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Abstract

Artificial intelligence (AI) and other data-driven technologies hold great promise to transform 

healthcare and confer the predictive power essential to precision medicine. However, the existing 

biomedical data, which are a vital resource and foundation for developing medical AI models, do 

not reflect the diversity of the human population. The low representation in biomedical data has 

become a significant health risk for non-European populations, and the growing application of AI 

opens a new pathway for this health risk to manifest and amplify. Here we review the current 

status of biomedical data inequality and present a conceptual framework for understanding its 

impacts on machine learning. We also discuss the recent advances in algorithmic interventions for 

mitigating health disparities arising from biomedical data inequality. Finally, we briefly discuss 

the newly identified disparity in data quality among ethnic groups and its potential impacts on 

machine learning.

Keywords

artificial intelligence; health equity; multiethnic machine learning; subpopulation shift; data 
inequality; transfer learning

INTRODUCTION

Biomedical sciences have become increasingly data driven. In the past two decades, we have 

witnessed revolutionary new technologies for generating and collecting biomedical data, 

exemplified by DNA and RNA sequencing and databases containing millions of electronic 

health records (EHRs). Genomic, transcriptomic, and other high-throughput technologies 

have become a primary driving force in discovering the molecular basis of disease. 

Large biobanks are systematically generating genomics and other biomedical data for the 

participants whose EHRs have also been collected (1-4). Such biomedical datasets provide 
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essential training and testing data for machine learning model development and have become 

the foundation for building artificial intelligence (AI) capacity for precision medicine (5, 6). 

Researchers are developing AI models to utilize biomedical data for disease risk prediction 

and prognosis (7-13). However, the current data foundation for biomedical AI is biased, 

as most of the critical biomedical datasets were collected from cohorts of predominantly 

European ancestry (Figure 1). Recent statistics show that over 80% of the data from 

genome-wide association studies (GWAS) and clinical omics studies were collected from 

individuals of European ancestry, which constitute less than 20% of the world population 

(14-18).

AI is revolutionizing biomedical research and healthcare, but in the meantime, it is opening 

a major pathway for data inequality to assert its negative impacts. The inadequate training 

data has resulted in inaccurate AI models for disease risk assessment, prognostic prediction, 

and medication usage for the data-disadvantaged populations (14, 19). The disparity in AI 

model performance is a significant impediment to equitable precision medicine (Figure 1). 

Precision medicine is poised to be less precise for most of the world’s population because of 

biomedical data inequality.

Recent studies show that multiethnic machine learning schemes differ significantly in 

their performance in the presence of data inequality and that transfer learning is an 

effective strategy to improve machine learning model performance on data-disadvantaged 

populations. In the following sections, we discuss the current status of biomedical 

data inequality among ethnic groups, the ongoing efforts to increase ethnic diversity in 

biomedical data, the impacts of data inequality and subpopulation shift on multiethnic 

machine learning, and the advances in machine learning strategies to mitigate the negative 

impacts of biomedical data inequality.

BIOMEDICAL DATA INEQUALITY

Biomedical data inequality has existed for a long time but has only recently been brought 

to wide attention (14-18). As biomedical research enters the era of big data, many large-

scale datasets have been generated in recent years. These datasets provide unprecedented 

opportunities for data-driven knowledge discovery and enable the development of 

sophisticated AI models. However, severe data inequality widely exists in biomedical 

datasets. Table 1 shows examples of data inequality in some highly influential biomedical 

datasets, providing a snapshot of the degree of biomedical data inequality in a wide range 

of studies on health and disease. The data inequality is particularly severe in large-scale 

genomic, transcriptomic, proteomic, and other omic data (18). Statistics from the National 

Human Genome Research Institute (USA) provide an overview of the populations included 

in large-scale genomic studies: 87% European, 10% Asian, 8.5% unreported, 2% African, 

1% Hispanic, and 0.5% others (20).

During the past decade, GWAS have become the most important source of knowledge on 

the genetic architecture of complex diseases (21). GWAS data also provide the basis for 

developing polygenic disease prediction models (22-29). Recent studies show that GWAS 

data inequality between the European and other ancestry populations is overwhelming (16, 
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18). The GWAS Diversity Monitor (https://gwasdiversitymonitor.com/) tracks the ancestral 

diversity of thousands of GWAS and shows that over 85% of GWAS data were collected 

from individuals of European descent, and the diversity has not improved in recent years 

(16). As we discuss more thoroughly in the following sections, such data inequality hinders 

equity in multiethnic machine learning and may lead to new health disparities.

SUBPOPULATION SHIFT

In machine learning, subpopulation shift refers to data distribution discrepancies among 

subpopulations. Here, we focus on subpopulations defined by ancestry or ethnicity. 

Researchers have observed ancestry- or ethnicity-associated differences in genetic and 

somatic DNA mutation (30-33), epigenetic modification (33-37), RNA and protein 

expression (33, 38-42), metabolic signatures (43-46), and microbiome profiles (47-49) in 

a wide range of biological processes critical to human health and diseases (32, 33, 38, 

50-52). From the data science perspective, this indicates that the natural data generation 

mechanism may vary among populations of different ancestries. Such variations can lead to 

discrepancies in biomedical data distribution among ancestry groups, which has profound 

implications for multiethnic machine learning strategies.

A machine learning problem consists of a domain D and a learning task T. The domain 

D = {X, P (X)} consists of a feature space X and a probability distribution P (X), where 

X ∈ X represents the input features. The learning task T = {Y, f :X Y} consists of a 

label space Y and a predictive function f, learned from the feature–label pairs (xi, yi). 

From the probabilistic perspective, f can be written as P (Y ∣ X), where Y ∈ Y represents 

the prediction targets. In machine learning, it is generally assumed that each (xi, yi) is 

drawn from a single distribution P (Y, X). However, this assumption is violated due to the 

data distribution discrepancy across subpopulations. Given P (Y, X) = P (Y ∣ X)P (X), both the 

marginal distribution P (X) and the conditional distribution P (Y ∣ X) may contribute to the 

joint distribution discrepancy. The marginal distribution and the conditional distribution 

correspondence to two types of dataset shift and have different implications for multiethnic 

machine learning. Here we consider a population consisting of two subpopulations. A 

covariate shift (53) is a scenario where P1(X) ≠ P2(X) but P1(Y ∣ X) = P2(Y ∣ X), while a 

concept drift (53, 54) is a scenario where P1(X) = P2(X) but P1(Y ∣ X) ≠ P2(Y ∣ X). A dataset 

shift (53, 55) is a more general scenario where at least one of the marginal or conditional 

distributions is different (Figure 2). Subpopulation shift is essentially a dataset shift (53, 55) 

caused by a data distribution discrepancy among subpopulations.

The genetic architectures of many diseases, mainly represented by the allele frequencies 

and effect sizes of the causal genetic variants, vary among ancestry groups (56-59). For 

instance, the allele frequency of rs699, a single-nucleotide variant (SNV) associated with 

hypertension, varies across different populations (Figure 3a). This SNV has two alleles: 

A (associated with lower arterial pressure) and G, with overall allele frequencies of 29% 

and 71%, respectively. However, the allele frequencies vary significantly among the five 

global super-populations defined by the 1000 Genomes Project: admixed American (AMR), 

African (AFR), East Asian (EAS), European (EUR), and South Asian (SAS). Allele A is 
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the major allele in the European population with a frequency of 59% while being the minor 

allele in the non-European populations. The allele frequency also varies (to lesser extents) 

among the subpopulations of each of the five global ancestry populations. The effect size 

(odds ratio) of rs699 on preeclampsia, a severe pregnancy complication characterized by 

hypertension, varies among ancestry groups (60) (Figure 3a). The genetic architecture of 

COVID-19 also varies among ancestry groups (61). The allele frequencies and effect sizes of 

four genetic variants (rs73064425, rs2236575, rs2109069, and rs10735079) associated with 

the critical illness caused by COVID-19 vary significantly across the ancestry groups (Figure 

3b-e).

In polygenic disease prediction, genotypes of the genetic variants associated with the disease 

are used as input features (X), and the disease status is the prediction target (Y). The 

marginal distribution P (X) represents the allele frequencies of the causal genetic variants. 

The conditional distribution P (Y ∣ X) represents the dependency of the disease on the 

genotype of the causal genetic variants, which is mainly determined by their effect sizes 

on the disease. The allele frequencies and effect sizes of these causal genetic variants 

may vary among different subpopulations, leading to marginal and conditional distribution 

discrepancies. Similarly, the distribution of other molecular features (e.g., mRNA and 

protein expression) and their effects on the diseases may also vary among ancestry or 

ethnic groups (19), leading to subpopulation shift. Data inequality and subpopulation shift 

also exist in EHR datasets. For example, about 77% of patients with known ethnicities 

in MIMIC-IV (Medical Information Mart for Intensive Care, version IV) (62), the largest 

publicly available EHR dataset, are white (based on self-reported demographic data). For 

many clinical laboratory tests, there are significant value distribution differences among 

ancestry or ethnic groups (63, 64), suggesting the reference intervals (i.e., normal ranges) for 

these tests should be ethnicity dependent (65).

Making clinical decisions with AI models built using inadequate and incompatible data 

confers health risks for data-disadvantaged populations (66). Polygenic scores and medical 

AI models developed using data from cohorts of predominantly European ancestry show 

significantly lower performance on non-European populations (14, 19, 67-75). Despite 

the highly nonlinear genotype–phenotype relationship and nonadditive genetic interactions, 

linear polygenic models are widely used for disease risk prediction (29, 76). In the multiple 

linear regression framework, polygenic prediction for disadvantaged populations can be 

enhanced by calibrating parameters for genetic effect sizes or model sparsity patterns across 

ethnic groups (77-82). However, the linear polygenic models do not have the sufficient 

expressive capacity to learn and transfer complex representations across subpopulations 

with different genetic architectures. Recent studies indicate that the deep learning models 

capable of capturing complex nonlinear interactions generally outperform the linear disease 

prediction models (83-85).

MULTIETHNIC MACHINE LEARNING

We have defined three categories for multiethnic machine learning schemes based on how 

they utilize the data from different subpopulations: mixture learning, independent learning, 

and transfer learning (19) (Figure 4). The mixture learning scheme indistinctly uses data 
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from all subpopulations for model training. Currently, mixture learning is used as the 

standard machine learning scheme for multiethnic data. In the presence of data inequality, 

the performance of the mixture learning model on different subpopulations can be very 

different. The overall performance of the mixture learning model is mainly driven by its 

performance for the predominant subpopulation in the dataset. Its performance for the 

smaller subpopulations is often significantly lower due to inadequate representation in 

the training data and data distribution discrepancies with the predominant subpopulation. 

Another multiethnic machine learning scheme is independent learning, which uses data from 

different subpopulations separately to train an independent model for each subpopulation. 

The independent learning scheme also tends to generate machine learning models with low 

performance for the smaller subpopulations due to inadequate training data. In the transfer 

learning (86-92) scheme, knowledge learned from the data-rich subpopulation (source 

domain) is transferred to assist the learning task for the data-disadvantaged subpopulation 

(target domain).

The current prevalent machine learning scheme for multiethnic data, the mixture learning 

scheme, and its main alternative, the independent learning scheme, have major obstacles 

in training optimal machine learning models for data-disadvantaged subpopulations (19, 

93-95). The two major challenges in multiethnic machine learning are data inequality and 

subpopulation shift. Both challenges can be addressed with transfer learning (Figure 5). In 

transfer learning, we consider a source domain Ds = {(xi
s, yi

s)}i = 1
ns  with ns labeled samples and 

a target domain Dt = {(xi
t, yi

t)}i = 1
nt  with nt labeled samples, where the x’s represent features and 

the y’s represent labels. For multiethnic machine learning tasks, data from an ethnic group 

with a larger sample size is designated as the source domain, and data from an ethnic group 

with a smaller sample size is designated as the target domain (Figure 4). The knowledge 

learned from the source domain can be transferred to assist in developing a machine learning 

model for the target domain.

As the primary driving force of the recent AI advances, deep neural networks (DNNs) 

consisting of multiple layers of connected artificial neurons (Figure 5a) have outperformed 

traditional machine learning systems in a wide range of applications (96). DNNs are 

also particularly suitable for transfer learning, as they can learn transferable features that 

generalize well to novel tasks for domain adaptation (97). However, most deep learning 

and deep transfer learning algorithms were developed initially for visual recognition 

and language processing tasks, which provide rich algorithm resources but not an off-the-

shelf solution that one can directly apply to tabular biomedical data. Machine learning 

experiments on genomic prediction of disease occurrence and omics-based disease prognosis 

have shown that transfer learning can significantly improve the predictive accuracy for 

data-disadvantaged subpopulations (19, 93-95, 98, 99). Here we discuss three transfer 

learning strategies that have been adapted and applied to mitigate the negative impacts 

of biomedical data inequality: a fine-tuning method, an auto-encoder-based method, and a 

domain adaptation method.

Fine-tuning is frequently used as a transfer learning method to improve DNN model 

performance and generalization (100). The general fine-tuning procedure involves (a) 
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training a DNN on the source domain (a large subpopulation), (b) cutting off some layers of 

the network and replacing them with randomly initialized layers, and (c) tuning the network 

using backpropagation on the target domain (a smaller subpopulation) until the validation 

loss starts to increase. The key issue in the fine-tuning approach is the transferability of 

the layers. One can test the transferability of the layers along the DNNs by (a) changing 

the cutoff point in the network from where the bottom or top n layers will be frozen or 

fine-tuned and (b) setting different learning rates for each layer to find the optimal cutoff 

point and learning rate distribution for fine-tuning (100).

We developed an auto-encoder-based transfer learning strategy for improving cancer 

classification (101) and improving cancer prognosis prediction for data-disadvantaged ethnic 

groups (19). The method is based on stacked denoising auto-encoders (SAE) and uses 

unlabeled data from the source domain and labeled data from the target domain (Figure 5b). 

The basic idea is that using unlabeled data of the source domain to initialize the network 

parameters would improve the performance for the target domain. The SAE maps the input 

feature into different levels of representation and reconstructs it from the mapped space. 

During the training, the source domain data are used to pretrain an SAE, and then the model 

is fine-tuned using target domain data. The key parameters for this method include the 

number of SAE layers and their sizes.

Domain adaptation (102, 103) is a class of transfer learning methods that improve machine 

learning performance on the target domain by adjusting the distribution discrepancy across 

domains. The source domain and target domain are sampled from two different joint 

distributions, P s(X, Y) and P t(X, Y), respectively. As discussed in the previous section, the 

difference between joint distributions may stem from the conditional distribution P (Y ∣ X) or 

the marginal distribution P (X). Many domain adaptation methods can only handle marginal 

distribution adjustment (104). However, both marginal and conditional distributions may 

differ between subpopulations. It is essential to select domain adaptation methods that 

can simultaneously address the two significant challenges in multiethnic machine learning: 

the small sample size of the data-disadvantaged subpopulation (target domain) and the 

discrepancy of data distribution (both marginal and conditional distributions) between 

subpopulations. Low-resource domain adaptation methods such as classification and 

contrastive semantic alignment (CCSA) (105) are particularly suitable for addressing these 

challenges because (a) these methods can significantly improve target domain prediction 

accuracy by using very few labeled target samples in training and (b) these methods include 

semantic alignment in training and therefore can handle the domain discrepancy in both 

marginal and conditional distributions. The CCSA domain adaptation method (Figure 5c) 

utilizes a loss function comprising three terms: classification loss, semantic alignment 

loss, and separation loss. The semantic alignment loss is used to minimize the distance 

between samples of the same class but from different domains, the separation loss is 

used to maximize the distance between samples of different classes and domains, and the 

classification loss is used to maximize the prediction accuracy (105).

Subpopulation shift has been addressed by enforcing predictive performance parity on 

subpopulations (106). However, a fundamental challenge for machine learning fairness 

research (107-109) is the inherent trade-off between fairness and prediction accuracy (110, 
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111). The transfer learning scheme is not subject to this dilemma. In transfer learning, a 

machine learning model trained on a data-rich subpopulation (source domain) can aid in 

training a model for a data-disadvantaged subpopulation (target domain) without affecting 

its own prediction accuracy. Thus, transfer learning provides a Pareto improvement (112) 

for multiethnic machine learning (95). Pareto improvement is a generally desired scenario in 

which some parties are better off without negatively impacting other parties in the system.

In studies of the impacts of data inequality on machine learning (14, 19), the gap or ratio 

of the model performance metrics between groups is often used to measure the disparity 

of machine learning model performance across subpopulations. It should be noted that 

some performance metrics may not be suitable for evaluating machine learning model 

performance on data-disadvantaged populations with small sample sizes. As shown by Davis 

& Goadrich (113), the interpolation property of the precision-recall (PR) curve (114) may 

lead to inaccurate calculation of the area under the PR curve when the sample size is small. 

In contrast, the receiver operating characteristic curve (115) does not have this problem 

(113), thus providing a more stable performance metric for data-disadvantaged populations.

MACHINE LEARNING WITH MORE ANCESTRALLY BALANCED DATA

Machine learning experiments on synthetic data show that data inequality and subpopulation 

shift are the key factors underlying model performance disparities (19, 95). Currently, 

these challenges in multiethnic machine learning are being addressed on two fronts: data 

collection and algorithmic intervention (Figure 6). Large-scale efforts are underway to 

collect biomedical data from diverse populations (116). Table 2 lists some examples of 

current efforts to collect data from diverse or data-disadvantaged populations (this is by 

no means a complete list). Given the severe and ubiquitous biomedical data inequality that 

has accumulated for decades, there is a long way to go to achieve global biomedical data 

equity (Figure 1). As a result, medical AI faces a long-term challenge in attenuating the 

negative impacts of biomedical data inequality. However, we can expect the degree of data 

inequality to decrease gradually. Therefore, it is crucial to understand how the performance 

of different machine learning schemes changes as a function of the degree of data inequality. 

Recent experiments on synthetic data indicate that multiethnic machine learning schemes 

still perform differently even when data inequality is eliminated (i.e., different ancestry 

groups having the same sample size) because of different responses to the data distribution 

discrepancy among ancestry groups (subpopulation shift) (19).

Understating the influence of data inequality on machine learning has important implications 

for resource allocation in biomedical data collection and generation. For example, 

proportional representation is widely accepted and implemented as a criterion for equity 

in resource allocation. However, although the population of the United States is more 

ancestrally diverse than most developed countries, proportional representation in the United 

States means that only about 27% of the data will be collected from all non-European 

ancestry groups combined, which can still lead to significant disparities in AI model 

performance. Therefore, using proportional representation in the developed countries where 

most biomedical studies are conducted is not adequate for achieving health equity from 

a machine learning perspective. Collecting approximately equal amounts of biomedical 
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data from all ancestry groups is essential to achieving equitable AI-empowered precision 

medicine.

DATA QUALITY DISPARITY

Current research on biomedical data inequality almost exclusively focuses on the disparity 

in data quantity. However, recent research provides evidence of significant disparity in data 

quality between ancestry groups (117). Wickland et al. (117) found that exome sequencing 

coverage is lower for patients of African ancestry in data from The Cancer Genome Atlas, 

which may hamper the detection of the African-specific DNA variants. At this point, it 

is unclear whether there is a widespread data quality disparity among ancestry or ethnic 

groups in biomedical datasets. The data quality disparity is a serious issue that can broadly 

impact biomedical research and healthcare, and it warrants a thorough investigation. The 

data quality disparity can also exacerbate the existing disparity in multiethnic machine 

learning because low-quality data from the disadvantaged populations provide weaker and 

noisier signals that are more difficult for machine learning models to capture and utilize. In 

light of the discovery of biomedical data quality disparity, the concept of data inequality can 

be expanded to include not only disparity in data quantity but also disparity in data quality.
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Glossary

Biomedical data inequality
the significant disparity in the amount of data collected from populations of different 

ancestries or ethnicities

Multiethnic machine learning
machine learning using data from a population consisting of multiple subpopulations of 

different ancestries or ethnicities

Polygenic disease prediction
predicting disease risk or occurrence using the genotype data of multiple genetic variants 

associated with the disease

Effect size
the effect size of a causal genetic variant on a disease represents the strength of its influence 

on the phenotype or disease and is usually expressed as an odds ratio in GWAS

Causal genetic variant
the DNA variation responsible for the variation of a phenotype or disease in a population

Artificial neuron
the basic computing unit in artificial neural networks that transforms the input signals into 

an output signal using an activation function
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Auto-encoder
a type of neural network for unsupervised learning of efficient data representations through a 

process of encoding and decoding for reconstructing the input data

Loss function
the difference between estimated and true outputs of the machine learning model; during 

training and validation, it is used to optimize the model parameters for high prediction 

accuracy

Pareto improvement
a change in a system that results in a new situation where some parties in the system are 

better off, and no party is worse off
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SUMMARY POINTS

1. Biomedical data inequality confers a significant health risk for people of 

non-European ancestry, which constitute over 80% of the world’s population.

2. Artificial intelligence (AI) greatly empowers precision medicine, but in 

the meantime, it opens a major pathway for biomedical data inequality to 

manifest and amplify its health risks to data-disadvantaged groups.

3. AI-empowered precision medicine is set to be less precise for data-

disadvantaged populations, which can generate new health disparities.

4. These new health disparities can impact any disease where data inequality 

exists, so the negative impacts would be broad.

5. Algorithmic interventions such as using transfer learning can mitigate the 

negative impacts of data inequality.

6. In many cases, transfer learning provides a generally desired Pareto 

improvement in multiethnic machine learning, and it is not subject to the 

dilemma between fairness and prediction accuracy.

7. There is an urgent need to improve the ethnic (or ancestral) diversity in 

biomedical data, and proportion representation is insufficient to build the 

data foundation for equitable AI-empowered precision medicine in developed 

countries.

8. Even as the ethnic (or ancestral) diversity in biomedical data increases, 

the subpopulation shift will remain a significant challenge for multiethnic 

machine learning, which can be addressed with algorithms such as transfer 

learning.
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Figure 1. 
Addressing the challenge of data inequality for AI-powered precision medicine. The path 

of the status quo (left) leads to data inequality, a significant obstacle to achieving equitable 

precision medicine for all. The ring graph on the left shows the ethnic/ancestry compositions 

of GWAS using data from the GWAS Diversity Monitor (https://gwasdiversitymonitor.com/) 

and several representative clinical omics studies, including GTEx (https://gtexportal.org/), 

TARGET (https://ocg.cancer.gov/programs/target), TCGA (https://www.cancer.gov/about-

nci/organization/ccg/research/structural-genomics/tcga), and GENIE (https://www.aacr.org/

professionals/research/aacr-project-genie/), using data from GTEx Portal and NCI Genomic 

Data Commons (https://portal.gdc.cancer.gov/). The ring graph on the right is a conceptual 

illustration of the goal of biomedical data equity for global populations, represented 

by the five super-populations defined by the 1000 Genomes Project (135). Algorithmic 

interventions can attenuate, but may not be able to eliminate, the negative impacts of data 

inequality. A new path (right) is essential to achieve equitable precision medicine that works 

well for all ethnic/ancestry groups. Abbreviations: GENIE, Genomics Evidence Neoplasia 

Information Exchange; GTEx, Genotype-Tissue Expression Project; GWAS, genome-wide 

association studies; NCI, National Cancer Institute; TARGET, Therapeutically Applicable 

Research to Generate Effective Treatments; TCGA, The Cancer Genome Atlas.
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Figure 2. 
A conceptual framework for elucidating the data distribution discrepancies among 

subpopulations and their implications for machine learning. We consider a population 

consisting of two subpopulations 1 and 2, where X represents the input features for 

machine learning and Y represents the prediction target variable. From the machine learning 

perspective, the two subpopulations can be viewed as two domains. Covariate shift is 

the situation where the marginal distributions of the two domains are different while the 

conditional distributions of the two domains are the same. Concept drift is the situation 

where the conditional distributions of the two domains are different while the marginal 

distributions of the two domains are the same. Dataset shift is a more general situation where 

the joint distributions of the two domains are different because at least one of the conditional 

and marginal distributions is different. Given the relationship between the joint, conditional, 

and marginal distributions, covariate shift and concept drift are two special cases of dataset 

shift. The dashed curves represent the decision boundaries separating the two classes of 

the samples (Y = 0 and Y = 1). A decision boundary is determined by the conditional 

distribution that represents the causal mechanism (136) to generate Y from X.
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Figure 3. 
Allele frequencies and effect sizes of genetic variants across five global super-populations 

defined by the 1000 Genomes Project: African (AFR), admixed American (AMR), East 

Asian (EAS), European (EUR), and South Asian (SAS). The odds ratio (OR) values 

represent the effect sizes of the genetic variants on (a) preeclampsia (60) and (b–e) 

COVID-19 (61) in different populations (where the data are available). Figure generated 

using the Ensembl Genome Browser (137) webpages, which show the allele frequencies of 

the five genetic variants (data from the 1000 Genomes Project phase 3).
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Figure 4. 
Multiethnic machine learning schemes. The mixture learning scheme indistinctly uses data 

from all subpopulations in model training. The independent learning scheme uses data 

from different subpopulations separately to train an independent model for each group. In 

the transfer learning scheme, knowledge learned from the data-rich subpopulation (source 

domain) is transferred to assist the learning task for the data-disadvantaged subpopulation 

(target domain).
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Figure 5. 
The neural network architectures for deep learning and deep transfer learning. (a) An 

example architecture of a deep neural network model, which includes an input layer; 

several hidden layers (marked as F), including fully connected layers and dropout layers; 

and one output layer C. More fully connected layers can be added to the deep neural 

network model. (b) The neural network architecture of a stacked denoising auto-encoder 

(SAE) for transfer learning. F1 (or F2) is the encoder with two layers, including a fully 

connected layer and a dropout layer; F1′ (or F2′) is the decoder; the first and the second 

rows provide the structure of the first and second auto-encoders, respectively; and C is 

a regression or classification layer. (c) The neural network architecture of classification 

and contrastive semantic alignment (CCSA) (105). CCSA minimizes the loss function 

LCCSA(f) = (1 − γ) LC(b ∘ g) + γ(LSA(g) + LS(g)), where f = b ∘ g represents the composition of 

a function g that maps the input data X to an embedding space Z and a function b used to 

predict the output label from Z; C is a classification layer; LC(b ∘ g) is the classification loss; 

LSA(g) is the semantic alignment loss; LS(g) is the separation loss; and γ is the weight used to 

balance the classification loss versus the contrastive semantic alignment loss LSA(g) + LS(g).
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Figure 6. 
Data inequality and subpopulation shift are the two key challenges in multiethnic machine 

learning. These challenges are being addressed on two fronts. Collecting more ancestrally 

diverse data will gradually reduce the degree of data inequality, and algorithmic intervention 

(e.g., transfer learning) can mitigate the impacts of data inequality and subpopulation shift 

on multiethnic machine learning.
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Table 2

Examples of ongoing efforts to collect more ancestrally diverse biomedical data

Project
Disease/

phenotype Data type Populationsa Reference(s) URL

All of Us Various Genome 
sequence, omics 
data, and EHR

Black, African American 
or African; Asian; 
Hispanic Latino or 
Spanish; and White

2, 129 https://allofus.nih.gov/

Ancestry 
Networks for 
the Human 
Cell Atlas

Healthy human 
cell

Single-cell 
multiomics

African, African 
American, Afro-
Caribbean, Asian, Latinx, 
and Middle Eastern 
populations

130 https://chanzuckerberg.com/rfa/
ancestry-networks-human-cell-
atlas/

Global 
Biobank Meta-
Analysis 
Initiative

Various Genotype and 
EHR

Global populations 131 https://
www.globalbiobankmeta.org/

H3 Africa Various Genotype and 
EHR

African 132 https://h3africa.org/

The PAGE 
Study

Various Genotype and 
phenotype

African American, 
Asian, Hispanic/Latino, 
Native American, Native 
Hawaiian

133 https://www.pagestudy.org/

TOPMed Heart, lung, 
blood, and sleep 
disorders

Multiomics African, Asian, European, 
and Hispanic/Latino 
ancestry populations

134 https://topmed.nhlbi.nih.gov/

WW-ADNI Alzheimer’s 
disease

Genotype and 
image

Argentina, Australia, 
Canada, China, Japan, 
Korea, Mexico, North 
America, and Taiwan

118 https://www.alz.org/research/
for_researchers/partnerships/
wwadni

a
The original terms from the information sources are used.

b
The Global Biobank Meta-Analysis Initiative includes 24 biobanks with more than 2.2 million genotyped samples (as of January 2023) from 

different origins and ancestries (https://www.globalbiobankmeta.org/). Of the 24 biobanks, 9 are in North America, 8 are in Europe, 5 are in Asia, 1 
is in Africa, and 1 is in Australia.

Abbreviations: EHR, electronic health record; H3 Africa, Human Heredity and Health in Africa; PAGE, Population Architecture using Genomics 
and Epidemiology; TOPMed, Trans-Omics for Precision Medicine; WW-ADNI, Worldwide Alzheimer’s Disease Neuroimaging Initiative.
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