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Abstract

INTRODUCTION: European local ancestry (ELA) surrounding APOE4 confers higher risk 

for Alzheimer Disease (AD) compared to African local ancestry (ALA). We demonstrated 

significantly higher APOE4 expression in ELA vs ALA in AD brains from APOE4/4 carriers. 

Chromatin accessibility differences could contribute to these expression changes.

METHODS: We performed single nuclei Assays for Transposase Accessible Chromatin 

sequencing from frontal cortex of six ALA and six ELA AD brains, homozygous for local 

ancestry and APOE4.

RESULTS: Our results showed an increased chromatin accessibility at the APOE4 promoter area 

in ELA vs ALA astrocytes. This increased accessibility in ELA astrocytes extended genome wide. 

Genes with increased accessibility in ELA in astrocytes were enriched for synapsis, cholesterol 

processing and astrocyte reactivity.

DISCUSSION: Our results suggest that increased chromatin accessibility of APOE4 in ELA 

astrocyte contributes to the observed elevated APOE4 expression, corresponding to the increased 

AD risk in ELA vs ALA APOE4/4 carriers.
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BACKGROUND:

Alzheimer disease (AD) is the most common neurodegenerative disorder and one of the 

leading causes of disability worldwide for individuals aged 75 and older1. The strongest 

genetic risk factor for late-onset AD is the apolipoprotein E4 (APOE4) allele located on 

chromosome 192,3. However, the risk associated with APOE4 differs dramatically between 

individuals of European vs African ancestries4–7 with APOE4 carriers of European ancestry 

having substantially increased risk for AD compared to individuals with African ancestry.
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This observed difference in risk has recently been shown in three independent studies to 

be due to differences in the genetic local ancestry (LA) region surrounding APOE rather 

than overall global European or African ancestry8–10. Using single nucleus RNA sequencing 

(snRNA-seq) of frontal cortex we have previously demonstrated that APOE4/4 homozygous 

carriers with European local ancestry (ELA) expressed significantly higher APOE compared 

to those with African local ancestry (ALA), especially in astrocytes11, suggesting a potential 

mechanism underlying the differential AD risk seen between ancestries.

Control of gene expression is orchestrated by the integration of cis-regulatory modules, such 

as enhancer and promoter elements, along with transcription factors12–14. The cis-regulatory 

modules of actively transcribed genes are generally in ‘accessible’ euchromatin with 

low nucleosome occupancy and few high-order structures15–17, while ‘closed’ chromatin 

(heterochromatin) generally associates with transcriptional silencing16,18,19. Accordingly, 

ancestry-specific changes in accessibility of cis-regulatory elements that modulate the 

binding of transcription factors is a potential mechanism responsible for the difference in 

APOE4 expression seen between ancestries.

The single nuclei Assay for Transposase Accessible Chromatin followed by sequencing 

(snATAC-seq), facilitates the creation of chromatin accessibility maps with single cellular 

resolution. For example, Corces et al20 demonstrated that open chromatin regions in 

promoter or enhancer areas are associated with increased gene expression through snATAC-

seq. Investigation of chromatin accessibility profiles specifically in AD have mostly focused 

on pathological hallmarks21. More recently, Morabito et al22 conducted an integrated 

analysis using snATAC-seq and snRNA-seq from brains of AD and control individuals 

and reported that cell-type-specific chromatin accessibility changes in regulatory elements 

may be key to gene expression changes in AD. However, to date, the role of chromatin 

accessibility in AD between different ancestries, specifically at the APOE4 locus, has not 

been investigated.

Therefore, we performed snATAC-seq combined with snRNA-seq to investigate the cell 

specific patterns of chromatin accessibility in ELA and ALA APOE4/4 brains. We observed 

increased accessibility in APOE ELA relative to ALA in astrocytes. The differentially 

accessible peaks at the APOE promoter are predicted to bind a subset of transcription factors 

that exhibit differential gene expression in ELA astrocyte samples. These data support the 

hypothesis that European ancestry at the APOE promoter and in the area around APOE 
have a more open chromatin conformation than African ancestry. We speculate that this 

difference is permissive for transcription factor binding and transcriptional activation of 

APOE. Increased chromatin accessibility in ELA samples was also observed genome-wide 

in this astrocytic cell type. Thus, these findings provide novel insights into the molecular 

mechanisms of ancestry specific differences in AD risk.

METHODS:

Brain Samples

Brain autopsy samples were obtained as part of a multi-center collaboration from four 

Alzheimer Disease Research Centers (ADRCs; Emory University, Northwestern University, 
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Rush University Medical Center, and the University of Pennsylvania) and from the John P. 

Hussman Institute for Human Genomics (HIHG) at the University of Miami. All ADRC 

samples were initially selected from the National Alzheimer Coordinating Center (NACC) 

and compliant with site-specific approved institutional review board protocols as previously 

described11.

Local ancestry determination

Genotyping arrays were processed to assess both global and local genetic ancestry (LA) 

in the APOE region. To determine the LA, we phased independently our datasets with 

the SHAPEIT tool (version 2) using 1000 Genomes Phase 3 as the reference panel8. The 

APOE region was defined within 1Mb on either side of APOE, using chr19:44–46Mb as 

the LA boundaries for ancestry assignments, broad enough to include potential enhancers 

and topological associated domains. Individuals homozygous for the ELA or ALA haplotype 

in this region were Whole Genome Sequenced (WGS) at either the Center for Genome 

Technology (CGT) at the HIHG or The American Genome Center at Uniformed Services 

University of the Health Sciences (USUHS).

snATAC-seq and snRNA-seq data generation and analysis

Isolation of Nuclei: Nuclei were isolated from frozen frontal cortex brain tissue 

(Brodmann area 9) as described previously23,24. A suspension of 65,000 nuclei was prepped 

according to the 10X Genomics Chromium Next GEM Single Cell ATAC 1.1 protocol. 

Libraries were sequenced on an Illumina NovaSeq 6000 targeting 75,000 reads per nuclei 

in paired end 50bp sequencing reactions. FASTQ files were processed using the CellRanger 

ATAC software package v1.2 (10X Genomics). snRNA-seq was performed as previously 

described11.

Integrated analysis of the snATAC-seq and snRNA-seq data: This was performed 

using the ArchR software package v1.0.125. Clustering of cells was performed with five 

iterations of Iterative Latent Semantic Indexing (LSI)26,27 followed by batch correction 

with Harmony28. ATAC clusters were identified using FindClusters in Seurat v4.0 software 

package29 and refined the cell type definitions by integration with snRNA-seq from the same 

samples using Seurat’s FindTransferAnchors.

SnATAC-seq peak calling and differential accessibility

We created pseudo-bulk replicates combining all ELA and all ALA samples separately 

and called peaks for each ancestry within each cluster using the addReproduciblePeakSet 

function in ArchR utilizing the default parameters of the MACS2 callpeak command 

v2.2.7.130. Differential accessibility for each peak within each cluster was calculated using 

ArchR getMarkerFeatures.

ATAC peak annotations

HOMER31 (version 4.1132), was used to annotate peaks closest to transcription start sites 

(TSS) and to indicate exon, intron, intergenic, or promoter-TSS regions. A peak was 

assigned to a gene promoter-TSS when the peak location was ±2kb from the TSS. GREAT33 
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(version 4.0.4, http://great.stanford.edu/public/html/) was used to refine annotations where 

the peak was near multiple genes or intergenic. Distal enhancers were identified with the 

ELITE GeneHancer database from UCSC34 of enhancers and promoters. We considered as 

distal enhancer peaks those annotated by GREAT or HOMER farther than ±2kb from a TSS 

and with coordinates overlapping one of these ELITE enhancers.

Transcription Factor Analysis

Bedtools getfasta35 was used to extract the sequence of each peak (refdata-cellranger-atac-

GRCh38–1.2.0 version). The algorithm FIMO36 within MEME Suite version 5.4.137 was 

used to identify known transcription factor (TF) binding motifs in the two APOE promoter 

differentially accessible peaks (DAP). We surveyed defined transcription factor binding site 

databases JASPAR CORE 2022 (vertebrates non redundant)38, Jolma 2013 (human and 

mouse)39, and Swiss regulon (human and mouse)40, and selected those with false discovery 

rate (FDR) adjusted p-value <0.05. In addition, we used all the human specific JASPAR 

2022 defined TFs of the UCSC HG38 table browser41 filtering by a JASPAR score ≥ 300.

Functional Enrichment Analysis

Functional analysis was performed using enrichR42. using as reference the human specific 

gene-set libraries KEGG 202143, the Gene Ontology Biological Process 202144, Reactome 

202145 and ENCODE Histone post-translational modifications46. Enrichment for cell type 

specific markers was performed using the cell type gene-set atlas lists from Azimuth 202147 

and PanglaoDB 202148. Disease gene enrichment analysis used GeneSigDb49, HDSigDb50 

and MsigDB51. Enrichment in chromosomal location was performed using a Fischer exact 

test.

RESULTS:

Brain Sample Characteristics

Twelve brain samples were used for the study (Table 1). Six ELA samples (European 

global ancestry >96%) were obtained from the HIHG Brain Bank (3), Rush University 

Medical Center (2) and Emory University (1). Six ALA samples (African global ancestry 

68% to 88%) were obtained from Emory University (2), Northwestern University (1) and 

Rush University Medical Center (3). Samples included seven females (four ALA and 

three ELA) and five males (two ALA and three ELA). All samples had BRAAK staging 

scores ranging from IV to VI and had a mean age-of-death of 79 years. Whole genome 

sequencing confirmed the homozygous APOE4/4 genotype and absence of mutations in 

known Mendelian genes for AD (PSEN1, PSEN2, APP, MAPT) as well as in known rare 

AD risk variants in ABCA7, TREM2 and SORL1.

Cell type identification

We obtained data from a total of 60,306 nuclei from snATAC-seq and 94,411 nuclei from 

snRNA-seq. The snATAC-seq libraries had an average of ~13,000 fragments per nucleus 

and the snRNA-seq libraries had a median depth of ~116,000 reads per nucleus with on 

average ~1,900 genes/nucleus (Supplementary Table 1). The clusters with more than 500 

nuclei in ELA and ALA showed no statistical differences in the number of nuclei per 
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cluster between the ancestry groups (p-value= 0.497). Integration of the snATAC-seq and 

snRNA-seq resulted in the identification of 11 cell type clusters (Figure 1A) with no sample 

specific bias (Supplementary Figure 1A and 1B, Supplementary Table 2). The cell type 

identity of each cluster was determined using top 50 snATAC-seq predicted gene scores for 

marker genes of known cell types in the frontal cortex (Figure 1B). We used SLC17A7 
for excitatory neurons; SLC32A1 for inhibitory neurons; MAG for oligodendrocytes; AIF1 
for microglia; GFAP for astrocytes, CSPG4 for oligodendrocyte precursor cell (OPCs) and 

COL1A2 for vascular leptomeningeal cell (VLMC) (Supplementary Figure 2). We identified 

one oligodendrocyte cluster (55.6% of total cells), four excitatory neuron clusters (20.8% 

of the total cells), one inhibitory neuron cluster (8.3% of total cells), one microglia cluster 

(7.4% of total cells), one OPC cluster (3.9% of total cells), two astrocyte clusters (2.5% 

of total cells), and one vascular leptomeningeal cell (VLMC) cluster (1.5% of total cells) 

(Supplementary Table 2).

To further characterize the two astrocyte cell clusters, we determined the genes that 

identified astrocyte cluster 1 and astrocyte cluster 2 and investigated their expression in 

the single cell atlas of the Entorhinal Cortex in Human Alzheimer’s Disease (ECHAD)52 

and astrocyte transcriptomic data from frontal cortex53. We observed that the genes 

characterizing astrocyte cluster 1 were primarily expressed in astrocyte subclusters a4 to 

a8, while the genes from our astrocyte cluster 2 were primarily expressed in astrocyte 

subclusters a2 and a3 from ECHAD, which correspond to reactive astrocytes subpopulations 

(Supplementary Figure 3)53.

Accessibility analysis at the APOE locus and LA

We first investigated whether the ancestry-related differential expression of APOE4 
previously described11 was recapitulated when additional samples from Rush University 

Medical Center were included in our analyses. Indeed, APOE4 was differentially expressed 

when considering expression over all cell types between ancestries with greater expression 

in ELA (FC= 1.31; p-value=9.66E−219), except one excitatory neurons cluster with higher 

expression in ALA (FC= 1.28; p-value=5.87E6). This pattern of increased expression in 

ELA samples was true for four cell types (excitatory and inhibitory neurons, astrocytes and 

microglia) (Supplementary Table 3). Astrocytes had the highest fold change difference in 

ELA (FC = 1.56) and most significant p-value (p-value=1.24E−129).

We next determined whether the APOE expression difference in astrocytes is associated 

with differences in chromatin accessibility. The snATAC-seq and snRNA-seq integrated 

UMAP showed that APOE expression as well as accessibility was highest in the astrocyte 

cluster 1 (Figure 2A). Comparison of accessibility between ancestries revealed two peaks 

with significantly increased accessibility in ELA at the APOE promoter in astrocyte 

cluster 1 (Figure 2B). These peaks were located at −19bp and −1990bp upstream of 

the APOE transcription start site (TSS) (FC: 2.57 and 4.52; FDR: 0.001 and 0.02, 

respectively). Notably, although APOE showed significantly increased expression in several 

cell types, significant differences in accessibility were only detected in astrocyte cluster 1 

(Supplementary Figure 4).
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To gain insight into the molecular mechanisms involved in the increased accessibility and 

increased expression of APOE, we determined which known transcription factor binding 

sites were present in the differentially accessible peaks and analyzed the accessibility 

and gene expression of those transcription factors. The two differentially accessible peaks 

at the APOE promoter overlap predicted binding sites for a set of 15 transcription 

factors (GLI2, NPAS2, KLF15, HIF1A, LHX2, RXRA, MXI1, FOS, JUNB, KLF2, 
PURA, SREBF1, TEAD1, KLF6, ZBTB7C) that are also differentially expressed and 

have differentially accessible genomic region between ancestries (Supplemental Table 4). 

From these 15 putative APOE binding transcription factors, PURA and SREBF1 have 

increased accessibility and expression in ELA samples, KLF6 has increased accessibility 

and expression in ALA samples and the other 12 transcription factors have increased 

accessibility in ELA and increased expression in ALA.

We identified 32 additional differentially accessible peaks with greater accessibility in ELA 

than ALA astrocytes in gene promoters (within 2kb from the TSS) in the LA region 

surrounding APOE (chr19:44–46MB), which corresponds to 19 additional genes, including 

the APOE proximal genes TOMM40 and APOC1 (Table 2). No genes in the defined LA 

region were more accessible in the ALA. In addition, by overlapping the differentially 

accessible peaks in the APOE LA region with previously classified enhancers (ELITE 

GeneHancer from USCS) we identified 32 additional peaks among 23 LA genes, all with 

increased accessibility in ELA brains (Supplementary Table 5).

Genome-wide differential accessibility

Since the global ancestry of the ELA samples were predominantly European and 

the European local ancestry blocks are uniformly distributed among ALA samples 

(Supplementary Figure 5), we performed genome-wide differential accessibility analysis. In 

total we identified 5,154 significant (FDR ≤ 0.05 and FC ≥ 2) differentially accessible peaks 

between the ancestries in three cell types (astrocytes, excitatory neurons and microglia), 

representing less than 1% of all called ATAC peaks. 99% of these differentially accessible 

peaks were seen in the astrocyte cluster 1, with an overall increased chromatin accessibility 

in the European ancestry blocks compared to African ancestry blocks (more accessible in 

ELA: 4,546 peaks; more accessible in ALA: 107 peaks) (Figure 3A). This astrocyte specific 

accessibility difference was widely spread across all chromosomes (Figure 3B). Among all 

differentially accessible peaks, 25.8% (2,248 peaks) are in promoters and TSS of genes, 33.5 

% (2,920 peaks) are intragenic, 34.1% (2,970 peaks) are intergenic and 6.6% (574 peaks) are 

in distal ELITE enhancers (Figure 3C), altogether corresponding to 6,067 genes.

Sixteen percent of the differentially accessible peaks were found on chromosome 19, a 

significant enrichment as compared to a random chromosomal distribution of peaks (Fischer 

exact test adjusted p-value=2.501E−31) with 36.4% of these differentially accessible peaks in 

the promoter regions of chromosome 19 genes (Supplementary Figure 6).

Pathway enrichment of differentially accessible and expressed genes

To gain mechanistic insights from the integrative snRNA-seq and snATAC-seq approach, we 

determined the genome-wide overlap between DEG in the astrocyte clusters identified by 
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snRNA-seq and genes associated with differentially accessible peaks identified by snATAC-

seq (DAG). From the 6,067 genes with differentially accessible peaks, 239 genes were both 

differentially expressed and accessible (DEG-DAG) between the ancestries (Supplementary 

table 6). However only 55 genes had concordant differences in expression and accessibility: 

48 with increased accessibility and expression in ELA (including APOE) and 7 with reduced 

expression and accessibility in ELA. This set of 55 DEG-DAG in astrocytes were used to 

compute a functional enrichment analysis.

KEGG pathways (KEGG) and Gene Ontology (GO) analysis of gene set enrichment 

consider different category sets. KEGG pathway analyses identify over-representation of 

genes participating in the same biological process, while GO analyses aim to reduce 

complexity and focus on the common functional properties of the gene products. Thus, 

both analyses were performed, as it is expected that they will highlight different aspects of 

the data. Analysis of KEGG Molecular functional pathways showed enrichment in signaling 

pathways including calcium signaling and MAPK signaling pathway. The GO gene-sets 

highlighted alterations in the biological process of cholesterol metabolism, including 

regulation of cholesterol metabolic process and biosynthetic process, pathways linked to 

synapses and axonal transport, spine development and pathways linked to glial cell and 

astrocyte projection (Supplementary Table 7).

Using Human MSigDB database of disease associated genes from published transcriptomic 

studies revealed the highest overlap with lipopolysaccharide (LPS) treated astrocytes to 

induce reactivity (adjusted p-value =8.16E−10, GSE75246)54 and with genes showing altered 

expression in brains (adjusted p-value =2.26E−19, GSE79666)55 and astrocytes (adjusted p-

value =2.92E−19)56 of Huntington Disease (HD) individuals. The overlapping genes between 

the ancestry DEG-DAG and genes up-regulated in astrocytes of HD patients include a 

molecular signature of reactive astrocyte markers also observed in the HD striatal astroglia 

data, but also extends to pathways related to glutamatergic synapse and signaling. In 

addition, the ENCODE database of brain histone post-translational modifications identified 

an enrichment of DEG-DAG in those genes having H3K27me3 signals in astrocytes 

(H3K27me3 astrocytes Hg19, adjusted p-value = 0.02) (Supplementary Table 7).

Chromatin accessibility in AD candidate genes

We also assessed chromatin accessibility differences between the ancestries in AD 

associated genes, including Mendelian genes (APP, PS1, PS2, and MAPT) and genes 

suggested by GWAS and rare variant association studies across ancestries57,58. 32 

differentially accessible peaks between the ancestries were identified in seven out of 

76 AD-associated loci as defined by the ADSP Gene Verification Committee (https://

adsp.niagads.org/gvc-top-hits-list/)58. The correlation between accessibility and expression 

of these seven genes with differential accessibility is shown in Table 3. Aside from APOE, 

nine differentially accessible peaks were observed to fall in the promoter areas of three 

genes, SORL1, VRK3 and ABCA7, all with increased accessibility in ELA regions. Ten 

differentially accessible peaks fall in intergenic regions close to five AD genes, all with 

increase accessibility in ELA. In addition, twelve peaks are found in the gene body of four 

AD-associated genes (CLU, PTK2B, SORL1, SPHK1), also with increased accessibility in 
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ELA. Nonetheless, none of these genes containing differentially accessible peaks between 

local ancestries showed significant differential expression between ancestries (Table 3).

DISCUSSION:

To understand the complex mechanisms by which APOE4 confers differential risk for 

AD in the context of genetic ancestry, we evaluated both gene expression and chromatin 

accessibility profile differences between homozygous APOE4/4 ELA and ALA Alzheimer 

disease brains at single cell resolution. We confirmed our previous finding11 that APOE 
is significantly more expressed in astrocytes of ELA compared to ALA. In fact, APOE 
is the most differentially expressed gene in astrocytes in the 2Mb local ancestry region 

surrounding APOE. Beyond being the most differentially expressed, the promoter of APOE 
in astrocytes showed a significant increase in accessibility in ELA compared to ALA. These 

results suggest that the increased APOE4 expression previously reported in ELA APOE4 
carriers11 may be partly due to differences in chromatin remodeling at the promoter of 

APOE4 between ancestries. We have also shown using Capture Chromatin Conformation 

analysis and massively parallel reporter assays that specific DNA sequence differences in 

areas physically interacting with the APOE promoter have functional effects in microglia 

and astrocytes, with greater expression occurring in ELA sequence variants than ALA59. 

Thus, multiple mechanisms affecting APOE4 gene expression in astrocytes may be activated 

at different times in life or by stress and could affect the differences in AD risk seen 

between ancestral homozygous APOE4 carriers. This emphasizes that APOE loci is under 

a complex regulatory environment that involves cell type-specific processes and strengthens 

the primary functional role of APOE in astrocytes60.

Though our principal research question focused on the underlying mechanisms leading to 

the higher expression of APOE in ELA brains using snATAC-seq, this study also provides 

a global view on the chromatin landscape of AD APOE4/4 carriers from different genetic 

ancestries. One challenge is the relative scarcity of available autopsy material for African 

Americans. This is made further challenging as we required homozygous local ancestry for 

African local ancestry and homozygosity for the APOE4 genotype. These requirements 

limited the available number for final analysis. It highlights the need for an effort to 

understand the concerns of the African American and Hispanic/Latino populations on 

participating in autopsy studies and work with these populations to increase the number 

of autopsies in AD family members. Non-Hispanic Europeans are not admixed and thus 

almost exclusively European local ancestry, so that the only additional limiting criteria is 

APOE4 homozygosity.

We observed in astrocyte cluster 1 a significantly higher chromatin accessibility in ELA 

brains genome wide. A recent study using mesenchymal progenitor cells has reported that 

APOE accumulation in the nucleus can disrupt and destabilize heterochromatin, which 

would increase chromatin accessibility, similar to what we observe here in the ELA with 

higher APOE expression61. As astrocytes are the primary cells expressing APOE, this could 

explain the finding of increased global accessibility primarily in this cell type. Notably, 

only a small percent of significant peaks of higher chromatin accessibility overlap with the 

significant differentially expressed genes identified by snRNA-seq. Conversely, only 40% 
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of the significant differentially expressed genes showed significant changes in accessibility 

between the ancestries. This is in accordance with the growing understanding that gene 

expression depends on multiple regulatory elements62, many located far from the gene 

locus itself22. Some of the DEG-DAG show a positive correlation between expression 

and accessibility, suggesting a functional relationship. However, we also observed an anti-

correlation in accessibility-expression pairs. This anti-correlation could represent binding 

by repressors leading to a decrease in expression as previously described63,64. In addition, 

highly accessible sites not associated with enhanced expression could represent poised 

enhancers/promoter with no active transcription occurring65. Besides this known biological 

partial correlation of accessibility and expression, in this study the snATAC and snRNA 

were derived from separate, but adjacent, brain tissue. Differences in tissue composition 

could compound the discordance between these two outcomes. Future studies with paired 

snATAC-seq and snRNA-seq from the same nuclei such as the 10X Genomics Single Cell 

Multiome will minimize tissue composition effects if present. In fact, while we do identify 

differential expression of APOE between ancestries in several cell types (e.g., microglia), 

we only see significant differential accessibility of its promoter and immediate region in 

astrocytes.

Astrocytes have well established roles in neuronal metabolic support and neuroprotection, 

synapse formation and function, ion signaling homeostasis, integrity of the blood brain 

barrier, tissue repair and complex brain functions such as memory and sleep66–70. Thus, 

it is not surprising that a relevant role for astrocytes in AD pathology is suggested71. Our 

data suggest that astrocytes are involved in the modulation of APOE4-afforded AD risk and 

pinpoint this cell type as one of the most sensitive to differences in genetic ancestry. The 

significant enrichment of astrocytic ancestry-associated DEG-DAG in genes upregulated 

in HD astrocytes suggest that the differences associated with diverse ancestry entail 

functional properties that are potentially common to other neurodegenerative disorders. In 

addition to this astrocyte-ancestry association, we also evidence a difference in DEG-DAG 

between our astrocyte clusters 1 and 2. We observed that our astrocyte cluster 1 was 

transcriptionally most similar to astrocytes subclusters a4 and a8 described by Grubman et 

al52, clusters where APOE was upregulated in AD52; while our astrocyte subcluster 2 was 

transcriptionally comparable to astrocytes subcluster a2 where APOE was downregulated.

Interestingly, there was a significant enrichment of differential chromatin accessibility and 

expression on chromosome 19 relative to the rest of the genome (Supplemental Figure 

5) in astrocyte cluster 1. These results correlate with the observation of a comparatively 

high number of ATAC-seq peaks in chromosome 1972, potentially due to the high gene 

density, GC content and DNA binding proteins in chromosome 19 compared to other 

chromosomes73–75. It is possible the high gene density and the structural nature of 

chromosome 19 could modulate the differential binding of chromatin modifying enzymes, 

explaining the enrichment in differentially accessible chromatin and gene expression in this 

specific chromosome observed between ancestries.

Our analysis of transcription factors with binding sites in the differentially accessible peaks 

at the 5’end of APOE that were both differentially expressed and accessible between 

ancestries suggests transcriptional modulators of APOE expression differences. Of the 15 
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transcription factors we identified, only SREBF1 and PURA showed increased accessibility 

(intergenic and intronic) and expression in ELA samples and KLF6 showed increased 

accessibility (distal enhancer) and expression in ALA samples. A polymorphism in SREBF1 
has been shown to influence the risk of AD specifically in APOE4 carriers76, while PURA 
has been shown to regulate expression of AD and Aβ clearance related genes77. On the 

other hand, KLF6 is found to be differentially expressed in AD brains and implicated in 

Aβ-induced oxidative stress78. Their role with APOE activation has not been previously 

described, although SREBF1 is a major regulator of lipid metabolism.

Although many genetic risk factors for disease are expected to be shared among populations, 

genomic diversity among ancestries can provide new opportunities for discoveries regarding 

disease susceptibility. In AD, understanding why the APOE4 allele confers a lower risk 

to African ancestry carriers versus European ancestry carriers is instrumental for the 

identification of potential AD therapeutics. Here we provide chromatin accessibility and 

gene expression data from AD APOE4 carriers of African and European ancestries at single 

cell resolution. One of the main challenges in comparing local ancestry effects is the current 

limitation of available samples from diverse ancestries. The need for both specific genotype 

and local ancestry criteria further restricted the number of samples available. This highlights 

the importance of increasing autopsy material from diverse populations. Expansion of this 

study into other APOE genotypes and more diverse ancestries could provide further insight 

into the importance of brain astrocytes and chromatin landscape of APOE, as well as 

genome-wide changes, implicating specific molecular pathways and regulatory proteins 

in this risk difference. Finally, these findings support the concept of reducing APOE4 
expression as a potential therapeutic pathway for AD.

CONCLUSIONS:

Our results provide novel compelling insights to understand the AD risk difference known 

to exist between European and African APOE4 local ancestry carriers. Here we demonstrate 

that differences in chromatin accessibility between the African and European APOE locus 

could explain the expression differences in APOE expression in astrocytes and supports the 

concept that this contributes to the risk difference between African American and European 

populations for AD in APOE4 carriers. We found that this increase in accessibility in 

the region surrounding APOE4 in European astrocytes extended genome-wide, suggesting 

a wider mechanism of regulatory dysfunction is occurring in these cells. Not only is it 

important to include diverse ancestries to ensure all individuals are represented in research, 

but also we have shown here and in previous work that including diversity in research can 

provide additional windows of opportunity to elucidate disease and biological mechanisms. 

Understanding regulatory dysfunction in AD has not been well studied and should be and 

area of future research in AD.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Visualization of the integrated single nuclei ATAC and RNA sequencing clusters and 
cell identification across the samples.
A) UMAP reduction plot using resolution of 0.4 resulting in 11 cell type clusters from 

the integration of snATAC-seq and snRNA-seq data. B) Heatmap showing cell cluster 

identification by chromatin accessibility patterns using the top 50 snATAC-Seq predicted 

gene scores for markers genes of the known cortex cell types.
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Figure 2. Differential chromatin accessibility and expression of APOE in Astrocyte cluster 1.
A) APOE expression represented in clusters generated by the integrated snATAC-seq and 

snRNA-seq data; B) Visualization of chromatin differential accessible peaks in the APOE 
locus between ancestries from Astrocyte cluster 1. *Represents significantly differentially 

accessible peaks between ancestries (*FDR=0.02; ***FDR=0.001). C) Venn diagram 

showing transcription factors biding to APOE that are differentially expressed (DEG) and 

differentially accessible (DAG).
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Figure 3. Chromatin accessibility differences between ancestries genome-wide in Astrocyte 
cluster 1.
A) Volcano plot representation of global chromatin accessibility difference between 

ancestries in Astrocyte cluster 1; B) Chromatin accessibility differences across the genome 

displayed by chromosomes. Blue is increased accessibility in Europeans, Red is increased 

accessibility in African ancestry; C) Pie chart showing the differentially accessible peak 

region distribution in Astrocyte cluster 1.
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Table 1.

Demographic characteristics of the samples

Sample Center Sex AOD APOE genotype Local Ancestry (Chr19: 
44–46Mb) % Of Global Ancestry BRAAK staging 

score

1 Emory Female 82 4,4 AF/AF 87% AF V

2 NW Female 85 4,4 AF/AF 86% AF V

3 Emory Female 80 4,4 AF/AF 88% AF VI

4 Rush Male 93 4,4 AF/AF 68% AF V

5 Rush Male 83 4,4 AF/AF 79% AF VI

6 Rush Female 77 4,4 AF/AF 85% AF VI

7 UM/Duke Male 75 4,4 EU/EU 95% EU IV

8 Rush Male 71 4,4 EU/EU 98% EU VI

9 UM/Duke Female 70 4,4 EU/EU 95% EU VI

10 Rush Male 76 4,4 EU/EU 97% EU IV

11 UM/Duke Female 76 4,4 EU/EU 96% EU V

12 Rush Female 86 4,4 EU/EU 98% EU VI

AOD: Age of Death; UM: University of Miami; NW: Northwestern University; RUSH: RUSH University Medical Center; AF: African; EU: 
European
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Table 2.

Differentially accessible peaks in promoter regions of Local Ancestry genes in Astrocyte cluster 1.

Gene Chromosome Peak location Distance to TSS FC FDR Region

CTB-171A8.1 chr19 44718456 −21 3.66 0.003 promoter-TSS

BCL3 chr19 44748309 12 2.77 0.007 promoter-TSS

BCAM chr19 44808802 −7 5.11 0.043 promoter-TSS

BCAM chr19 44808802 −51 5.11 0.043 promoter-TSS

CTB-129P6.4 chr19 44890205 421 2.70 0.002 promoter-TSS

TOMM40 chr19 44890205 −781 2.70 0.002 promoter-TSS

APOE* chr19 44903514 −1990 4.52 0.022 promoter-TSS

APOE* chr19 44905485 −19 2.57 0.001 promoter-TSS

APOC1 chr19 44914897 278 2.05 0.000 promoter-TSS

APOC1 chr19 44914897 900 2.05 0.000 promoter-TSS

APOC1P1 chr19 44926992 266 2.23 0.025 promoter-TSS

CLPTM1 chr19 44955080 84 3.61 0.007 promoter-TSS

CLPTM1 chr19 44955080 84 3.61 0.007 promoter-TSS

CTB-179K24.3 chr19 45091377 −1236 2.19 0.027 promoter-TSS

PPP1R37 chr19 45091377 −1335 2.19 0.027 promoter-TSS

MARK4* chr19 45294609 504 3.65 0.011 promoter-TSS

ERCC2 chr19 45370425 −88 2.40 0.002 promoter-TSS

ERCC2 chr19 45370425 −57 2.40 0.002 promoter-TSS

PPP1R13L chr19 45405279 −491 3.68 0.004 promoter-TSS

CD3EAP chr19 45405279 −1162 3.68 0.004 promoter-TSS

PPP1R13L chr19 45405279 820 3.68 0.004 promoter-TSS

FOSB chr19 45467194 −551 2.61 0.024 promoter-TSS

VASP chr19 45506348 −818 3.58 0.020 promoter-TSS

OPA3 chr19 45584758 −166 2.16 0.000 promoter-TSS

EML2* chr19 45644874 505 7.63 0.032 promoter-TSS

EML2* chr19 45645399 −20 3.28 0.002 promoter-TSS

FBXO46 chr19 45730087 567 4.28 0.025 promoter-TSS

FBXO46 chr19 45730692 −38 2.01 0.028 promoter-TSS

FBXO46 chr19 45730692 −38 2.01 0.028 promoter-TSS

RSPH6A chr19 45815742 −673 3.10 0.033 promoter-TSS

IRF2BP1 chr19 45885449 471 4.72 0.025 promoter-TSS

NOVA2 chr19 45973825 −529 5.11 0.004 promoter-TSS

CCDC61 chr19 45995053 −158 2.38 0.000 promoter-TSS

CCDC61 chr19 45995053 −164 2.38 0.000 promoter-TSS

FC: Fold change; TSS: Transcription Starting Site; Negative value in Distance to TSS reflects peaks falling upstream of TSS
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Table 3.

Differentially accessible peaks in Astrocyte cluster 1 in Alzheimer disease GWAS candidate genes.

Gene Chr.
Peak 
location Cell cluster

Distance 
to TSS

SnATAC 
FC

SnATAC 
FDR

SnRNA 
FC

SnRNA 
FDR Region

PTK2B chr8 27340471 Astrocyte 1 29239 2.327 0.026 −1.05 4.67E-13 intron

CLU chr8 27596089 Astrocyte 1 18692 4.235 0.019 −1.15 3.39E-73 intergenic

CLU chr8 27597084 Astrocyte 1 17697 2.556 0.035 −1.15 3.39E-73 exon

CLU chr8 27597084 Astrocyte 1 17697 2.556 0.035 −1.15 3.39E-73 intron

CLU chr8 27597917 Astrocyte 1 16864 18.113 0.008 −1.15 3.39E-73 exon

CLU chr8 27597917 Astrocyte 1 16864 18.113 0.008 −1.15 3.39E-73 intron

CLU chr8 27607577 Astrocyte 1 7204 6.695 0.032 −1.15 3.39E-73 intron

ACER3 chr11 76799174 Astrocyte 1 −61449 2.41 0.008 1.04 1.12E-30 intergenic

SORL1 chr11 121566449 Astrocyte 1 114496 3.538 0.044 −1.05 4.51E-53 exon

SORL1 chr11 121566449 Astrocyte 1 114496 3.538 0.044 −1.05 4.51E-53 intron

SORL1 chr11 121566449 Astrocyte 1 −26 3.538 0.044 −1.05 4.51E-53
promoter-
TSS

SORL1 chr11 121591362 Astrocyte 1 139409 7.332 0.011 −1.05 4.51E-53 intron

SORL1 chr11 121591362 Astrocyte 1 1193 7.332 0.011 −1.05 4.51E-53
promoter-
TSS

SORL1 chr11 121596337 Astrocyte 1 6168 6.485 0.046 −1.05 4.51E-53 intron

SORL1 chr11 121596337 Astrocyte 1 144384 6.485 0.046 −1.05 4.51E-53 intron

SORL1 chr11 121695992 Astrocyte 1 105823 3.063 0.039 −1.05 4.51E-53 intergenic

SORL1 chr11 121695992 Astrocyte 1 244039 3.063 0.039 −1.05 4.51E-53 intergenic

SORL1 chr11 121795198 Astrocyte 1 205029 3.099 0.027 −1.05 4.51E-53 intergenic

SORL1 chr11 121795198 Astrocyte 1 343245 3.099 0.027 −1.05 4.51E-53 intergenic

SORL1 chr11 121929505 Astrocyte 1 477552 3.494 0.004 −1.05 4.51E-53 intergenic

SORL1 chr11 121932043 Astrocyte 1 480090 11.926 0.031 −1.05 4.51E-53 intergenic

SPHK1 chr17 76397939 Astrocyte 1 13539 4.176 0.041 −1.01 9.98E-43 intergenic

SPHK1 chr17 76397939 Astrocyte 1 12897 4.176 0.041 −1.01 9.98E-43 intron

SPHK1 chr17 76414406 Astrocyte 1 30006 15.903 0 −1.01 9.98E-43 intergenic

ABCA7 chr19 1039766 Astrocyte 1 −87 2.429 0.001 1.09 2.95E-21
promoter-
TSS

ABCA7 chr19 1040877 Astrocyte 1 −119 4.091 0.002 1.09 2.95E-21
promoter-
TSS

ABCA7 chr19 1040877 Astrocyte 1 1024 4.091 0.002 1.09 2.95E-21
promoter-
TSS

VRK3 chr19 50024717 Astrocyte 1 360 5.864 0.043 1.09 4.88E-24
promoter-
TSS

VRK3 chr19 50024717 Astrocyte 1 979 5.864 0.043 1.09 4.88E-24
promoter-
TSS

VRK3 chr19 50025268 Astrocyte 1 −116 3.408 0.002 1.09 4.88E-24
promoter-
TSS

VRK3 chr19 50025268 Astrocyte 1 428 3.408 0.002 1.09 4.88E-24
promoter-
TSS
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Gene Chr.
Peak 
location Cell cluster

Distance 
to TSS

SnATAC 
FC

SnATAC 
FDR

SnRNA 
FC

SnRNA 
FDR Region

VRK3 chr19 50050285 Astrocyte 1 −24589 5.267 0.002 1.09 4.88E-24 intergenic

FC: Chr.: Chromosome; FC:Fold change; TSS: Transcription Starting Site; Negative value in Distance to TSS reflects peaks falling upstream of 
TSS
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