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Abstract

Aneuploidies—whole-chromosome or whole-arm imbalances—are the most prevalent alteration 

in cancer genomes1,2. However, it is still debated whether their prevalence is due to selection or 

because they are readily generated passenger events1,2. We developed a method, BISCUT, that 

identifies loci subject to fitness advantages or disadvantages by interrogating length distributions 

of telomere- or centromere-bounded copy-number events. These loci were significantly enriched 

for known cancer driver genes, including genes not detected through analysis of focal copy-

number events, and were often lineage-specific. BISCUT identified the helicase WRN as a 

haploinsufficient tumor suppressor gene on chromosome 8p, which is supported by several lines 

of evidence. We also formally quantified the role of selection and mechanical biases in driving 

aneuploidy, finding that rates of arm-level copy-number alterations are most highly correlated with 

their effects on cellular fitness1,2. These results provide insight into the driving forces behind 

aneuploidy and its contribution to tumorigenesis.

INTRODUCTION

Although aneuploidy, which we define as whole-chromosome or whole-arm DNA 

imbalance, is observed in ~90% of tumors1,2 and was the first proposed somatic alteration 

in cancer3, the reasons for its prevalence and role in driving cancer remain unclear. Its 

prevalence may reflect frequent chromosome missegregation, rearrangements, or centrosome 

aberrations (mechanical biases)4, or fitness advantages associated with aneuploidy (selection 

biases). However, in conditions of low cellular stress, aneuploidy in yeast, mouse, and 

human cancer cell lines generally decreases proliferation rates and increases cellular 

senescence, with rescue of proliferation rates only after further evolution5. In yeast and 

human cells, aneuploidy has been found to be beneficial in the context of some types 

of cellular stress or gene deficiencies6–12, and the general state of aneuploidy has been 

found to contribute to tumor evolution13,14 and drug resistance15. However, we do not 

have a comprehensive understanding of the positive or negative effects of individual arm-

level somatic copy-number alterations (arm-SCNAs) on fitness in the natural context of 

human tumors. Experimental methods to assess functional consequences of arm-SCNAs 

are technically challenging and have rarely been performed in human cells2,16,17. In the 

context of focal SCNAs, mapping minimal common regions of amplification or deletion can 

point to relevant oncogenes and tumor suppressor genes18. Arm-SCNAs, however, always 

encompass the same hundreds to thousands of genes, so mapping minimal common regions 

of alteration has no benefit.

However, SCNAs that begin at the telomere and extend almost to the centromere (or 

vice versa) would be expected to have the same fitness effects as their corresponding arm-

SCNAs, except for the small region that they lack immediately adjacent to the centromere 

(or telomere). Similarly, slightly shorter SCNAs would also be expected to have the same 

fitness effects, except for the small region they lack – and so on. In this fashion, one may 

explore fitness effects of each successive portion of the chromosome arm on the telomeric 

(or centromeric) alterations that encompass it9. The effects of an entire arm-SCNA can 

therefore be inferred as the sum of effects across all regions it encompasses. In this study, 

we develop an algorithm called BISCUT (Breakpoint Identification of Significant Cancer 
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Undiscovered Targets) that exploits this source of information – the length distributions of 

telomere- and centromere-bounded SCNAs – to better understand the effects of arm-SCNAs 

on fitness and the loci that account for those effects. We apply this approach to over 10,000 

tumors in The Cancer Genome Atlas (TCGA), and systematically characterize the influences 

of selective and mechanical biases on patterns of chromosome arm aneuploidies within and 

across cancers.

RESULTS

Impact of arm-level SCNAs

SCNAs that extend from telomere to centromere (arm-SCNAs) are among the most frequent 

somatic genetic alterations in cancer. Across 10,872 TCGA tumors spanning 33 cancer 

types2, arm-SCNAs constitute 23 of the 25 most frequent events (Figure 1a). Arm-SCNAs 

also encompass more of the cancer genome by far – 22.5% – than any other type of somatic 

genetic alteration (Figure 1b and Supplementary Table 1). In contrast, focal SCNAs, which 

affect the next largest fraction of the genome, encompass only 11.3% of the cancer genome, 

or half that of arm-SCNAs.

Despite their impact on the cancer genome, it is uncertain whether the frequencies of 

different arm-SCNAs are primarily determined by their mechanical ease of generation or by 

their effects on evolutionary fitness. We also do not know which loci contribute to the effects 

of arm-SCNAs on evolutionary fitness. Among the 23 most frequent arm-SCNAs, only 13 

encompass a known driver gene that is also altered by either mutation, rearrangement, or 

focal SCNA in at least 20% of samples with the arm-SCNA (Supplementary Table 1a). 

Even among cases with such drivers, these drivers do not always explain the observed 

frequencies of arm-SCNAs. For example, although 10q is lost in ~80% of glioblastomas, 

the presumed target of these losses – the tumor suppressor PTEN – is only biallelically 

inactivated by homozygous deletion or mutation in ~40% of cases19. Glioblastomas without 

biallelic inactivation express PTEN at similar levels to those without 10q loss. Epigenetic 

alterations could provide more information as to drivers that contribute to the frequencies of 

these arm-SCNAs, but current tools are insufficient to fully address this question.

Centromeric breaks are favored overall

We thus set out to quantify the extent to which arm-SCNA frequencies can be attributed 

to their mechanical ease of generation versus effects on cell fitness. We approached this 

question by examining the locations of the breakpoints of SCNAs that begin at either 

the telomere or centromere (tel-SCNAs and cent-SCNAs, respectively, collectively termed 

partial-SCNAs; Figure 1c). We hypothesized that the enrichment of breakpoints in specific 

loci might provide insight on the roles that mechanical biases and selection play, and to the 

specific genetic elements undergoing selection.

We first considered the relative densities of breakpoints within centromeres versus within 

chromosome arms to indicate mechanical biases favoring or disfavoring arm-SCNAs (Figure 

1d and Extended Data Figure 1a). Across all chromosome arms and tumor types, 39% of 

tel-SCNAs end in centromeres – a four-fold enrichment of breakpoint density in centromeres 
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relative to within chromosome arms (86.5 and 19.7 per Mb, respectively; Figure 1e and 

Extended Data Figure 1b). Reasons for this enrichment may include the role of the 

kinetochore in mitosis and defects in mitotic checkpoint signaling, cohesion, merotelic 

attachment, or toxicity of acentric DNA to cells20,21. The frequency of centromeric 

breakpoints appears to be unrelated to the length of the centromere (Figure 1f). We explore 

differences in rates of centromeric breakage across chromosomes below.

SCNA lengths inform fitness effects

Within chromosome arms, we evaluated partial-SCNAs (tel-SCNAs and cent-SCNAs) as 

sources of information about fitness effects of arm-SCNAs (Supplementary Table 2). Like 

arm-SCNAs, partial-SCNAs tended to have lower amplitudes (number of copies gained 

or deleted) than interstitial SCNAs (p < 2.2e-16; Figure 1g), indicating the effects of 

partial-SCNAs on loci they encompass are similar to those of arm-SCNAs. When summed 

across all chromosome arms and cancer types, partial-SCNAs followed near-uniform 

length distributions (Figure 1h and Extended Data Figure 1c). We consider these to 

be “background” partial-SCNA distributions in the absence of fitness effects (see also 

Supplementary Note 1).

Next, we compared chromosome arm-specific partial-SCNA length distributions to these 

background distributions to detect genomic loci subject to selection. Specifically, we 

hypothesized that more partial-SCNAs would encompass a locus if its alteration increased 

cellular fitness (i.e. positively selected “driver” events), and fewer partial-SCNAs would 

encompass a locus if its alteration decreased fitness. We would therefore observe a sudden 

jump or fall in partial-SCNA breakpoint frequencies adjacent to loci under selection. Indeed, 

when comparing the near-uniform background model of tel-SCNA lengths with tel-SCNAs 

from individual chromosome arms across cancer types, we observed four patterns: 1) no 

deviation from the background model, providing no evidence of selection; 2) a single 

locus of deviation from the background model, likely representing a single locus subject to 

detectable positive or negative selection; 3) multiple such loci, corresponding to multifocal 

selection; and 4) loci that deviate in opposite directions from the background, indicating 

balanced selection (Figure 2a–b).

We therefore developed a method (“BISCUT”; see Methods for a detailed description; 

Figure 2c) based on these principles. BISCUT first determines whether the distribution of 

partial-SCNA lengths on a given chromosome arm differs significantly from the empirical 

background distribution. If yes, BISCUT identifies the genomic locus at which the arm-

specific and background distributions diverge most and sets boundaries for a “peak region” 

that would be expected to encompass genes driving this divergence. Once this locus is 

identified, the chromosome arm is divided at the locus and BISCUT is repeated on both its 

telomeric and centromeric side (Extended Data Figure 1d). This process is repeated until no 

significant divergence between the observed and expected data is detected. Detailed results 

of simulations to test BISCUT’s power to detect loci under selection and its robustness to 

artifact are in Supplementary Figure 1 and Supplementary Note 2.
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Loci under selection

When applied to the 10,872 cancer copy-number profiles generated by TCGA across 33 

cancer types, BISCUT detected 193 genomic loci under apparent selection: 90 regions of 

positive selection (39 from amplifications [amp-pos] and 51 from deletions [del-pos]) and 

103 regions of negative selection (41 from amplifications [amp-neg] and 62 from deletions 

[del-neg]) (Figure 2d and Extended Data Figure 2a–b). These peak loci were significantly 

enriched for known oncogenes and tumor suppressors from the COSMIC Cancer Gene 

Census (p < 3.6e-5; Extended Data Figure 2c and Supplementary Table 3a–b). This finding 

held in both genes subject to positive (p < 9.5e-5) and negative selection (p = 0.015). 

Intriguingly, many of the COSMIC genes detected by BISCUT are not targets of focal 

SCNAs, possibly due to combinatorial effects of large SCNAs evaluated by BISCUT 

and possibly because BISCUT is more sensitive to selection acting on low-amplitude 

amplifications and deletions (Extended Data Figure 2d–f, Supplementary Note 3, and 

Supplementary Table 3c–f).

BISCUT results aligned with fitness estimates from normalized ratios of non-synonymous to 

synonymous mutations (dN/dS ratios)22. Genes in del-neg peaks tended to have low dN/dS 

scores (indicating negative selection) for all truncating mutation types (nonsense and splice 

site), whereas genes in del-pos peaks had high dN/dS scores (indicating positive selection) 

for all mutation types (Figure 3a). We conclude that BISCUT peaks are enriched for cancer 

drivers and provide valuable information beyond a focal SCNA analysis.

We next asked whether analyses specific to genetic or tissue contexts would uncover 

additional loci under selection. Among genetic contexts, we found little evidence that 

arm-SCNAs of one chromosome arm altered fitness effects of partial-SCNAs of other 

arms (Supplementary Note 4). Lineage-specific analyses of the 33 TCGA tumor types each 

indicated far fewer significant peaks than the pan-cancer analysis (median = 9), ranging 

from none (in DLBC, KICH, LAML, THCA, and THYM) to 59 (in OV). Altogether, 

we detected 397 peaks across the 33 lineages. We also analyzed combined groups 

of shared lineage (COADREAD, ESCASTAD, GBMLGG, KIPAN, and PANSCC) and 

notable sub-lineages (BRCA-basal, BRCA-luminal, ESCASTAD-CIN, and ESCASTAD-

GS) (Supplementary Table 4a–d). Across all groups, we detected a total of 609 peaks. 

Among peaks in independent lineages, 331 peaks, or 83%, overlapped with at least one 

peak in another lineage, leaving 66 distinct non-overlapping peaks across all lineages 

(excluding the pan-cancer analysis; Supplementary Table 4e–f). Among independent 

cohorts, overlapping peaks occurred more often among related developmental lineages23 

than expected by chance (p = 0.001; Extended Data Figures 3–5, Supplementary Note 4, 

and Supplementary Table 4g–h), mirroring the association between arm-SCNA rates and 

developmental lineage2,24.

BISCUT results appeared relatively robust to slight modifications to the method 

(Supplementary Note 5 and Supplementary Table S4i–k) and are reproducible in other 

datasets. However, we expect that tumor impurity can limit power to detect loci under 

selection. We also detected a lower magnitude of selection against deletions in WGD 

samples (see below). To assess the reproducibility of our results, we also applied BISCUT 

to an entirely separate cohort and data generation platform: 1,765 tumors that had undergone 
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whole-genome sequencing within the International Cancer Genome Consortium (ICGC)25 

(Supplementary Note 5 and Supplementary Table S4l–m). Among 55 peaks detected in this 

analysis, 36 (65%) overlapped with at least one of the 185 most significant original peaks (p 

= 4.2e-8). The additional 19 peak loci may reflect differences in tumor types represented in 

the two cohorts.

Validation of positive selection peaks

To validate genes in BISCUT peaks without known oncogenes or tumor suppressors, we 

used immortalized lung epithelial cells in which we isogenically engineered an arm-level 

loss of 8p2 (Extended Data Figure 6a–b). Chromosome arm 8p is frequently deleted across 

cancer types, but canonical tumor suppressors have not been detected on 8p16,26. We 

observed less cell death by caspase activity (p = 0.02) and flow cytometry (p = 0.004) 

in cells with engineered 8p deletion (Extended Data Figure 6c–d and Supplementary Figure 

2). Of the three 8p del-pos peaks (Figure 2d), the smallest peak, in 8p12, contained two 

protein-coding genes, WRN and NRG1. We performed RNA sequencing of clones with 

or without 8p deletion (Supplementary Table 5a) and found that expression of WRN is 

significantly lower in both cells with engineered 8p deletion and TCGA tumors with 8p 

deletion (p = 0.014 and 2.2e-16 respectively). However, NRG1 expression was low both in 
vitro and in TCGA tumors, with little correlation between its expression and copy number 

(Extended Data Figure 6e). We therefore focused on WRN.

WRN encodes a RecQ DNA helicase involved in DNA damage repair, and its inactivation 

is synthetic lethal with microsatellite instability (MSI)27. To assess the functional relevance 

of non-homozygous loss of WRN due to 8p deletions, we asked whether these losses 

were negatively associated with MSI and associated with any mutational signatures of their 

own. Across TCGA, about 1% of tumors have MSI28. None of these tumors harbor WRN 
copy-loss or arm-level deletion of 8p – a significant anticorrelation even after controlling 

for lineage and overall aneuploidy2,29 (p < 1e-4 for both WRN and 8p loss; Figure 

3b). Among samples without MSI or POLE mutations (which are both associated with 

high tumor mutational burdens, or TMBs), non-homozygous loss of WRN was associated 

with higher-than-average TMBs after controlling for lineage and overall aneuploidy (p = 

0.01). Specifically, it was associated with a lower level of COSMIC mutational signature 

SBS6 (reflecting MSI), SBS42 (haloalkane exposure), and SBS46 (sequencing artifact) 

(all q = 0.09) and higher levels of SBS39 (etiology unknown) (q = 0.15) (Figure 3c and 

Supplementary Table 5b). These signature associations were recapitulated in tumors with 

arm-level loss of 8p (Supplementary Table 5b). Although MSI-annotated tumors were 

excluded in this mutational signature analysis, we hypothesize that the anticorrelation 

between WRN loss and SBS6 reflects mutual exclusivity between WRN loss and samples 

with unrecognized MSI. The etiology of the other signature associations is unclear. 

However, we also detected an increase in SBS39 in RNA sequencing data from cell lines 

with engineered 8p loss (n = 8) relative to their isogenic WT counterparts (n = 8) (p = 0.02, 

two-tailed Mann-Whitney U test) (Extended Data Figure 6f and Supplementary Table 5c). In 

contrast, these cell lines exhibited no significant differences for any of the 37 other COSMIC 

signatures detected in a de novo analysis of TCGA cancers. These data suggest that SBS39 

results from 8p loss, possibly due to WRN inactivity.
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Consistent with these findings, we found that siRNA knockdown of WRN (Extended Data 

Figure 6g) in cells with 8p disomy resulted in significant decreases in cell death by both 

flow cytometry and trypan blue staining (p = 0.003 and 0.04, respectively; Figure 3d 

and Extended Data Figure 6h–i). The degree of WRN knockdown and cell death were 

comparable to that of cells with engineered 8p loss (Extended Data Figure 6c–d). We also 

found that transfection-induced exogenous expression of WRN (Extended Data Figure 6j) 

decreased cell growth (p = 0.002; Figure 3e). We conclude that copy-loss of WRN likely 

accounts for some of the increased fitness of cells with 8p loss.

Validation of negative selection peaks

We next interrogated genes in del-neg peaks, which we hypothesized would be cancer 

cell-essential, for evidence that their loss would decrease cellular fitness. Among the 789 

genes in the 45 “restricted” peaks (fewer than 50 genes each), 60 genes across 24 peaks were 

among a list of 1,482 genes that were previously found to be cell-essential based upon an 

integrated analysis of genetic and CRISPR screening data30, which constitutes significant 

enrichment (p < 0.02; Supplementary Table 5d). We also analyzed published genome-scale 

functional screening data to test the hypothesis that the 789 genes in restricted del-neg peaks 

tend to be essential. Each peak often contains many genes (median of 25); only one of 

these might be under significant negative selection. For this reason, we anticipated that the 

average viability scores across all genes in these loci might be only slightly lower than the 

genome-wide average. Indeed, both RNAi suppression (p = 0.004) and CRISPR knockout (p 

= 0.001) of these genes led to slightly, but significantly, decreased cell viability compared to 

other assessed genes (Extended Data Figure 6k)31,32.

We also picked three del-neg peaks for experimental validation in our cells with 8p disomy, 

focusing on peaks containing only 1–2 protein-coding genes. These peaks contained EPN2 
(17p11.2), PPFIA1 (11q13.3), and KAT6A and ANK1 (8p11.21). We performed siRNA 

knockdown of each of these genes and achieved successful knockdown of EPN2 and 

KAT6A (Extended Data Figure 6l–m). Knockdown of both EPN2 and KAT6A decreased 

cell growth relative to cells treated with control-pool siRNA (p = 0.0003 and 0.02 

respectively; Figure 3f). From both our experimental and genome-scale analyses, we 

conclude that del-neg peaks detected by BISCUT often contain genes whose knockdown 

is harmful to cell growth.

Quantifying effects on fitness

We next extended BISCUT to estimate the magnitude of change in cellular fitness that 

derives from each peak locus by assessing the change in breakpoint frequency across 

the peak (Figure 4a and Supplementary Table 6a). In population genetics, fitness effects 

of genetic variants are often represented by “relative fitness” (RF), which represents the 

probability of survival of an individual with the variant compared to an identical individual 

without it. To calculate peak-level RFs, we divide the number of tumors observed to have 

alterations that include the peak by the number expected to in the absence of selection (only 

considering deletions for deletion peaks and amplifications for amplification peaks). We 

then combined peak-level RFs by multiplying them to estimate the total positive, negative, 

and overall net fitness effects contributing to each arm-SCNA, generating “arm-level” RFs 
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(reported as log2 values; Extended Data Figure 7a and Supplementary Table 6b–c). In much 

of population genetics, RFs are calculated relative to individuals with the highest fitness. 

In contrast, we calculate RFs relative to cells without any copy-number alteration so as to 

explicitly represent positive selection.

For individual peaks, deletions exhibited greater positive and negative effects on fitness 

(average log RFs of 1.1 and −1.4 respectively) than amplifications (0.65 and −0.95 

respectively). However, when summed across the arm, we found no significant difference 

between net RFs of deletions and amplifications (average −0.30 for both; p = 0.86). The 

arm-SCNAs under the most net positive selection were amplifications of 10p, 8q, and 7p, 

and deletions of 8p. Arm-SCNAs under the most net negative selection were deletions of 8q, 

3q, and 17q, and amplifications of 8p.

Arm-SCNA RFs modestly correlated with Charm scores33, a previously published measure 

of selection that is based on mutational profiles of known oncogenes and tumor suppressors 

rather than copy-number information. Among arm-level deletions, both the net and positive 

RFs significantly correlated with several Charm scores, most notably the CharmTSG-OG-Ess 

scores (net: Spearman’s rho = 0.45, p = 3.6e-3; positive: rho = 0.40, p = 0.012; 

Supplementary Table 6d). We did not find any significant correlations between Charm scores 

and RFs for arm-level amplifications.

Although we had found little difference in which loci BISCUT determined to be under 

selection between WGD and DIPLOID samples, we also considered the hypothesis that 

selection acting on these loci differed in magnitude between these two subsets of cancer. 

Prior studies have shown that tumor cells that have undergone WGD exhibit an increased 

tolerance to aneuploidy2,34–36. Cells adapt to aneuploidy by buffering gene and protein 

expression37–39, though buffering is not as strong in cells with WGD40. We detected lower 

RFs, reflecting greater negative selection, in DIPLOID versus WGD samples (mean log net 

RFs of −0.49 and 0.04 respectively; paired t-test p = 0.0001; Figure 4b). However, we did 

not detect a difference for amplifications (net RFs of −0.20 and −0.19 respectively; p = 

0.94). These results suggest that negative selection against deletions, but not amplifications, 

is more consequential in diploid samples.

Scoring mechanical biases

In addition to RFs, we generated two other metrics: centromeric and telomeric mechanical 

coefficients. Centromeric mechanical coefficients reflect observed rates of tel-SCNAs 

ending in a centromere (i.e. arm-SCNAs) compared to rates of tel-SCNAs ending adjacent 

to it, indicating biases favoring breakage within that centromere. Telomeric mechanical 

coefficients reflect frequencies of tel-SCNAs that do not encompass loci under selection, 

indicating mechanical biases favoring tel-SCNAs across different chromosome arms 

(Supplementary Table 6b–c and Extended Data Figure 7a).

Notably, all log centromeric mechanical coefficients were greater than 0, suggesting 

that mechanical biases favor breakage in all centromeres relative to elsewhere along 

the chromosome. The centromeres of the acrocentric chromosomes 13, 14, 15, 21, and 

22 had significantly higher mechanical coefficients than other arms (average mechanical 
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coefficients of 3.23 and 1.79; p = 0.0003). We expected this: both whole-chromosome 

SCNAs and arm-level SCNAs of acrocentric chromosomes appear as arm-SCNAs. 

Excluding these chromosomes, the centromeres with the highest mechanical coefficients 

were those of chromosomes 3, 5, and 17, while the centromeres of chromosomes 9, 1, 

and 16 had the lowest mechanical coefficients. Centromere mechanical coefficients did 

not correlate with centromere size or arm-SCNA frequency (Extended Data Figure 7b–

c), consistent with previous studies suggesting that other DNA-dependent features instead 

influence chromosome segregation fidelity41.

We also hypothesized that long telomeres protect chromosomes from telomeric copy-

number events, and thus chromosome arms with longer telomeres would have lower 

telomeric mechanical coefficients. This was indeed the case (Spearman’s rho = −0.65; p 

= 6.8e-6) (Figure 4c, Extended Data Figure 7d, and Supplementary Figure 3).

Only RF values predict arm-SCNA rates

To determine the contribution of selection versus mechanical biases on arm-SCNA 

formation, we assessed the correlation between their respective values and arm-SCNA rates 

within and across cancers (Extended Data Figure 7e and Extended Data Figure 8a). The only 

significant associations were between RFs and arm-SCNA rates. Moreover, as expected, the 

correlation was strongest between arm-SCNA rates and net RFs that reflect the aggregated 

effects of both positive and negative selection (Spearman’s rho = 0.72 and 0.53 for 

amplifications and deletions respectively; Figure 4d). We also found no relationship between 

arm-SCNA rates and missegregation probabilities determined by single-cell sequencing 

of non-transformed cells42 (Extended Data Figure 8b and Supplementary Table 6e), nor 

between chromosome arm length and RF values or arm-SCNA rates (Extended Data Figure 

8c–d). All of these hypotheses were further tested in a multivariate model, which found that 

positive and negative RFs were the only statistically significant predictors of arm-SCNA 

rates (Extended Data Figure 8e). Charm scores were previously found to correlate with 

arm-SCNA rates. However, BISCUT RFs appear to convey additional information; RFs and 

Charm scores each correlate more closely with aneuploidy rates than they do with one 

another (Supplementary Table 6d)33.

Selection in cancer can be lineage-specific22, and our lineage-specific analyses support the 

notion that arm-SCNA rates are determined largely by their fitness effects. Similar to the 

pan-cancer analyses, we calculated net RFs for each chromosome arm in each unique TCGA 

lineage and found that they significantly correlated with arm-SCNA rates in that lineage in 

55% (18/33) of cases (Fisher’s method p-value 3.5e-39; Figure 4e and Supplementary Table 

6f). The 15 cohorts in which a significant correlation was not observed were either small or 

primarily unaffected by SCNAs.

We conclude that selection is the main determinant of relative arm-SCNA rates both between 

chromosome arms and across cancer types.
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DISCUSSION

This study directly addresses the longstanding question of whether aneuploidy is positively 

selected for in cancer. We find strong evidence that SCNA-mediated effects on cellular 

fitness are highly associated with rates of aneuploidy in cancer, often in a tissue-specific 

manner. We also find evidence of negative selection on arm-level SCNAs. Whereas studies 

have shown that the effects of positive selection from coding point mutations greatly 

outweigh those of negative selection in cancer22, we show that both are significant 

in the SCNA context. We also demonstrate that length distributions of low-amplitude 

telomere- and centromere-bounded SCNAs – previously underappreciated subsets of 

somatic alterations – contribute new information to detect loci under selection in cancer.

As in all analyses that detect cancer drivers based on their frequency of alteration in cancer, 

BISCUT compares observed data to a background model that represents expected data 

in the absence of fitness effects. All of these methods can be biased by inaccuracies in 

their background models. For this reason, all candidate driver loci indicated by this or any 

other recurrence analysis require experimental validation. Further studies that improve the 

background model would greatly aid the detection of loci under selection. Despite these 

caveats, a key advantage of BISCUT is that it relies on step-function changes in breakpoint 

frequencies of partial-SCNAs rather than focally recurrent breakpoints, thus limiting the 

effects of localized fragility. Moreover, fragile loci usually undergo high rates of interstitial 

SCNAs, which are excluded from BISCUT analyses. None of the top 25 BISCUT deletion 

loci encompass known fragile sites, in contrast to 8 of the top 25 recurrent focal deletion 

peaks identified by GISTIC36.

BISCUT is unlike other recurrence analyses for somatic genetic events because it relies on 

the distribution of breakpoints across chromosome arms as opposed to maximal frequencies 

of alterations. Because it relies on widely dispersed signals, large sample numbers are 

required to gain high resolution into the precise loci under selection. Fortunately, both the 

decreasing costs of sequencing and the increasing prevalence of clinical sequencing are 

likely to provide very large numbers of samples that have undergone copy-number profiling. 

Our focus on the breakpoints of low-amplitude SCNAs does leave our analysis somewhat 

susceptible to false negatives – for example, both VHL and BAP1/PBRM1 (all tumor 

suppressor genes in KIRC) are within a highly recurrent telomere-bounded deletion on 3p 

(Extended Data Figure 6b), but only the latter locus is near the tel-SCNA breakpoint and 

therefore detected by BISCUT. However, BISCUT’s ability to detect effects of selection on 

low-amplitude SCNAs also allows it to identify driver genes that are missed by focal SCNA 

analyses. Future iterations of BISCUT can be adapted to detect loss-of-heterozygosity 

events, distinguish between different absolute copy-number states, and possibly incorporate 

gene expression.

Our findings indicate novel biology with respect to WRN. Germline mutations of WRN 
cause Werner syndrome, which is marked by premature aging including an increased risk 

of cancer. However, Werner syndrome only arises in the setting of biallelic WRN loss, 

and somatic alterations of WRN have not been shown to drive cancer. We find that partial 

suppression of WRN is sufficient to decrease cell death. We also find that hemizygous loss 
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of WRN is associated with specific mutational signatures including a lack of MSI, consistent 

with prior studies showing that ablation of WRN is synthetic lethal with MSI27. These 

findings support WRN as a haploinsufficient tumor suppressor gene.

Our analyses indicate that the ubiquity of arm-SCNAs in cancer is due to both selective 

and mechanical pressures. The fragility of centromeres supports the frequency with which 

arm-SCNAs are observed overall; the relative frequencies of different arm-SCNAs appear to 

be determined primarily by fitness effects according to our analyses. Centromeric breakpoint 

frequencies vary widely – from two-fold to ten-fold – across chromosomes. The sources 

of these discrepancies are unclear and may include: 1) differences in centromeric and 

pericentromeric DNA sequences, some of which have been shown to be overexpressed in 

epithelial cancers43, 2) three-dimensional folding of DNA44, or 3) how different centromeres 

interact with the centrosome via kinetochores45. Historically, it has not been possible to 

precisely map centromeric breaks24,46,47. Hopefully, when recently developed long-read 

shotgun sequencing and analysis methods to map peri/centromeric regions48,49 are applied 

en masse to tumor data, it will also be possible to determine whether breakpoints occur 

within the centromere or in the pericentromeric region. Future work to computationally 

model the likelihood of specific mechanical processes (e.g. merotelic attachment versus 

telomeric erosion)50,51 underlying not only aneuploidies, but also telomere- and centromere-

bounded SCNAs, would further our understanding of these highly common, yet mysterious, 

events in cancer biology.

METHODS

Generation and post-processing of segmented data from Affymetrix SNP 6.0 arrays

DNA from 10,872 tumors (mostly primary tumors except for 392 metastases, mostly 

melanomas, and 53 recurrent tumors) and their matched germline samples was hybridized 

to Affymetrix SNP 6.0 arrays using protocols at the Genome Analysis Platform of the 

Broad Institute as previously described53. Briefly, from raw .CEL files, Birdseed was used 

to infer a preliminary copy number at each probe locus54. For each tumor, genome-wide 

copy-number estimates were refined using tangent normalization, in which tumor signal 

intensities are divided by signal intensities from the linear combination of all normal 

samples that are most similar to the tumor55,56. This linear combination of normal samples 

tended to match the noise profile of the tumor better than any set of individual normal 

samples, thereby reducing the contribution of noise to the final copy-number profile. 

Individual copy-number estimates then underwent Circular Binary Segmentation (CBS) 

as implemented by the DNAcopy R package (http://www.bioconductor.org/packages/release/

bioc/html/DNAcopy.html), which segments DNA copy-number data and estimates copy-

number ratios for each segment57. As part of this process of copy-number assessment and 

segmentation, regions corresponding to germline copy-number alterations were removed by 

applying filters generated from TCGA germline samples. The standardized copy-number 

profiles generated as above are stored in the NCI Genomic Data Commons portal: https://

docs.gdc.cancer.gov/.

The ABSOLUTE algorithm58 was applied to data from these cancers, along with whole-

exome sequencing data from the same cancers when available (10,162 samples). Purity and 
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ploidy estimates and allelic copy numbers were called successfully in 10,497 samples. For 

samples with ABSOLUTE corrected copy number, CBS-derived segmented copy-number 

values were re-centered using the In Silico Admixture Removal (ISAR) procedure36. These 

are log2-corrected relative to the average ploidy of the sample, regardless of whole-genome 

doubling status.

Generation and post-processing of segmented data from whole-genome sequencing 
platforms

Illumina HiSeq whole-genome sequencing DNA from 2,658 tumors and their matched 

germline genomes from ICGC was aligned to human reference hs37d5. Then, consensus 

copy-number alterations were constructed from outputs of six different SCNA callers as 

previously described for the PCAWG (Pan-cancer Analysis of Whole Genomes) project25,59. 

In brief, each cancer’s genome was segmented into regions of constant copy number, 

separated by breakpoints denoting copy-number shifts. These breakpoints were based on 

PCAWG’s consensus structural variants (SVs), also previously described, which were 

complemented with high-confidence breakpoints (the intersection of genomic regions where 

these SCNA callers agreed a breakpoint must exist). Allele-specific copy number for each 

consensus segment was determined and combined. Finally, segments were assigned a level 

of confidence based on the degree of consensus on the major and minor allele copy-number 

states. On average, a strict majority of callers agreed on 93% of each cancer’s genome. 

The allelic copy-number profiles generated as above are stored in the ICGC Data Portal 

(PCAWG publication freeze): https://dcc.icgc.org/releases/PCAWG/consensus_cnv.

Samples were then filtered to only include those from the International Cancer Genome 

Consortium as opposed to The Cancer Genome Atlas. Duplicate samples were removed, and 

if there were multiple tumor samples from the same individual (e.g. primary and metastatic), 

then only the primary was kept. This left a total of 1,765 samples. Then, absolute copy 

numbers (i.e. sum of allelic copy numbers) were logarithmized relative to the sample’s 

calculated ploidy: CNrelative = log2
CNabsolute

ploidy  for consistency with copy-number data derived 

from SNP arrays (see above). For segments with absolute copy number of 0 (denoting a 

homozygous deletion), 0.1 was added to the absolute copy number to avoid the undefined 

value of log2 0 .

Deconstruction of copy-number segments into whole-arm, telomere-bounded, centromere-
bounded, and interstitial SCNAs

In order to study genomic regions likely to confer survival advantage or disadvantage if 

copy-number altered, we first needed to distinguish between different types of SCNAs in 

cancer, namely interstitial/focal, whole-arm, and partial-SCNAs (further split into telomere-

bounded and centromere-bounded SCNAs; Figure 1c), as well as determine background 

rates for these subtypes (Figure 1d). In some cases, partial-SCNAs might be divided by an 

interstitial SCNA (e.g. an arm-level gain with a small deletion in the arm). To accurately 

call the full length of partial-SCNAs, we joined copy-number-altered segments likely to 

represent single events and adjust the amplitudes of overlaying focal events accordingly.
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Here, we assumed that, to a first-order approximation, the distribution of partial-SCNA 

lengths was uniform while the distribution of interstitial SCNA lengths decreases as 1/

segment length (Figure 1g). In cases where a telomere- or centromere-bounded segment 

neighbored another segment in the same direction (i.e. gain or loss), we accounted for two 

possibilities: first, that these represented separate SCNAs (a partial-SCNA and a neighboring 

interstitial SCNA in the same direction), and second, that they represented a single partial-

SCNA with an intervening interstitial SCNA in the opposite direction. In either case, the 

partial-SCNA would have the same probability, due to the near-uniform length distribution 

of partial-SCNAs. The probability of the interstitial SCNA, however, would be greater for 

the smaller SCNA. Therefore, we chose between these possibilities the one involving the 

smaller interstitial SCNA. A similar analysis applied in cases of three or more neighboring 

segments.

Based on the logic above, we implemented a segment-joining algorithm as follows: 

we recorded all altered segments on each specified chromosome arm in each specified 

direction (amplification and deletion defined as log2 copy-number ratio > 0.2 and < −0.2 

respectively). If a segment spanned the centromere, we split it into two separate segments. 

In the case of telomere-bounded deletions, we then calculated the distance between the 

centromeric end of the telomere-bounded deletion and the end of the last altered interstitial 

deletion (i.e. closest to the centromere). If the total length of copy-number-altered DNA 

was greater than that of the intermediate non-deleted DNA, we recorded the end of the 

last altered segment as the breakpoint location of the telomere-bounded deletion. However, 

if it was not, we iteratively removed the last altered segment until this is true. We then 

join the remaining deleted segments, and the end of the last deleted segment is recorded as 

the breakpoint location. This is equivalent to the length of the partial-SCNA, as a fraction 

over the length of the arm. The same approach applies for amplifications and centromeric-

bounded events. An example is depicted in Supplementary Figure 4. As a test of the validity 

of this approach, we also implemented an alternative “half-joining” algorithm, in which 

we joined adjacent segments with the same copy-number direction – for example, if two 

segments were immediately adjacent and both represented amplifications, we would not end 

the partial-SCNA at the end of the first segment, but rather extend it to the end of the second 

segment. However, we stopped extending the partial-SCNA as soon as we encountered a 

segment with no copy-number change or a change in the opposite direction (e.g. a deletion 

following an amplification).

If this approach yielded a tel-SCNA that ended at the centromere, a cent-SCNA that ended 

at the telomere, or an overlapping tel-SCNA/cent-SCNA (e.g. tel-SCNA ending close to 

the centromere and cent-SCNA ending close to the telomere in the same direction), we 

designated an arm-SCNA on this arm. Arm-SCNAs were further classified as “centromeric” 

if they affected only the arm in question and did not extend at all into the other arm 

of the chromosome. Acrocentric chromosomes 13, 14, 15, 21, and 22 were excluded 

from this classification. “Centromeric” arm-SCNAs were included in the calculation of the 

centromeric mechanical coefficient; non-centromeric ones were not.
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Compilation of most frequent somatic alterations in cancer

Rates of aneuploidy were derived for 10,872 tumors across 33 TCGA tumor types from the 

copy-number segment-joining method detailed above; only arm-SCNAs were considered. 

Somatic mutations were called from 9,423 tumor exomes across 33 TCGA tumor types28. 

Rates of mutation were reported for 299 likely driver genes.

We determined focal SCNA rates for 10,872 tumors across 33 TCGA tumor types 

by running GISTIC 2.0 (v2.0.23 on GenePattern https://cloud.genepattern.org/gp/pages/

index.jsf) on segmented data containing only amplitude-corrected interstitial events (see 

segment-joining method above). We used a noise threshold of 0.2, broad length cutoff 

of 0.5 chromosome arms, confidence interval of 99%, and copy-ratio cap of 1.5. For the 

top 25 most significant focal amplifications and deletions separately, we calculated their 

frequencies of focal alteration, defined as >0.2 or <−0.2 copy number in the output file 

focal_data_by_genes.txt.

Fusion genes were identified from 9,624 tumors across 33 TCGA tumor types using various 

fusion calling tools60. Pan-cancer fusion gene rates were reported for fusion genes found 

to be recurrent in any tumor type. Fusions between the same two genes, regardless of pair 

order (e.g. TMPRSS2-ERG versus ERG-TMPRSS2) were considered as the same event, and 

reported in alphabetical order.

Hyper- and hypo-methylation leading to epigenetic silencing or enhancement were 

determined from 5,898 tumors across 24 TCGA tumor types/subtypes (ACC, BLCA, 

BRCA-basal, BRCA-nonbasal, CESC, COADREAD, ESCA, GBM, HNSC, KICH, KIRP, 

LAML, LGG, LIHC, LUAD, LUSC, OV, PRAD, SKCM, STAD, THCA, UCEC, and 

UCS) using the RESET method61. Pan-cancer rates were calculated for genes that were 

significantly silenced or enhanced in at least one tumor type by back-calculating the total 

number of events in each tumor type. Although there was likely methylation of these genes 

in other tumor types, these events were not included because there was no evidence of 

correlation of methylation with gene expression.

BISCUT peak-finding algorithm

BISCUT’s peak-finding algorithm performs two main functions: 1) it detects loci that appear 

to underlie fitness effects of arm-SCNAs; and 2) it determines confidence intervals (“peak 

regions”) bounding each of these loci, within which the specific site undergoing selection is 

likely to be present at a preset level of confidence.

To detect loci that are likely to be affected by fitness effects, we first sort our set of partial-

SCNA breakpoints T i = t1, t2, ⋯, tn  by increasing order. If there were multiple breakpoints 

in the cohort ending at the same SNP array probe (suggestive of a region lacking SNP 

coverage), these were linearized uniformly to the next covered probe (e.g. if bases 10 and 

19 are present in the array, but there are three breakpoints ending at base 10, then these 

would be analyzed as 10, 13, and 16). We then use a two-sample Kolmogorov-Smirnov test 

to compare T i to the empirical “background” distribution, comprising all telomere-bounded 

SCNA lengths across the dataset of 10,872 cancer specimens across 33 cancer types. We 
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called loci meeting the criteria n   ≥   4 and pKS   ≤   0.05 as under selection, where n is the 

total number of partial-SCNAs.

The boundaries of the “peak region” are detected such that they include the gene, set of 

genes, or other genomic elements that confer fitness effects when altered at a confidence 

level of γ, where γ is a user-specified parameter. To simplify these calculations, we 

approximate the empirical background distribution by an incomplete beta function:

Bi = Ix x; α, β ,

where x is the partial-SCNA breakpoint location and α and β are the parameters of the 

beta function. We selected a beta function as the best-fit univariate distributions to the 

empirical data among the following distributions: normal, exponential, Poisson, gamma, 

logistic, binomial, geometric, beta, and uniform. We determined this fit and α and β for each 

of the four groups of partial-SCNAs: telomere-bounded amplifications, telomere-bounded 

deletions, centromere-bounded amplifications, and centromere-bounded deletions, using the 

fitdist function from the fitdistrplus R package (v1.0–14)62 (Supplementary Table 2e).

We determine whether the strongest genomic region of selection confers positive or negative 

selection using the following equation:

direction of selection = positive if T i − Bi > 0, else negative

Then, the “starting peak,” or genomic locus from which to expand the peak region to define 

the final set of boundaries, is the breakpoint location (peak) at which T and B maximally 

diverge.

We then define boundaries on either side of this starting peak using a helper function, 

H p , that determines whether the breakpoint directly to the left and right of peak has a 

95% chance of belonging to a distribution unaffected by fitness effects. For this purpose of 

determining confidence intervals, we use an approximation of the background distribution 

for computational efficiency; specifically a beta distribution that has been fit to the empirical 

background: Bi. The helper function first approximates the generalized extreme value 

distribution GEV left peak0 , which comprises 1000 independently generated maximum values 

of nleft random variates following the background distribution Bi, where nleft is the number 

of tumors to the left of the peak. This is repeated on the right. In order to define the 

right boundary of our peak region, we repeat GEV left peakx x = 1
∞  where x represents the xth 

tumor to the right of the original peak. If peakx − 1 is greater than the 97.5% percentile of 

GEV left peakx , then we call peakx as the right boundary of the BISCUT peak region. If not, 

we infer that peakx − 1 is unlikely to belong to the left-sided distribution, and we continue 

GEV left peakx x = 1
∞  until the former is true. To define the left boundary of our peak region, we 

perform GEV rigℎt peakx x = − 1
−∞  where x represents the xth tumor to the left of the original peak. 

If peakx − 1 is greater than the 97.5% percentile of GEV rigℎt peakx , then we call peakx as the left 

boundary of the BISCUT peak region. If not, then we infer that peakx + 1 is likely to belong to 
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the right-sided distribution, and we continue GEV rigℎt peakx x = − 1
−∞  until the former is true. This 

corresponds to a 95% confidence interval; this confidence level can be adjusted by the user.

We repeat the entire BISCUT method recursively to the right and left of the calculated peak 

boundaries until one of the following is true: 1) there are not at least 4 breakpoints in the 

analysis, 2) significance is not reached, 3) a tentatively discovered peak overlaps with one 

that occurred in a prior iteration, or 4) a tentatively discovered peak covered more than half 

the length of a chromosome arm.

Provided there were at least 4 breakpoints, all KS p-values are corrected for multiple 

hypothesis testing using the Benjamini-Yekutieli method63, which controls the false 

discovery rate (FDR) under complicated dependence structures including both positive 

and negative dependencies. Peaks were considered significant if their Benjamini-Yekutieli-

corrected q-values were ≤ 0.05. The genes listed in each peak region include all protein-

coding genes, microRNAs, and additional noncoding RNAs from NCBI’s RefSeq release 85 

as of February 3, 2018. If a peak (e.g. iteration 2) is dependent on a previous peak (e.g. 

iteration 1) that has been removed from significance due to multiple hypothesis correction, 

the dependent one is also removed from the final results.

Assessment of breakpoint frequency by genome properties

Sources for each of the following genomic properties are listed:

Alu Repeat Li et al., 202059

LINE Repeats Li et al., 2020

SINE Repeats Li et al., 2020

LTRs Li et al., 2020

Simple Repeats Li et al., 2020

Satellite Repeats Li et al., 2020

Common TAD Boundaries Li et al., 2020

LAD Domains Li et al., 2020

CTCF Bound Domains Li et al., 2020

Common Fragile Sites Li et al., 2020

Evolutionary Conserved CpG Islands Li et al., 2020

Genes Li et al., 2020

ORC Binding Sites Miotto et al., 201664

Enrichment of known cancer genes in BISCUT peak regions

We calculated the statistical significance for the overlap between unique genes in BISCUT 

peak regions and those reported to be cancer-driving genes from the COSMIC Cancer 

Gene Census65 using a hypergeometric test implemented at the following website: http://

nemates.org/MA/progs/overlap_stats.html. Specifically, we used “restricted” peak lists; i.e. 

BISCUT peaks that contained 50 genes or fewer. Two gene lists were used (after filtering for 

genes only on autosomal chromosomes and covered by the Affymetrix SNP 6.0 array): one 
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containing 663 genes from both Tier 1 and Tier 2, and one containing 527 genes from only 

Tier 1.

Estimating dN/dS (non-synonymous to synonymous mutation) ratios in BISCUT peak 
genes

The dNdScv method22 was used to obtain global estimates of the ratio of non-synonymous 

to synonymous mutations in a) the 548 genes that are protein-coding (RefCDS) and are 

identified by BISCUT to be in restricted del-neg peaks (50 genes or fewer), and b) the 446 

protein-coding genes that are identified by BISCUT to be in restricted del-pos loci. In both 

cases, dN/dS ratios were compared to 1000 randomly selected sets of the same number of 

genes (548 and 446, respectively) to calculate the statistical significance of their deviations 

from what would be expected by random chance.

Lineage-corrected comparisons of breakpoint distributions

A few analyses throughout this manuscript involve comparison of partial-SCNA 

distributions between different groups or characteristics of tumors (e.g. diploid versus 

whole-genome doubled samples). Because these characteristics were often confounded by 

tumor type, we performed KS-statistics between the partial-SCNA distributions of these 

groups separately for each independent tumor type, and combined p-values using Fisher’s 

method. Comparisons that did not have at least four samples in each group were excluded. 

FDR correction was performed on p-values derived from Fisher’s method.

Lineage specificity of breakpoint distributions

To determine the relative lineage specificity of partial-SCNAs involving specific 

chromosome arms, we first compared the breakpoint vector of a partial-SCNA (e.g. 3p 

telomere-bounded deletions) within a specific tumor type (e.g. KIRC) to that of all other 

samples in our dataset by computing the log2 Jensen-Shannon Divergence (JSD)66,67 

between their quantile values (total of 101 values). The JSD is a measure of similarity 

between probability distributions in which a low value indicates similarity and a high value 

indicates dissimilarity. We normalized for the number of tumors contributing to a single 

score by multiplying the log2 JSD by n
n  to arrive at the “divergence score”. We then report 

the variance of these values across different tumor types within the same partial-SCNA 

(amplification or deletion in each chromosome arm) as the “lineage-specificity score” 

(Supplementary Table 4g).

Overlap of BISCUT peak regions and clustering analysis

Two peak regions from different cohorts were considered to overlap if their 95% confidence 

intervals intersected. When assessing for significant peak overlap between two cohorts 

(i.e. sets of peak regions), peaks were only compared to other peaks sharing the same 

directionality (i.e. amplification versus deletion) and selection type (i.e. positive versus 

negative) using the R packages GenomicRanges68 and regioneR69. Specifically, we obtain 

p-values from the overlapPermTest function from the latter package, which performs a 

permutation test to see if the overlap between two sets of regions is more or less frequent 
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than expected by chance. We then combine p-values between each of the four categories 

(amp-pos, amp-neg, del-pos, and del-neg) using Fisher’s method.

To determine peak regions that significantly overlap across all of the tumor types, we also 

ran GISTIC 2.0 (version 2.0.23) on segmented copy-number files generated from the 95% 

confidence intervals of the BISCUT peaks. Telomere-bounded and centromere-bounded 

peaks were combined, but negative and positive selection peaks were separated, such that 

each row within the segmented file was represented by a combination of a tumor type and 

direction of selection: e.g. LUAD_n or BRCA_p. For positive selection, peaks derived from 

amplifications were considered to have positive amplitude equal to their “significance score” 

(KS-statistic * -log10 q-value), and peaks from deletions were considered to have negative 

amplitude. For negative selection, peaks from deletions were considered to have positive 

amplitude and peaks from amplifications had negative amplitude. GISTIC 2.0 was run 

with a confidence interval of 99% for positive selection peaks and negative selection peaks 

separately. All unique tumor types were clustered based on the thresholded copy number 

at recurring peaks from the “all_lesions.txt” file from GISTIC. Hierarchical clustering was 

performed in R using Euclidean distances and Ward’s method (Ward.D).

Power and accuracy analysis on simulated datasets

In order to assess BISCUT’s ability to detect driver events, we generated in silico sets 

of partial-SCNA breakpoints, with various degrees of simulated selective advantage or 

disadvantage, and at multiple locations across a chromosome arm (Supplementary Figure 

1a). Background distributions for tel-SCNAs and cent-SCNAs were assessed independently; 

within those, amplifications and deletions were combined (Supplementary Table 2e).

To create the breakpoint data, we started by generating a set of n = [200, 500, 1,000, 10,000] 

random samples from the corresponding beta background distribution. We defined several 

locations for theoretical driver genes l = [0.1, 0.2, …, 0.9], which represents the distance 

across the chromosome arm (0 at the telomere and 1 at the centromere for telomere-bounded 

SCNAs, and vice versa). We introduced several levels of selective pressure s = [0.02, 0.05, 

0.1, 0.2, 0.25, 0.5, 1, 2, 4, 5, 10, 20, 50], where s represents the likelihood of a tumor that 

contains the driver event relative to a tumor that does not contain the driver event. For each 

b within the set of n random samples derived from the background distribution, we then 

include it at a rate of: rb = 1
1 + s  if b < l, otherwise rb = 1 − 1

1 + s . This was repeated 100 times 

for each combination of n, l, and s, separately for tel-SCNAs and cent-SCNAs.

We then ran BISCUT at a confidence level of 0.95 on the simulated sets of tel-SCNAs 

and cent-SCNAs separately. For each combination of n, l, s, and type of partial-SCNA 

(tel-SCNA versus cent-SCNA), we report the frequency at which BISCUT correctly includes 

the locus l in its peak region as power (also known as sensitivity or recall). We also calculate 

the positive predictive value (PPV, also known as precision) by dividing the number of 

detected peaks containing the locus l by the total number of detected peaks. If BISCUT 

did not detect a peak in a particular set of breakpoints, this analysis was removed from the 

denominator. The F1 score was calculated as the harmonic mean of precision and recall: 

F1 = 2 * precision   *   recall
precision   +   recall . For each statistic, we generated a “combined” statistic by taking 
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the weighted average of the statistic from tel-SCNAs and cent-SCNAs, where weights are 

defined as the total number of tel-SCNAs and cent-SCNAs in our dataset (n = 51,588 and 

34,007 respectively).

Simulations of delta functions

Similar to above, we also wished to test BISCUT’s performance on simulated “easily 

breakable” loci that might interfere with our background distributions. Each breakable locus 

would be observed as a delta function in breakpoint density, so we simulated such delta 

functions to assess how such loci would affect BISCUT results.

To create the breakpoint data, we started by generating a set of n = [50, 100, 200, 500, 

1,000] random samples from the averaged beta background distribution. We defined several 

locations for the delta function l = [0.1, 0.2, …, 0.9], which represents the distance across 

the chromosome arm. We also tested several frequencies at each set location f = [0.01, 

0.02, …, 0.5], which represents the fraction of total samples that is designated to break at 

l (e.g. if n is 200, l is 0.7, and f is 0.24, then there will be exactly 48 simulated tumors 

with a breakpoint at 0.7 of the chromosome arm). This was repeated 100 times for each 

combination of n, l, and f.

We then ran BISCUT at a confidence level of 0.95 on the simulated datasets. For each 

combination of n, l, and f, we report the frequency at which BISCUT includes the locus l in 

its peak region, which reflects false positive hits. Specifically, we also report the minimum 

fraction of samples at each l required to cause false positive results 5% and 50% of the time 

(Supplementary Figure 1e–g).

Simulations of SNP “coverage deserts”

To assess the issue of non-uniform coverage of the genome in the experimental platform 

used to assess copy numbers, we simulated “coverage deserts” ranging from 1% to 10% of a 

chromosome arm.

To create the breakpoint data, we started by generating a set of n = [100, 500, 10,000] 

random samples from the averaged beta background distribution. We set l (location of 

theoretical driver gene) at 0.5, and used several levels of selective pressure s = [0.1, 0.2, 

0.25, 0.5, 1, 2, 4, 5, 10]. We then generated SNP “coverage deserts” of size 0.01, 0.05, and 

0.1 of the chromosome arm starting from desert location d = [0.1, 0.2, …, 0.9]. This was 

repeated 100 times for each combination of n, s, d, and desert size.

We then ran BISCUT at a confidence level of 0.95 on the simulated datasets. For each 

combination of n, s, d, and desert size, we report the frequency at which BISCUT 

successfully includes the locus l in its peak region (power). We also report the specificity, 

calculated as 1-false positives; we count a false positive when BISCUT reports d as the 

location of the peak (Supplementary Figure 1h).

Mutational signatures in TCGA samples with WRN/8p loss

We wished to compare the mutational signature profiles between TCGA tumors with and 

without WRN copy loss and with and without 8p arm-level deletions. Only tumors with 
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whole-genome sequencing data included in the PCAWG (Pan-cancer Analysis of Whole 

Genomes) project25 were analyzed (total n = 828). Consensus somatic SNV and indel 

calls, which were derived from merging calls from various caller pipelines using the 

SNV-MERGE script70, were downloaded from the ICGC Data Portal (https://dcc.icgc.org/

releases/PCAWG/consensus_snv_indel).

We first extracted de novo SBS signatures from the samples with SignatureAnalyzer (https://

github.com/getzlab/SignatureAnalyzer)71,72. Each de novo signature was then assigned to 

the COSMIC v3 SBS signature that had the highest cosine similarity with the de novo 
signature (https://cancer.sanger.ac.uk/signatures). Since multiple de novo signatures mapped 

to a COSMIC signature, we then ran supervised signature extraction with all unique 

COSMIC SBS signatures (38 total) identified from the de novo analysis (Extended Data 

Figure 6f).

We compared the relative activity of each COSMIC signature between TCGA tumors 

with and without WRN copy loss, and with and without 8p arm-level deletions. Samples 

associated with MSI and POLE mutation were removed73, and the remaining samples were 

grouped by WRN copy-number status (WT versus WRN copy loss) or 8p status (WT 

versus 8p arm-level deletion). We performed two-tailed Mann-Whitney U tests to compare 

the relative signature activity between samples with and without WRN/8p loss. P-values 

were calculated per independent tumor type, combined using Fisher’s method, and FDR 

corrected.

Cell maintenance and genome engineering

8p was deleted in XX (female) immortalized lung epithelial cells (AALE cells) by SV40 

large-T antigen74 which tested negative for mycoplasma and were authenticated using DNA 

fingerprinting. All AALE cells were maintained at 37 degrees Celsius and 5% CO2 in Lonza 

small airway growth medium (CC-3118). Deletion methods were as previously described2. 

Briefly, two different Cas9 guide sequences were used: TATGCTATACGGAATTCCAT 

and TAATAAAGAACTATGCTATA . Guides were cloned into px330 (Addgene 42230). 

One kilobase of sequence homologous to the 8p pericentromeric region adjacent to 

the CRISPR cut sites was amplified by primers AATGGCACAGTGCTTTACAG and 

GCAGCTTAGCCAATGGAAGC and cloned via Gibson assembly (New England Biolabs 

E2611) into a telomere-containing plasmid (TCP) with puromycin resistance. Cells were 

transfected with 1.2 μg guide plasmid and 1.2 μg linearized or digested TCP. Puromycin 

selection at 2 μg/mL started one day post transfection. Genomic DNA was isolated 

from puro-resistant clones using the QiaAmp Mini DNA kit (Qiagen) and analyzed for 

recombination via PCR. Single-cell cloning was used to isolate clones with 8p deletion. 

Validation of deletion was performed by PCR, qPCR, and low-pass whole-genome 

sequencing.

DNA/RNA sequencing of genome engineered cell lines

DNA was isolated from cells using the QiaAmp Mini DNA kit (Qiagen) following 

manufacturer instructions. Sequencing library preparation was performed using the Lotus 

DNA Library Kit (IDT) following kit protocols. The index sequences used were the xGen™ 
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Stubby Adapter and UDI Primer Pairs (IDT) Version 2. Samples were pooled and sequenced 

by miSeq, 300 bp paired end. Copy-number profiles were generated via HMMCopy (https://

bioconductor.org/packages/HMMcopy/). Subclonal analysis was performed using ichorCNA 

v0.2.0 (https://github.com/broadinstitute/ichorCNA)75.

RNA isolation was performed using the RNeasy® Mini Kit (Qiagen), including an optional 

DNase digestion step and an optional extra spin. The amount of RNA submitted for each 

sample ranged from 200–800 ng. All library preparation and subsequent RNA-seq was 

completed by the JP Sulzberger Columbia Genome Center. Polyadenylated RNA was used 

for library preparation, and each sample had at least 20 million reads on an Illumina 

NovaSeq.

Mutational signatures in 8p engineered cell lines

RNA-sequencing FASTQ files were obtained from cell lines with engineered 8p arm-level 

deletions and their disomic counterparts (n = 8 per category). Following GATK best 

practices, the FASTQs were aligned to hg38 with STAR v2.7.10b, and processed with 

MarkDuplicates v3.0.0, and SplitNCigarReads v4.0.11.076,77. Variants were then extracted 

with Mutect2 and annotated with Funcotator. We removed variants that were in the 

gNOMAD and 1000 Genomes databases, and also those that occurred in more than one 

cell line. We then ran supervised signature extraction with the 38 unique COSMIC SBS 

signatures previously identified in the TCGA samples (see Mutational signatures in TCGA 

samples with WRN/8p loss section above). Two-tailed Mann-Whitney U statistics were 

calculated to compare the relative signature activity between the cell lines with and without 

8p loss.

Cell transfection, and proliferation assays

Transfections were performed using Fugene-6 (Promega E2691) following manufacturer’s 

instructions at a 3:1 ratio in 12-well plates and 96-well plates. WRN siRNA-mediated 

knockdown was performed with siGENOME Human WRN siRNA (Horizon Discovery 

D-010278–02-0020) for a final concentration of 90nM. In parallel, siGENOME Non-

Targeting siRNA Pool #1 (Horizon Discovery D-001206–13-20) was used as a negative 

control. WRN overexpression was performed by transfecting plx209neo-WRN27 and 

plx209neo-EGFP as a control at a final concentration of 2μg. Cells were selected with 

neomycin at a final concentration of 1mg/mL starting 48 hours after transfection for ten 

days.

For cell proliferation assays, 1500 cells were plated per well in a 96-well plate in 100μL 

of media. For cells with WRN overexpression, at days 0, 3, and 5, CellTiter-Glo Reagent 

(Promega G7570) (20μL) was added. Plates were incubated on a benchtop shaker at room 

temperature for 10 minutes before luminescence readings. For cells with siRNA transfection, 

cells were transfected one day after plating and incubated with CellTiter-Glo 2–6 days post 

transfection, using the same incubation protocol.
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Flow cytometry and caspase assays

For apoptosis analysis, adherent cells were first washed, trypsinized, and collected. When 

possible, floating cells pre-wash were also collected and analyzed. Pre-staining, 10μL was 

removed for trypan blue staining at a 1:2 ratio and percent of living cells counted using 

the Invitrogen Countess II. Cells were stained with annexin V (Tonbo Biosciences 35–6409-

T100) following manufacturer’s instructions for 15–20 minutes. Cells were then stained with 

propidium iodide (PI) solution. PI and annexin V levels were measured on the BD Fortessa. 

Gating cut-offs for PI and annexin V stained samples were determined by comparison to 

unstained or singly stained samples using FlowJo (strategy detailed in Supplementary Figure 

2). For caspase assays, 1500 cells were plated per well in a 96-well plate in 100 μL media. 

To read caspase signal, Caspase-Glo Reagent (Promega G8091) (20μL) was added to each 

well two days post siRNA transfection.

Quantitative PCR

Quantitative PCR (qPCR) was performed using the Power SYBR Green PCR Master Mix 

(ThermoFisher 4367659), with the listed primers. Normalizations were performed against an 

endogenous ACTB or UBC control. qPCR Primer sequences:

WRN F: GCGACATGAACAAACAGTTGA

WRN R: GCTGGGCCTCAGTTCAGTCT

KAT6A F: TGGCTCCAGTCAGTTCTACAC

KAT6A R: TGAGAATTGGTGGCGAGCTT

ANK1A F: CTTCTTAGGGGGTGTCGCC

ANK1A R: GTGAAATTGACGCTGGCTCC

EPN2 F: GGGTGTCAAACTGAGCCAGA

EPN2 R: CAGTGAGCACCCAGCACTTA

PPFIA1 F: GAGACTAAGAGCCGACCCCA

PPFIA1 R: AGACTTCCACTGCCAACTCG

ACTB F: TGGAGAAAATCTGGCACCAC

ACTB R: AGGGATAGCACAGCCTGGAT

UBC F: CGGGATTTGGGTCGCAGTTCTTG

UBC R: CGATGGTGTCACTGGGCTCAAC
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Peak-level and arm-level RFs

To calculate the “peak-level” RF of each BISCUT peak (i.e. the amount of positive or 

negative selection conferred by the partial copy-number alteration of a given locus, we first 

separated peaks by chromosome arm, amplification versus deletion, and telomere-bounded 

versus centromere-bounded, and within these ranked each statistically significant peak by its 

genomic location as fraction of chromosome arm length. If there was at least one BISCUT 

peak, we considered the tumors with partial-SCNAs smaller than the length ascribed to the 

leftmost (i.e. smallest) BISCUT peak to be under no selective advantage or disadvantage 

(i.e. “reference”), where the empirical number of partial-SCNAs is equal to the expected 

number E0
1. Henceforth, we considered the segment [Sp

end, Sp + 1
start] between each peak p and p+1 

to be immediately affected by the selective advantage or disadvantage conferred by peak p. 

For each segment between two peaks, we calculated the number of partial-SCNAs expected 

to be in this segment in the absence of selection as:

Ep
p + 1 = (Ix Sp + 1

start; α, β − Ix Sp
end; α, β ) * Ep − 1

p

Ix Sp
start; α, β − Ix Sp − 1

end ; α, β
,

where Ix x; α, β  is the incomplete beta function and α and β are the corresponding probability 

parameters. We then reported the “peak-level” RF for a peak p as the number of empirical 

partial-SCNAs in [Sp
end, Sp + 1

start] over the expected number Ep
p + 1. This value is greater than 1 for 

positive selection and smaller than 1 for negative selection (Extended Data Figure 7a).

The “arm-level” RF is a representation of the density and “peak-level” RFs of BISCUT 

peaks on each arm, calculated separately for amplifications and deletions. For each arm-

SCNA, positive and negative selection peaks are assessed both separately (positive and 

negative RFs respectively) and together (net RF). We then define the log RFs as the log2 

value of the product of the relevant RFs (only those greater than 1 for positive selection, 

only those smaller than 1 for negative selection, and all RFs for net selection), such that net 

log RFs greater than 0 represent positive selection, and those less than 0 represent negative 

selection. Only telomere-bounded peaks were included in this analysis.

Centromeric and telomeric mechanical coefficients

We developed a centromeric mechanical coefficient to represent the likelihood of an SCNA-

causing breakpoint occurring in a specific centromere relative to the likelihood of one 

occurring within its flanking chromosome arm(s), corrected for the selection affecting those 

arm(s). This was calculated as the average of four individual values (two for acrocentric 

chromosomes): mechanical coefficient for amplifications and deletions of the short and long 

arms (only long arms for acrocentric chromosomes).

To calculate centromeric mechanical coefficients for each arm and direction of SCNA (i.e. 

amplification versus deletion), we divided the density of arm-SCNA breakpoints within 

the centromere (the number of “centromeric” arm-SCNAs, see above) by the density 

of breakpoints within the region immediately flanking the centromere up to the nearest 

BISCUT peak (Extended Data Figure 7a). For acrocentric chromosomes, the density of 

breakpoints within both the centromere and p arm was used as the numerator, since the 
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p arm lacked coverage. We used the density of partial-SCNA breakpoints only out to the 

nearest BISCUT peak because these partial-SCNAs likely underwent similar selection as 

the centromeric arm-SCNAs and we wanted to exclude effects of selection when calculating 

these mechanical coefficients. For consistency with RFs, we reported the log2 value of this 

quotient, such that a value greater than 0 represents positive mechanical bias and a value less 

than 0 represents negative mechanical bias.

We calculated telomeric mechanical coefficients for each chromosome arm and direction of 

copy-number change as the number of tel-SCNA breakpoints occurring prior to the start of 

the BISCUT peak closest to the telomere, divided by the incomplete beta function (i.e. the 

cumulative probability distribution) at the start of the first BISCUT peak, measured as the 

fraction of the length of its chromosome arm (Extended Data Figure 7a). These coefficients 

were designed to reflect the propensity for telomeric events to occur in the absence of 

selection. Telomeric mechanical coefficients were recalculated using the “2/4 analysis,” in 

which relative copy-number segments were renormalized to a baseline ploidy of 2 if the 

sample did not undergo whole-genome doubling, or 4 if it underwent one whole-genome 

doubling. Samples designated as having undergone two or more whole-genome doubling 

events were removed. The original log2 copy ratio r (after ISAR correction as described 

above) was renormalized to a baseline ploidy of 2 or 4 (r’) using the equation:

r′ = log2 2r * ploidy
2   or   4

Lastly, in order to test which coefficients correlated best with rate of arm-SCNAs, we 

used a Generalized Linear Model (GLM) framework for a multivariate analysis (Extended 

Data Figure 8e). Specifically, we fit separate GLMs to arm-SCNA rates of amplifications 

and deletions across all cancer types. The arm-SCNA rate along each chromosome arm 

was modeled as a random sample from a normal distribution where the mean is a linear 

function of predictors (i.e., positive RF, negative RF, telomeric mechanical coefficient, and 

centromeric mechanical coefficient (all in logarithmic scale):

E Y = ∑iβiXi

where Y is the random variable for modeling arm-SCNA rates, Xi is a predictor, and βi

encodes the strength of correlation between Xi and Y. A p-value was also computed for each 

predictor’s correlation with arm-SCNA rates. We then used Fisher’s method to combine 

p-values from independent tests (individual cancer types) to obtain a single p-value for the 

pan-cancer meta-analysis.
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Extended Data

Extended Data Figure 1: Additional information on different types of SCNA and the BISCUT 
method.
(a) Empirical examples of low centromeric mechanical bias (1q telomere-bounded deletions, 

for which the ratio of breakpoints occurring in the centromere over those occurring in 

the arm is less than 1), and high centromeric mechanical bias (5p telomere-bounded 

amplifications, for which the centromere/arm breakpoint ratio is much greater than 1). 

Within the chromosome arm, bins are 1 Mb large.

(b) Mean amplification and deletion breakpoint density within chromosome arms, 

aggregated across all tumors and all chromosome arms (n = 67; binned by Mb), versus 

breakpoint density within all centromeres (values in breakpoints per megabase). Error bars 

represent the 95% confidence interval for the mean. C/A Ratio represents centromeric breaks 

over arm breaks.

(c) Comparison of length distributions of telomere-bounded, centromere-bounded, and 

interstitial amplifications and deletions, aggregated across all chromosome arms.

(d) Example depicting BISCUT’s recursion steps. From top to bottom: BISCUT detects 

peaks iteratively, walking both left and right if a significant peak is detected, with the new 

boundaries including the detected peak. If a peak is not detected, overlaps with a previous 

peak, or there are fewer than 4 samples, the analysis is stopped. See Figure 2c and Methods 

for details.
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Extended Data

Extended Data Figure 2: Pan-cancer BISCUT analysis.
(a) Summary statistics of the four types of BISCUT peaks in pan-cancer.

(b) Sizes of peaks (in bases) from the pan-cancer BISCUT analysis. From left to right, peaks 

are categorized by direction of selection (n = 90 and 103 for positive and negative selection 

respectively), direction of copy number imbalance (n = 80 and 113 for amplifications and 

deletions respectively), and origin of partial-SCNA (n = 163 and 30 for telomere-bounded 

and centromere-bounded respectively). Two-tailed p-value was calculated using a Mann-

Whitney U test.
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(c) Overlap between genes in BISCUT peaks and Tier 1 COSMIC cancer genes. The 

numbers of peaks containing these genes are depicted in green. A one-tailed p-value was 

calculated using a permutation test as outlined in the Methods.

(d) Negative selection peaks from the pan-cancer BISCUT analysis, sorted from highest to 

lowest by fraction of samples subject to these fitness effects that also possessed overlapping 

focal SCNAs in the opposite direction. Peaks that overlap with GISTIC 2.0 peaks are 

denoted in dark red and dark blue.

(e) BISCUT analysis detecting two positive selection peaks (top: 9p telomere-bounded 

deletions, overlapping with CDKN2A focal deletions; bottom: 8q telomere-bounded 

amplifications, overlapping with MYC focal amplifications) with focal SCNAs removed 

(left) and with focal SCNAs included (right).

(f) BISCUT analysis detecting two negative selection peaks (top: 8q telomere-bounded 

deletions, overlapping with MYC focal amplifications; bottom: 11q telomere-bounded 

deletions, overlapping with YAP1/BIRC3 focal amplifications) with focal SCNAs removed 

(left) and with focal SCNAs included (right).
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Extended Data

Extended Data Figure 3: Lineage-specific divergence of breakpoint distributions from the 
background distribution.
Heatmaps of lineage divergence scores for each tumor type (x-axis) and chromosome arm 

(y-axis). Amplifications are on top (in red) and deletions are on the bottom (in blue). Darker 

color represents a higher divergence score.
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Extended Data

Extended Data Figure 4: Patterns of chromosome 3p deletions are highly lineage-specific.
(a) Lineage-specificity scores across chromosomes. The left chromatid is shaded in red 

and represents amplifications, whereas the right chromatid is shaded in blue and represents 

deletions. Darker colors indicate greater lineage-specificity.

(b) BISCUT analysis of telomere-bounded deletions on chromosome 3p in three different 

cohorts. The top panels display telomere-bounded deletions, sorted by length. The bottom 

panels show the vertical distance of each tel-SCNA from the background distribution; the 

maximum deviation is denoted by the solid vertical line. The dashed lines represent the 

peak regions determined to be under significant positive selection (i.e. conferring survival 

advantage in this cohort).
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(c) Genomic locations and corresponding significance score of positive selection deletion 

BISCUT peaks on chromosome 3p across lineages. See Supplementary Table 2a for tumor 

type abbreviations.

Extended Data

Extended Data Figure 5: Hierarchical clustering of BISCUT peaks across lineages.
Matrix of significantly recurring BISCUT peaks across 33 independent tumor types. Peaks 

are sorted by genomic location (vertical axis), with four distinct classes of peaks in dark red 

(positive selection in amplifications), light red (negative selection in deletions), light blue 

(negative selection in amplifications), and dark blue (positive selection in deletions). Tumor 

types are sorted and color-coded (k = 5) according to hierarchical clustering by Ward’s 

method (horizontal axis).
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Extended Data

Extended Data Figure 6: Cells engineered with chr8p deletion for validation of genes in BISCUT 
selection peaks.
(a) Schematic for 8p deletion approach. Cells were transfected with a CRISPR targeting 

8p just outside the centromere and with a linearized plasmid containing an artificial 

telomere, puromycin selection cassette, and 1 kilobase of sequence homologous to the 8p 

pericentromeric sequence. Puromycin selection was used to isolate cells with 8p replaced by 

the artificial telomere.

(b) ichorCNA output of ultra-low-pass whole genome sequencing data from five AALE cell 

clones with 8p disomy or 8p monosomy. Horizontal axis is chromosome number, vertical 
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axis is log copy number ratio. Green denotes copy number loss, red denotes copy number 

gain.

(c) Caspase-glo for cells with 8p deletion compared to cells with 8p disomy (n = 3 for both). 

Each point represents one biological replicate from a representative experiment. One-tailed 

p-values from two different experiments were combined using Fisher’s method.

(d) Flow cytometry analysis of cells with 8p deletion compared to cells with 8p disomy. Bar 

graphs represent the percentage of apoptotic cells dually stained for Annexin V and PI. One 

representative experiment is shown. One-tailed p-values from three independent experiments 

were combined using Fisher’s method.

(e) Vertical axis represents normalized read counts from RNA sequencing of cells with 8p 

disomy or 8p deletion. Each point is an individual clone (n = 8 for all columns). Two-tailed 

p-values are reported.

(f) Relative COSMIC SBS39 mutational signature activity (vertical axis) of engineered 

cells with 8p disomy versus 8p monosomy. Two-tailed p-values are calculated from a 

Mann-Whitney U test.

(g) WRN qPCR for cell clones with 8p disomy after siRNA treatment. Cells were treated 

with either control siRNA or siRNA against WRN for 3 days prior to qPCR (n = 2 for 

each condition). Each point represents the average value across technical replicates in an 

individual biological replicate.

(h) Percentages of apoptotic cells detected by flow cytometry for Annexin V and propidium 

iodide (PI) across three 8p wild-type cell lines, on day three after transfection with WRN 
versus control siRNAs. This is representative data from one of four experiments. A ratio 

paired t-test was used to calculate one-sided p-values for all four experiments, which were 

combined using Fisher’s method.

(i) Log-fold changes in apoptotic cells detected by trypan blue across these three 8p wild-

type cell lines (n = 3 for all cell lines), on day three after transfection with WRN vs 

control siRNAs. Each point represents a different experiment. One-tailed p-values from all 

experiments were combined using Fisher’s method.

(j) WRN qPCR in 8p disomic cell clones with overexpression of WRN or GFP (n = 3 for 

both). A two-tailed p-value is reported.

(k) Cell viability is significantly lower when genes in del-neg peaks are knocked down 

by RNAi (left, DEMETER2 score) or knocked out by CRISPR (right, Chronos score) 

in Dependency Map screens31,32, compared to all other genes. The reported p-value is 

two-tailed. Box plots center on median values and extend to the first and third quartiles; the 

whiskers extend to 1.5 times the interquartile range.

(l) KAT6A qPCR for cell clones three days after siRNA-mediated knockdown (n = 3 for 

both conditions). A two-tailed p-value is reported.

(m) EPN2 qPCR for cell clones three days after siRNA-mediated knockdown (n = 3 for both 

conditions). The reported p-value is two-tailed.

All p-values in this figure were calculated using Student’s t-test except as otherwise noted; 

no adjustments were made for multiple comparisons.
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Extended Data

Extended Data Figure 7: Quantitative assessment of selective and mechanical pressures driving 
aneuploidy.
(a) Calculation of peak-specific relative fitness (RF), arm-level RF, telomeric mechanical 

coefficients, and chromosome-level centromeric mechanical coefficients. See Methods for 

further details.

(b) Centromeric mechanical coefficients (log) plotted against centromere length (in bases).

(c) Centromeric mechanical coefficients (log) plotted against total frequency of arm-SCNAs 

affecting a specific chromosome (i.e. amplifications and deletions of the p and q arms in 

aggregate). Acrocentric chromosomes are excluded from analysis.

(d) From the original BISCUT analysis: telomeric mechanical coefficients (log) plotted 

against telomere length, in RTLU, for amplifications (left; in red) and deletions (right; in 

blue).

(e) From the original BISCUT analysis: telomeric mechanical coefficients (log) plotted 

against frequency of arm-level amplifications (left; in red) and deletions (right; in blue).

For all panels, two-tailed p-values and rho correlation coefficients were calculated using 

Spearman’s rank correlation. No adjustments were made for multiple comparisons.
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Extended Data

Extended Data Figure 8: Telomeric mechanical pressures are better reflected when using 
baseline ploidies of 2 or 4.
(a) Relative fitness (log) plotted against frequency of arm-SCNAs. From left to right: 

positive selection in amplifications (dark red), negative selection in amplifications (light 

blue), positive selection in deletions (dark blue), and negative selection in deletions (light 

red).

(b) Missegregation probability in percentage (determined by single-cell sequencing of 

RPE1-hTERT non-transformed cells42) plotted against frequency of all arm-SCNAs 

affecting each chromosome, averaged across arms. The horizontal black line at 4.3% reflects 

the expected random chance of missegregation of each chromosome.

(c) Relative fitness (log) plotted against arm length.

(d) Chromosome arm length plotted against frequency of arm-SCNAs.

(e) Strength of correlation (β; vertical axis) between various coefficients (horizontal axis) 

and arm-SCNA rates from a multivariate Generalized Linear Model (GLM), with p-values 

above each predictor (significant values in bold). Amplifications are in red, and deletions are 

in blue.

All p-values in this figure were calculated using Spearman’s correlation except as otherwise 

noted; no adjustments were made for multiple comparisons.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Prevalence and characteristics of different types of SCNAs.
(a)Fraction of TCGA tumors exhibiting frequent somatic genetic alterations. Asterisks 

indicate arms-SCNAs without known drivers.

(b) Cumulative fraction of cancer genomes affected by SCNAs (y-axis), plotted inversely 

by size of SCNAs (x-axis). The green region represents the fraction of genome covered by 

arm-SCNAs, and the yellow region represents the fraction of genome additionally covered 

by focal SCNAs.

(c) Classes of SCNAs referenced throughout this manuscript. DNA that has undergone 

copy-number change is colored green.

(d) Schematic representation of centromeric mechanical bias. The line underneath the 

chromosome arm (x ± z) represents the number of breakpoints per Megabase (Mb) within 

the chromosome arm (dashed lines are the 95% confidence interval for the mean), and the 

line under the centromere (y) represents the breakpoints per Mb within the centromere. The 

quotient of y / x represents the centromere to arm breakpoint ratio (C/A Ratio).

(e) Mean breakpoint density within chromosome arms, aggregated across all tumors and all 

chromosome arms (n = 67; binned by Mb), versus breakpoint density within all centromeres 

(values in breakpoints per megabase). Error bars represent the 95% confidence interval for 

the mean. C/A Ratio represents centromeric breaks over arm breaks.
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(f) Total number of breakpoints occurring in the centromere that cause SCNAs plotted 

against centromere length, which includes pericentromeric regions that lack coverage in the 

SNP arrays. Two-tailed p-value was calculated using Spearman’s correlation.

(g) Amplitude distributions and mean log2 copy number of arm-level, partial, and interstitial 

SCNAs. Amplitudes are calculated as the absolute value of a weighted average of the 

amplitudes of segments included in the SCNA (see Methods for details). Curves are scaled 

according to the total number of SCNAs within each category, to a maximum of 1.

(h) Comparison of length distributions of telomere-bounded, centromere-bounded, and 

interstitial SCNAs, aggregated across all chromosome arms.
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Figure 2: BISCUT identifies known and novel cancer driver genes through analysis of SCNA 
length distributions.
(a) Daaifferent patterns of SCNA-mediated selection.

(b) Empirical examples of SCNA-mediated selection from the pan-cancer dataset.

(c) BISCUT’s peak-finding function. Tumors (dark green) are ranked along the y-axis by 

partial-SCNA length. The location at which the empirical data deviates maximally from the 

background distribution is determined (purple). A peak region encompassing this location 

(denoted by dashed lines) is calculated; see Methods.

(d) Statistically significant peaks conferring selection as determined by BISCUT are 

plotted along the genome. The vertical axis indicates the Significance Score, representing 

KS-statistic * -log10(q-value). Positive selection peaks are in dark red (amplifications) 

and blue (deletions), and negative selection peaks are in light red (deletions) and blue 

(amplifications). Genes found in Tier 1 of the COSMIC Cancer Gene Census are in bold.
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Figure 3: Validation of genes identified by BISCUT for negative and positive selection.
(a) Ratios of dN/dS scores (ratio of non-synonymous to synonymous mutations) between 

genes in restricted BISCUT del-neg (light red) or del-pos peaks (dark blue), compared 

to 1000 randomly selected sets of other genes. Comparisons between different types of 

single nucleotide variants (SNV) are indicated on the horizontal axis. Two-tailed p-values 

are derived from comparisons between observed and permuted data. Box plots center on 

median values and extend to the first and third quartiles; the whiskers extend to 1.5 times the 

interquartile range.

(b) Fraction of TCGA tumors with microsatellite instability (MSI) for different WRN or 8p 

copy-number status. Two-tailed p-values were calculated using Fisher’s exact test.

(c) Relative COSMIC mutational signature activity of WRN copy-neutral versus WRN 
deleted TCGA tumors. Four statistically significant comparisons are shown, as determined 

by Mann-Whitney U test and a false discovery rate (q-value) cut-off of 0.2.

(d) Log-fold changes in apoptotic cells detected by flow cytometry for Annexin V and 

propidium iodide (PI) across three 8p wild-type cell lines (n = 4), on day three after 

transfection with WRN versus control siRNAs. Each point represents a biological replicate.

(e) Cell viability measured using Cell-Titer Glo on day 5 of overexpression of GFP or WRN.

(f) Cell viability (Cell-Titer Glo) measured three days after siRNA knockdown of the 

indicated genes.

In d-f, Student’s t-tests were used to calculate one-tailed p-values for each independent 

experiment, and Fisher’s method was used to combine values across the three experiments. 

For e and f, one representative experiment is shown from three total.
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Figure 4: Pan-cancer mechanical coefficients and relative fitness (RF).
(a) Mechanical coefficients for each centromere and relative fitness values for amplifications 

and deletions of each chromosome arm, both reported as log2 values. Black bars represent 

centromeric mechanical coefficients. Red and blue horizontal lines represent net relative 

fitness for amplifications and deletions respectively, and are the sum of the amplitude of 

positive selection (green arrows, pointing up) and negative selection (purple arrows, pointing 

down). Relative fitness for both p and q arms are depicted to the left and right of the 

centromeric mechanical coefficient respectively.

(b) Log net relative fitness of deletions are significantly lower in diploid samples (mean = 

−0.49) than in WGD samples (mean = 0.04). Each dot represents a chromosome arm (n = 39 

in each column), and two-tailed p-value is calculated using a paired t-test.

(c) Log telomeric mechanical coefficients (averaged between amplifications and deletions) 

versus telomere length, in RTLU (Relative Telomere Length Units; a ratio of telomere signal 

to a reference signal within one genome)52.

(d) Log net relative fitness versus frequency of arm-level amplifications (left; in red) and 

deletions (right; in blue). Values above the dashed line represent net positive selection and 

values below the dashed line represent net negative selection.

(e) Spearman’s correlation coefficients for net relative fitness and arm-SCNA rate across 

pan-cancer (in green) and unique TCGA tumor types (in black; arranged from largest to 

smallest). Tumor types in italics have p-values < 0.1. Fisher’s method p-value is calculated 

from unique TCGA types only.

For c-e, p-values were calculated using two-tailed Spearman’s correlation except as 

otherwise noted; no adjustments were made for multiple comparisons.
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