200 1.7 x 
1013

−8.0 ML, 1.38 RC, 
−0.45 DV

200

45° M-L

SUBJ-
ID-392

M 346 AuV AAVrg/pAAV-hSyn-EGFP (Addgene 50465) −8.0 ML, 1.35 RC, 
−0.9 DV

200 1.7 x 
1013

−8.0 ML, 1.35 RC, 
−0.45 DV

200

45° M-L

SUBJ-
ID-126

F 605 MGV AAVrg/pAAV-hSyn-EGFP (Addgene 50465) −3 ML ,1.5 RC, 
−4.15 DV

50 1 x 1013

SUBJ-
ID-180*

M 489 MGV AAVrg/pAAV-hSyn-EGFP (Addgene 50465) −2.85 ML, 1.75 
RC, −4.15 DV

80 1 x 1013

SUBJ-
ID-181

M 489 MGV AAVrg/pAAV-hSyn-EGFP (Addgene 50465) −2.85 ML, 1.75 
RC, −4.18 DV

80 1 x 1013

SUBJ-ID-95 M 408 CIC AAVrg/pAAV-hSyn-EGFP (Addgene 50465) −1.65 ML, 0.35 
RC, −3.65 DV

80 1 x 1013

30° R-C

SUBJ-
ID-119

F 396 CIC AAVrg/pAAV-hSyn-EGFP (Addgene 50465) −1.65 ML, 0.35 
RC, −3.65 DV

200 1 x 1013

30° R-C

SUBJ-
ID-120

F 396 CIC AAVrg/pAAV-hSyn-EGFP (Addgene 50465) −1.65 ML, 0.35 
RC, −3.65 DV

80 1 x 1013

30° R-C

SUBJ-
ID-124*

M 396 CIC AAVrg/pAAV-hSyn-EGFP (Addgene 50465) −1.65 ML, 0.35 
RC, −3.65 DV

150 1 x 1013

30° R-C

SUBJ-
ID-143

F 442 OFC

Au1

AAV1-hSyn-DIO-mCherry (Addgene 50459)

AAVrg-hSyn-Cre-WPRE.HGH (Addgene 
105553)

−1.5 ML, 9.05 RC, 
−2.75 DV

100 9 x 1018

1.35 ML from 
temporal ridge, 
3.55 RC, −0.75 DV

200 1.2 x 
1013

1.35 ML from 
temporal ridge, 
3.55 RC, −0.35 DV

200

1.35 ML from 
temporal ridge, 3.7 
RC, −0.75 DV

200

1.35 ML from 
temporal ridge, 3.7 
RC, −0.35 DV

200

SUBJ-
ID-144

F 442 OFC

Au1

AAV1-hSyn-DIO-mCherry (Addgene 50459)

AAVrg-hSyn-Cre-WPRE.HGH (Addgene 
105553)

−1.5 ML, 9.05 RC, 
−2.75 DV

100 9 x 1018

1.35 ML from 
temporal ridge, 3.2 
RC, −0.75 DV

200 1.2 x 
1013
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Subject Sex Age
(days)

Injection
site

Virus Coordinates (mm)
ML, from lambda, 
unless
otherwise noted
RC, from lambda
DV, from pial 
surface

Volume
(nL)

Titer
(GC/m
L)

1.35 ML from 
temporal ridge, 3.2 
RC, −0.35 DV

200

1.35 ML from 
temporal ridge, 3.9 
RC, −0.75 DV

200

1.35 ML from 
temporal ridge, 3.9 
RC, −0.35 DV

200s
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Table 2.

Raw OFC cell count data. Plate reference refers to the plate number in the gerbil brain atlas (Radtke-Schuller 

et al., 2016).

Subject Injection
site

Ipsi plate
reference

Contra
plate

reference

DLO
(Ipsi)

LO
(Ipsi)

VO
(Ipsi)

MO
(Ipsi)

DLO
(Contra)

LO
(Contra)

VO
(Contra)

MO
(Contra)

SUBJ-ID-353 AuD 10 10 0 0 4 2 0 0 0 0

10 10 0 0 26 5 0 0 0 1

11 11 0 1 30 6 0 0 1 4

12 11 0 0 16 22 0 0 5 4

12 12 1 0 19 16 0 0 3 9

12 12 0 1 31 9 0 1 7 2

12 12 0 1 12 8 0 0 9 3

13 13 -- 2 1 3 -- 0 2 2

14 13 -- 3 6 3 -- 0 0 3

15 15 -- 3 14 -- -- 4 4 --

SUBJ-ID-354 AuD 10 10 0 0 1 5 0 0 0 0

10 10 0 0 11 1 0 0 0 0

11 11 0 3 25 2 0 0 0 0

11 11 0 0 14 4 0 0 0 0

12 12 0 0 15 3 0 0 1 1

13 13 -- 0 7 3 -- 0 0 0

13 13 -- 0 0 0 -- 0 1 1

14 14 -- 4 2 0 -- 0 0 0

SUBJ-ID-355 AuD 10 10 0 0 25 2 0 0 0 0

11 11 0 7 16 10 0 0 2 3

12 12 0 2 39 16 0 0 1 5

12 12 0 0 22 12 0 0 3 0

13 13 -- 0 2 3 -- 0 4 0

14 14 -- 0 2 2 -- 0 0 0

14 14 -- 0 0 0 -- 0 0 0

SUBJ-ID-56 Au1 12 12 0 0 14 1 0 0 4 0

14 14 0 0 3 0 0 0 1 2

SUBJ-ID-110 Au1 12 12 0 6 9 40 4 5 5 44

13 13 -- 2 14 14 -- 0 12 25

14 14 -- 12 15 27 -- 8 1 25

15 15 -- 16 13 -- -- 21 3 --

SUBJ-ID-111 Au1 10 10 3 5 14 7 0 3 6 1

10 10 0 2 8 7 0 1 2 1

11 11 0 5 11 6 0 1 10 0

12 12 1 2 25 16 2 3 3 1

J Comp Neurol. Author manuscript; available in PMC 2024 October 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ying et al. Page 40

Subject Injection
site

Ipsi plate
reference

Contra
plate

reference

DLO
(Ipsi)

LO
(Ipsi)

VO
(Ipsi)

MO
(Ipsi)

DLO
(Contra)

LO
(Contra)

VO
(Contra)

MO
(Contra)

12 12 1 6 26 9 0 2 13 0

13 13 -- 1 11 2 -- 1 1 0

14 14 -- 3 12 1 -- 1 0 1

SUBJ-ID-121 Au1 10 10 0 0 4 2 0 0 0 0

11 11 0 0 8 1 0 0 2 4

12 12 0 0 6 2 0 0 2 0

SUBJ-ID-133 Au1 10 10 0 0 7 1 0 0 0 0

10 11 0 0 10 6 0 0 0 0

12 12 0 0 13 3 0 0 1 0

12 12 0 1 13 1 0 0 0 0

SUBJ-ID-297 Au1 9 9 0 0 0 0 0 0 0 0

10 10 0 0 0 1 0 0 0 0

10 10 0 0 0 1 0 0 1 0

11 11 0 0 5 2 0 0 0 0

11 11 0 1 5 5 0 1 1 3

12 12 0 2 10 6 0 6 6 2

13 13 -- 0 18 2 -- 2 6 3

14 14 -- 0 5 1 -- 2 3 0

SUBJ-ID-298 Au1 11 11 0 5 12 10 0 1 0 2

12 12 2 1 14 8 0 1 2 5

12 13 0 2 7 6 -- 1 3 3

SUBJ-ID-300 Au1 11 11 0 0 0 0 0 0 0 0

11 11 0 0 1 1 0 0 0 0

12 12 0 0 2 0 0 0 0 0

13 13 -- 0 3 1 -- 0 0 0

14 14 -- 0 1 0 -- 0 0 0

SUBJ-ID-299 AuV 12 12 0 0 7 0 0 0 8 0

14 14 -- 0 7 0 -- 0 4 0

SUBJ-ID-300 AuV 11 11 0 0 1 2 0 0 0 0

11 11 0 0 3 1 0 0 0 1

12 12 0 1 4 0 0 0 0 0

13 13 -- 0 16 0 -- 0 1 0

14 14 -- 0 13 0 -- 0 4 0

SUBJ-ID-391 AuV 10 10 0 0 0 1 0 0 0 0

10 10 0 0 0 1 0 0 0 0

10 10 0 0 0 1 0 0 0 1

11 11 0 0 1 2 0 0 0 0

11 11 0 0 9 3 0 0 0 3
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Subject Injection
site

Ipsi plate
reference

Contra
plate

reference

DLO
(Ipsi)

LO
(Ipsi)

VO
(Ipsi)

MO
(Ipsi)

DLO
(Contra)

LO
(Contra)

VO
(Contra)

MO
(Contra)

12 12 0 0 12 1 0 3 4 0

14 14 -- 0 0 0 -- 0 0 0

16 16 -- 4 0 -- -- 0 0 --

SUBJ-ID-392 AuV 9 9 0 0 0 1 0 0 0 0

10 10 0 0 2 0 0 0 0 0

10 10 0 0 1 1 0 0 0 0

11 11 0 0 11 3 0 0 2 3

11 12 0 0 22 4 0 0 5 2

12 12 0 0 4 3 0 0 0 0

13 13 -- 0 28 1 -- 0 13 1

14 14 -- 0 5 2 -- 0 0 4

15 15 -- 0 0 -- -- 0 0 --

15 15 -- 3 4 -- -- 0 3 --
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Table 3.

Paired t-tests comparing proportion of labeled cell bodies in each OFC subregion after retrograde injections 

into Au1 (see Figure 1). All p-values were corrected for multiple comparisons using a Bonferroni adjustment.

Subregion comparison t ratio p-value

VO - MO 3.556 0.0558

VO – LO 6.088 0.003**

VO – DLO 8.987 0.0001**

MO – LO 7.880 0.0006**

MO – DLO 5.879 0.0036**

LO – DLO 2.229 0.3666
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Table 4.

Paired t-tests comparing proportion of labeled cell bodies in each OFC subregion after retrograde injection 

into AuD (see Figure 2). All p-values were corrected for multiple comparisons using a Bonferroni adjustment.

Subregion comparison t ratio p-value

VO - MO 6.240 0.1482

VO – LO 25.252 0.0096*

VO – DLO 21.102 0.0132*

MO – LO 4.419 0.2856

MO – DLO 6.867 0.1236

LO – DLO 6.607 0.1332
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Table 5.

Paired t-tests comparing proportion of labeled cell bodies in each OFC subregion after retrograde injection 

into AuV (see Figure 3). All p-values were corrected for multiple comparisons using a Bonferroni adjustment.

Subregion comparison t ratio p-value

VO - MO 5.314 0.0780

VO – LO 7.678 0.0276*

VO – DLO 10.568 0.0108*

MO – LO 2.373 0.5898

MO – DLO 2.203 0.6888

LO – DLO 1.713 1.0000
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Table 6.

Paired t-tests comparing intensity of labeled OFC axon fibers across auditory cortical layers (see Figure 6). All 

p values were corrected for multiple comparisons using a Bonferroni adjustment.

Layer comparison t ratio p-value

1 - 2 −1.504 1.0000

1 – 3 −0.333 1.0000

1 – 4 0.894 1.0000

1 – 5 −3.974 0.0020**

1 – 6 −5.094 < 0.0001***

2 – 3 1.198 1.0000

2 – 4 2.259 0.3901

2 – 5 −3.134 0.0337*

2 – 6 −4.666 0.0001**

3 – 4 1.210 1.0000

3 – 5 −3.824 0.0034**

3 – 6 −5.021 < 0.0001***

4 – 5 −4.310 0.0006**

4 – 6 −5.249 < 0.0001***

5 – 6 −2.599 0.1609
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Table 7.

Qualitative estimate of the intensity of labeled fibers in various brain regions innervated by OFC-Au1 axon 

collaterals. (+): weak labeling, (++): moderate labeling, (+++): dense labeling.

Region Intensity

Anterior olfactory nucleus (dorsal) ++

Anterior olfactory nucleus (lateral) ++

Anterior olfactory nucleus (posterior) ++

Amygdala

 Central amygdaloid nucleus +

 Lateral amygdaloid nucleus +

 Medial amygdaloid nucleus +

Caudate putamen +++

Claustrum +

Cortex

 Agranular insular +

 Auditory (primary) +++

 Auditory (secondary, dorsal) +++

 Auditory (secondary, ventral) +++

 Cingulate ++

 Dorsal peduncular +

 Ectorhinal +++

 Entorhinal ++

 Motor (primary) +

 Motor (secondary) ++

 Parietal +

 Perirhinal ++

 Piriform +

 Prelimbic ++

 Orbitofrontal (dorsolateral) +

 Orbitofrontal (medial) +++

 Orbitofrontal (lateral) +++

 Orbitofrontal (ventral) +++

 Retrosplenial ++

 Somatosensory (primary) +

 Somatosensory (secondary) +

 Visual (primary) +

 Visual (secondary) +

Dorsal endopiriform nucleus +

Nucleus accumbens (core) +++

Nucleus accumbens (shell) +++
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Region Intensity

Subiculum

 Parasubiculum ++

 Postsubiculum ++

 Subiculum, transitional area +++
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