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Abstract

Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) identified in 2003 

infected ~8,000 people in 26 countries with 800 deaths, which was soon contained and eradicated 

by syndromic surveillance and enhanced quarantine. A closely related coronavirus SARS-CoV-2, 

the causative agent of COVID-19 identified in 2019, has been dramatically more contagious 

and catastrophic. It has infected and caused various flu-like symptoms of billions of people in 

>200 countries, including >6 million people died of or with the virus. Despite the availability 

of several vaccines and antiviral drugs against SARS-CoV-2, finding new therapeutics is needed 

because of viral evolution and a possible emerging coronavirus in the future. The main protease 

(Mpro) of these coronaviruses plays important roles in their life cycle and is essential for the 

viral replication. This article represents a comprehensive review of the function, structure and 

inhibition of SARS-CoV and -CoV-2 Mpro, including structure-activity relationships, protein-

inhibitor interactions and clinical trial status.
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1. Introduction

Severe acute respiratory syndrome (SARS) is caused by SARS-associated coronavirus 

(SARS-CoV), a novel coronavirus identified in 2003. Its outbreak resulted in >8,000 cases 

including >800 deaths in 26 countries worldwide [1]. Without an effective treatment, SARS-

CoV infection had a high mortality rate of ~10%. It was soon contained and eradicated 

through syndromic surveillance and enhanced quarantine. A closely related coronavirus 

SARS-CoV-2, the causative agent of COVID-19 discovered in Wuhan, China in December 

of 2019, has been dramatically more pandemic and catastrophic in the history of public 

health [2]. SARS-CoV-2 is highly contagious with an estimated basic reproductive number 

R0 of 5.7, significantly higher than ~3 for SARS-CoV and ~1.5 for H1N1 influenza (swine 

flu) in 2009 [3]. It has rapidly spread to more than 200 countries worldwide and infected 

and caused various flu-like symptoms of billions of people worldwide, including >6 million 

people (mostly elderlies) died of or with the virus. In addition to upper and lower respiratory 

system, SARS-CoV-2 affects multiple other organs, including heart, kidney, liver and 

gastrointestinal and central nervous system [4]. Facing such a devastating health crisis, most 

countries enforced various types of “Stay at Home” orders to restrict the spread of the virus, 

which caused enormous negative impact to the economy. Despite the availability of several 

effective vaccines and antiviral drugs against SARS-CoV-2 [5], studies towards finding new 

targeted therapeutics are needed because of continued evolution of SARS-CoV-2 and a 

possible emerging coronavirus in the future.

SARS-CoV-2 is highly homologous to SARS-CoV with 82% identity in their genome 

sequences, particularly for several essential enzymes such as RNA-dependent RNA 

polymerase (RdRp, with 96% identity) and main protease (Mpro, with 96% identity) [6]. 

Studies have shown various viral and host proteins play critical roles in different stages of 

the life cycle of SARS-CoV-2, including the viral spike protein, RdRp, Mpro and papain-like 

protease (PLpro) as well as host angiotensin-converting enzyme 2 (ACE2), cyclophilins and 

several other proteins [7]. Among these, Mpro is a promising drug target for development of 

antiviral agents against SARS-CoV and -CoV-2, since Mpro can generate 11 non-structural 

viral proteins [8] and is essential for replication of these viruses. This article reviews the 
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function, structure and inhibitors of SARS-CoV and SARS-CoV-2 Mpro, including protein-

inhibitor interactions, structure-activity relationships, and clinical trial status. In addition, the 

perspectives of the antiviral drug discovery and development targeting Mpro of SARS-CoV-2 

and closely related coronaviruses are discussed.

2. SARS-CoV, SARS-CoV-2 and other Coronavirus family members

SARS-CoV and SARS-CoV-2 belong to the Coronavirus family of RNA viruses [9], 

which contain four genera: α-, β-, γ-, and δ-coronavirus. α- and β-Coronavirus only 

infect mammals, while γ- and δ-coronavirus primarily infect birds [10]. To date, seven 

coronaviruses causing human diseases have been identified, including HCoV-229E, HCoV-

NL63, HCoV-OC43, HCoV-HKU1, SARS-CoV, MERS-CoV, and SARS-CoV-2 [11, 12]. 

Phylogenic analysis suggests all of these human coronaviruses originate from animals. 

HCoV-229E and HCoV-NL63 belong to α-coronavirus, while HCoV-OC43 and HCoV-

HKU1 are β-coronavirus. These 4 viruses cause about one-third of common colds in humans 

[13] with generally mild symptoms, but they may occasionally lead to severe pneumonia 

and bronchiolitis in infants [14] and immunocompromised patients [15–17] or be associated 

with certain enteric diseases [18] and neurological disorders [19–21]. Recently identified 

SARS-CoV, MERS-CoV and SARS-CoV-2 are β-coronaviruses and far more pathogenic, 

causing serious and sometimes fatal respiratory diseases in humans.

SARS-CoV and SARS-CoV-2 are positive-sense, single-stranded RNA viruses with a 

genome size of 29.7 and 29.9 kb, respectively [22, 23]. Their RNA and the associated 

nucleocapsid proteins form a capsid [24], which is enveloped by a bilayer lipid membrane 

studded with the viral envelope and spike proteins (Figure 1a). The SARS-CoV and SARS-

CoV-2 genomes contain an untranslated region at both the 5’- and 3’-terminus and several 

open reading frames (ORF) (Figure 1b). The life cycle of SARS-CoV-2 (or SARS-CoV) 

begins with its attachment to the host cells [9, 23, 25–27], through the interactions between 

its spike protein and the host cell surface ACE2 [28]. The binding triggers fusion of the viral 

and host cell membranes followed by endocytosis and releasing the viral RNA into the host 

cytoplasm, where it is translated into viral proteins. ORF1a and its frameshifted ORF1a/b 

give two large polyproteins, pp1a (~450 kDa) and pp1ab (~750 kDa) [8, 29], which are 

site-specifically cleaved by the viral proteases PLpro (i.e., nsp3) and Mpro (nsp5) to produce 

16 viral non-structure proteins (nsp), including the two proteases and RdRp (nsp12). The 

other RNA sequences are translated to generate viral structural proteins including the spike, 

envelope, membrane, nucleocapsid protein and several accessory proteins. In the meantime, 

RdRp is used to replicate the viral genomic RNA, which is complexed with the nucleocapsid 

proteins to form a capsid in the host endoplasmic reticulum-Golgi intermediate compartment 

(ERGIC), where a new virus particle is assembled and ready for egress to infect a new cell.

3. Structure and function of SARS-CoV and -CoV-2 Mpro

SARS-CoV or -CoV-2 Mpro (also known as 3CLpro), which cleaves the viral polyprotein 

and generates 11 non-structure viral proteins [8], is essential for replication of these viruses 

and therefore, an antiviral drug target [30]. SARS-CoV-2 Mpro is a 33.8-kDa protease 

with a high homology to that of SARS-CoV (96% sequence identity) [6] as well as other 

Li and Song Page 3

Eur J Med Chem. Author manuscript; available in PMC 2024 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



coronaviruses (41–51% identity and 73–80% similarity). Mpro protein is a homodimer with 

two monomers oriented perpendicularly to each other (Figure 2a). Each monomer comprises 

three domains with the first two adopting a chymotrypsin fold for its catalytic activity. The 

third domain for homo-dimerization has been found to be critical to the catalytic activity 

[31, 32]. Similarly, the Mpro chymotrypsin fold is similar to other 3C-like proteases from 

the picornavirus family, such as rhinovirus [33, 34] causing common cold [35–39]. Figure 2 

shows the structure of SARS-CoV-2 Mpro in complex with a representative peptidomimetic 

inhibitor N3 [40], which exemplifies the Mpro-substrate interactions (Figure 2b, c) and 

mechanism of catalysis that can be used for rational drug design.

Mpro recognizes its substrates with a consensus sequence P2P1-P1’ and hydrolyzes the 

amide bond between P1 and P1’, in which the P1 is always Gln, the P1’ is Ser or Ala, and 

the P2 is a hydrophobic Leu, Phe or Val (Figure 2d). Compound N3 occupies all of the 

substrate binding pockets, closely resembling an Mpro substrate (Figure 2b). The Cys145 

-SH group undergoes a Michael addition reaction and forms a covalent bond with the 

acrylate group of compound N3 (Figure 2c), significantly strengthening its binding. The N3 

lactam group mimics Gln (P1) and occupies the S1 pocket composed of Phe140, Leu141, 

Asn142, Glu166, His163 and His172. The P1 lactam forms multiple hydrogen bonds with 

Phe140, Glu166 and His163. The P2 Leu sidechain is located in and has hydrophobic 

interactions with the S2 pocket defined by His41, Met49, Tyr54, Met165 and Asp187. There 

is also a hydrogen bond between the amide of Leu and Gln189. The side chain of the P3 

Val is open to the solvent, while the P4 Ala residue of compound N3 occupies the S4 pocket 

formed by Met165, Leu167, Phe185, Gln192 and Gln189. The inhibitor terminal oxazole 

group sitting on the edge of the pocket might have hydrophobic interactions with Pro168, 

Thr190 and Ala191. The benzyl ester group of the inhibitor is located in the S1’ pocket with 

hydrophobic interactions with Thr24 and Thr25.

Mechanistically, the –SH group of Cys145 is deprotonated by His41 and attacks the 

carbonyl group of the amide bond between the P1 and P1’ residues to form a thioester 

intermediate (Figure 2e). The protonated His41 also acts as an acid to facilitate the leaving 

of the P1’ amine. The ensuing hydrolysis of the thioester intermediate gives the P1 acid to 

complete a catalytic cycle.

4. Inhibitors of SARS-CoV and -CoV-2 Mpro

Due to Mpro’s essential roles in viral replication, a number of peptidic, peptidomimetic 

and non-peptidic small molecule inhibitors of Mpro have been designed, discovered 

and developed (Supporting Information Table S1). Most of these inhibitors feature an 

electrophilic “warhead” group, which was designed to react and covalently bind the 

nucleophilic -SH group of Cys145.

4.1. Peptidic and peptidomimetic inhibitors

4.1.1. Aldehyde-based inhibitors—Representative Mpro inhibitors with an aldehyde 

“warhead” are shown in Figure 3. Peptidomimetic aldehydes, including compound 11a, 

were reported as covalent inhibitors of SARS-CoV-2 Mpro [41]. 11a demonstrated potent 

enzymatic activity with an IC50 value of 53 nM and cellular antiviral EC50 value of 530 
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nM. Its binding structure in SARS-CoV-2 Mpro as well as in vivo pharmacokinetics and 

toxicities were also studied. Compound 18p with a phenyl group at the P2 position instead 

of cyclohexyl group in 11a also retained the activities [42].

Compound GC373 and its bisulfite adduct prodrug GC376, initially used to treat feline 

coronavirus, were found to inhibit Mpro [43] with submicromolar IC50 values. These 

compounds showed strong anti-SARS-CoV-2 activity in cells with EC50 values of 1.5 

and 0.92 μM. GC376 was also reported by other groups [44–47] and showed broad-

spectrum activity against coronaviruses, including SARS-CoV [48]. However, it showed 

poor pharmacokinetics and limited in vivo anti-SARS-CoV-2 activity in mice [49, 50]. 

Modification of GC376 yielded inhibitors with moderately improved enzymatic and cellular 

activities [51]. Interestingly, deuterated GC-376 showed significantly enhanced potencies 

in SARS-CoV-2 infected cells and mice [52], despite its similar enzymatic activity to the 

parent inhibitor. X-ray crystallographic studies also indicated the deuterated GC-376 binds 

to SARS-CoV-2 Mpro similarly. Compared with GC373/GC376, compounds with different 

capping groups at the P3 position [53–60], such as compounds 6e [53] and 2a [54] also 

showed similar or better biochemical and cellular antiviral activities. Calpeptin with a 

n-butyl P1 sidechain showed modest activity against SARS-CoV-2 Mpro (IC50 = 10.69 μM) 

[47], but it exhibited a potent antiviral EC50 of 72 nM in Vero cells [61], presumably due 

to off-target effects. MPI8/TG-0205221 was found to exhibit dual inhibition of SARS-CoV 

Mpro (Ki = 53 nM) and human cathepsin L (which is also a cysteine protease critical to the 

virus entry), with good selectivity over other cathepsins [62, 63]. It showed low-nM antiviral 

activities together with stabilities in mouse, rat and human plasma [62]. However, despite its 

increased enzymatic activity, analogous compound MPI3 with smaller hydrophobic P2 and 

P3 sidechains had no antiviral activity up to 10 μM, possibly due to cellular stability issues 

[64]. Other similar aldehyde inhibitors were reported [47, 48, 64–74].

Mpro inhibitor MI-09 with an azabicyclo[3.1.0]hexane P2 moiety is one of the most 

potent inhibitors with an IC50 of 15.2 nM. It showed potent anti-SARS-CoV-2 activities 

in cell-based assays (EC50 = 0.86 μM) and in a mouse model. MI-09 also possesses good 

pharmacokinetics [70], e.g., T1/2 = 4.53 h. Structurally similar compounds, such as UAWJ9–

36-3, were also reported [71, 75]. In another study, a variety of proline derivatives at the 

P2 were explored, which led to the finding of compound 12 with an IC50 of 5 nM against 

SARS-CoV-2 Mpro and an antiviral EC50 of 5.3 μM, while it showed a moderate cytotoxicity 

(CC50 of 28.4 μM) [76].

4.1.2. Ketone-based inhibitors—Although aldehyde-based inhibitors of Mpro have 

potent enzyme activities, the aldehyde group is chemically reactive and often associated with 

off-target effects and undesired toxicities. Less electrophilic ketone has been explored as the 

“warhead” group of Mpro inhibitors (Figure 4).

Benzothiazolyl ketone 5h/YH-53 was found to be a potent inhibitor of SARS-CoV Mpro (Ki 

= 6 nM) [77–80] and SARS-CoV-2 Mpro (Ki = 18 nM) with cellular antiviral activities [81]. 

In addition, it had no cytotoxicity and showed favorable in vivo pharmacokinetics except 

for a low oral bioavailability [82]. Structurally similar PF-00835231 with a hydroxylmethyl 

ketone “warhead” retained potent biochemical and antiviral activities (IC50 = 6.9 nM and 
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EC50 = 231 nM) with more favorable drug properties [83–86]. Phase I clinical trials 

(NCT04627532 and NCT04535167) of its phosphate prodrug PF-07304814 have been 

completed, showing good safety profiles [84, 85]. Moreover, in a comparison study, the 

hydroxymethyl ketone-based inhibitor was found to exhibit more biochemical activity 

against SARS-CoV-2 Mpro than does structurally similar, nitrile-based nirmatrelvir [87].

Heteroaromatic and aliphatic α-acyloxymethyl ketone warheads were found in a series of 

SARS-CoV-2 Mpro inhibitors, such as compound 15l showing biochemical IC50 of 19 nM 

and cellular antiviral EC50 of 300 nM without overt cytotoxicity [88]. A similar phenyl 

α-acyloxymethylketone compound was also reported with weak activities as well as poor 

protease selectivity [89].

α-Ketoamide compounds were reported to be Mpro inhibitors [32, 90]. Compound 11r 
exhibited an IC50 of 0.71 μM against SARS-CoV Mpro and inhibited the viral replication 

in Vero cells with an EC50 of 2.1 μM [90]. Incorporation of P3-P2 amide bond of 

11r into a pyridone ring led to the discovery of 13b with good drug-like properties, 

although its enzymatic and cellular activities were slightly compromised [32]. A subsequent 

study indicated that one diastereomer (13b-K) of 13b with a S-P2 moiety is a more 

potent inhibitor with an IC50 of 0.12 μM, but the corresponding R-enantiomer is almost 

inactive (IC50 > 5 μM) [91]. 13b-K had more potent anti-SARS-CoV-2 activity with 

EC50s of 0.84–3.4 μM. Calpain inhibitor XII with a n-propyl P1 sidechain showed potent 

inhibition of SARS-CoV-2 Mpro as well as a broad spectrum of anti-coronavirus activities 

including SARS-CoV and -CoV-2 [47, 48]. Anti-hepatitis C virus drug boceprevir with a 

cyclobutylmethyl P1 moiety was found to be an inhibitor of SARS-CoV-2 Mpro with IC50 

values ranging from 0.95 μM to 8.0 μM by several research groups [44, 47, 92–96]. It also 

exhibited broad anti-coronavirus activities including SARS-CoV-2 (EC50 = 1.3–19.6 μM) 

[44, 47, 48, 92]. With a 5-membered lactam at the P1 position that mimics Gln, structurally 

similar ML1000 showed significantly increased potencies (IC50 = 12 nM and EC50 = 100 

nM) [97]. However, narlaprevir with a n-butyl P1 showed similar activities to boceprevir 

[47, 92, 95, 98]. SY110, obtained from compound screening followed by structural 

modification, exhibited strong inhibition against SARS-CoV-2 Mpro with an IC50 of 14.4 

nM and broad anti-coronavirus activity including different variants of SARS-CoV-2 and 

SARS-CoV with EC50s in sub-μM to low μM range [99]. With favorable pharmacokinetic 

properties and safety profiles, oral administration of SY110 significantly protected mice 

infected with SARS-CoV-2 (Omicron strain).

Compound Y180, having a methyl ketone “warhead” group, was reported to be a potent 

SARS-CoV-2 Mpro inhibitor (IC50 = 8.1 nM) with advanced preclinical studies. It exhibited 

excellent antiviral activities against wild-type and mutant SARS-CoV-2 with EC50s of 11.4–

34.4 nM [100]. With good oral bioavailability (92.9% in mice), pharmacokinetics (e.g., T1/2 

= 1.42 h) and no overt toxicities, Y180 showed strong anti-SRAS-CoV-2 activities in several 

animal models. Other Mpro inhibitors with a phthalhydrazido, or trifluoromethyl-ketone 

were also reported with low or untested antiviral activities [77, 101–103].

4.1.3. α, β-Unsaturated esters and related Michael acceptors—α, β-Unsaturated 

ester, amide and related groups can covalently bind Cys145 through a Michael addition 
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reaction and is therefore a good “warhead” group for cysteine proteases. Representative 

inhibitors are shown in Figure 5. Rupintrivir (AG7088), a potent inhibitor of rhinovirus 

3CLpro, was found to have negligible inhibitory activities against Mpro of SARS-CoV and 

-CoV-2 (IC50 >= 68 μM) [30, 104–106], but it strongly inhibited replication of SARS-CoV-2 

with an EC50 of 1.87 μM [107]. Compound 18c with a cinnamoyl P3 moiety showed 

good inhibitory activities against SARS-CoV Mpro (IC50 = 1 μM) as well as cellular viral 

replication (EC50 = 0.18 μM) without overt toxicity [105].

Structure-based drug design led to the discovery of SARS-CoV Mpro inhibitor N3 (Figure 

2b) with a Ki of 9.0 μM [108]. It is also an inhibitor against SARS-CoV-2 Mpro as 

well as the virus replication with an EC50 of 16.77 μM [40]. TG-0203770, with a 1-(tert-
butoxy)ethyl moiety at P3, is a potent inhibitor of SARS-CoV and -CoV-2 Mpro (Ki = 58 and 

151 nM) [109] with a strong cellular anti-SARS-CoV-2 EC50 of 2.88 μM [45]. SM141 with 

a benzyl group at the P2 and P3 showed dual inhibition of SARS-CoV-2 Mpro and human 

Cathepsin L with IC50 of 0.9 μM and 60 nM, respectively [110]. It potently inhibited cellular 

replication of SARS-CoV-2 with an EC50 of 8.2 nM without cytotoxicity. It can significantly 

reduce viral loads and prolong animal survivals in SARS-CoV-2-infected mice. Other α, 

β-unsaturated ester-based and related inhibitors of SARS-CoV and -CoV-2 Mpro were also 

reported [109, 111–114], among which SPR39 with a vinyl methyl ketone Michael acceptor 

showed strong SARS-CoV-2 Mpro inhibition with a Ki of 0.252 μM and an antiviral EC50 of 

1.5 μM [114].

Similarly, acrylamide or vinyl sulfone could undergo a Michael addition reaction and be 

a potential warhead. Acrylamide compound MPI80 was reported to potently inhibit SARS-

CoV-2 Mpro with an IC50 of 34 nM. It blocked cellular viral replication with an EC50 of 0.70 

μM [115]. Several other acrylamide- [116] or vinyl sulfone-based inhibitors of SARS-CoV-2 

Mpro [117, 118] were also reported with low or untested antiviral activities.

4.1.4. Haloacetyl-based inhibitors—Compound screening identified a 

chloroacetamide compound JCP400 (Figure 6) to be an inhibitor of SARS-CoV-2 Mpro with 

an IC50 of 1.74 μM as well as moderate antiviral activities [89]. But it had similar activities 

against other proteases, such as cathepsins L and B, showing a poor selectivity. Jun9–62-2R 

with a dichloroacetamide group was developed as a covalent inhibitor of SARS-CoV and 

-CoV-2 Mpro, showing biochemical IC50 and cellular antiviral EC50 in sub- to low-μM range 

[119]. Azapeptidic compounds bearing a mono- or di-chloroacetamide, such as MPI89, were 

reported to be a potent SARS-CoV-2 Mpro inhibitor [115]. MPI89 exhibited potent antiviral 

activities with low cytotoxicity, but it had a short half-life in plasma (~ 20 min). Compound 

29 was discovered as a covalent inhibitor of SARS-CoV-2 Mpro with an IC50 of 1.72 μM 

[120], but it showed more potent inhibitory activity against SARS-CoV-2 PLpro (IC50 = 0.67 

μM). Compound 29 was found to inhibit replication of a variety of SARS-CoV-2 strains in 

Vero cells with EC50s of 0.32–1.37 μM. Other haloacetyl-based inhibitors were also reported 

[117, 121–124], among which several compounds showed potent biochemical inhibition, but 

none of them were tested in cells or animals [117, 122, 123].

4.1.5. Nitrile-based inhibitors—Modifications of hydroxylmethyl ketone-based 

inhibitor PF-00835231 (Figure 4) led to the discovery of Mpro inhibitor nirmatrelvir 
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(initially coded as PF-07321332) with a nitrile “warhead” (Figure 6). nirmatrelvir showed a 

highly potent activity (Ki = 3.11 nM) against SARS-CoV-2 Mpro. While it is less active 

than PF-00835231 (Ki = 0.27 nM), nirmatrelvir exhibited ~3× more cellular antivirus 

activities [86]. Oral administration of nirmatrelvir significantly reduced the viral loads in 

SARS-CoV-2 infected mice and protected them from weight losses [86]. Furthermore, 

immunohistochemical analysis also revealed it significantly alleviated virus-caused lung 

damages in a dose-dependent manner. Nirmatrelvir exhibited a good safety profile with a 

high selectivity over a broad panel of human proteins. It is also negative in the genetic 

toxicity studies and rat micronucleus assay. Furthermore, the embryo-fetal, fertility and early 

embryonic development studies indicated nirmatrelvir is a safe drug in animal models [125]. 

Other nirmatrelvir analogs with the same P1, P2 and P3 were also reported [126].

Another nitrile compound 18b (Figure 6) with an indole P3 moiety showed potent 

biochemical activity and strong antiviral activity against SARS-CoV-2, together with a good 

selectivity over human cysteine proteases [127]. In addition, nitrile-based peptidomimetic 

compound Cbz-AVLQ-CN, designed based on the autocleavage tetrapeptide sequence of 

SARS-CoV Mpro, was found to have an IC50 of 4.6 μM as well as a broad inhibitory 

activities against other coronavirus Mpro with IC50s of 1.3–4.6 μM [128, 129]. Compound 

screening followed by medicinal chemistry studies identified azanitrile compound Gü3619 

(Figure 6) as a potent irreversible covalent inhibitor of SARS-CoV-2 Mpro with an IC50 of 

37.8 nM, but it also potently inhibited human cathepsins L and B [130].

4.1.6. Other miscellaneous compounds—Epoxy ketone compound WRR183 

(Figure 7) was found to inhibit SARS-CoV Mpro with a Ki of 2.2 μM and the virus 

replication with an EC50 of 12 μM [131]. Its electrophilic epoxy β-carbon atom forms 

a thioether bond with Mpro Cys145. Several substrate-based oligomeric peptides or 

peptidomimetic compounds were reported to be inhibitors of SAR-CoV and/or -CoV-2 Mpro 

with sub-μM activities [132–140].

Virtual screening followed by medicinal chemistry led to the discovery of non-covalent 

inhibitor ML188 (Figure 7) with IC50s in the low μM range against SARS-CoV and -CoV-2 

Mpro [141, 142]. In the cell-based assay, ML188 exhibited anti-SARS-CoV activity with an 

EC50 value of 13 μM. Modification of ML188 yielded more potent inhibitor 23R (Figure 7) 

[143].

Anti-HIV drug atazanavir, an inhibitor of HIV-1 (aspartic) protease, was found to inhibit 

SARS-CoV-2 Mpro as well as cellular viral replication in the sub-μM to μM range [144, 

145]. It also exhibited significant anti-SARS-CoV-2 activity in mice [145]. Cobicistat, an 

inhibitor of human cytochrome P450 and an adjuvant drug for HIV treatment, was reported 

to be a SARS-CoV-2 Mpro inhibitor with an IC50 of 6.7 μM [107, 146]. However, inhibition 

of SARS-CoV-2 Mpro by these two drugs were not confirmed by other researchers [65, 147]. 

In addition, immune-modulating polypeptide drug glatiramer acetate was also identified to 

be a weak SARS-CoV-2 Mpro inhibitor with mild antiviral activity [148].
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4.2. Non-peptidic small molecule inhibitors

Non-peptidic inhibitors of SARS-CoV and -CoV-2 Mpro have been discovered and 

developed, with the majority initially identified from compound screening including virtual 

screening.

4.2.1. Flavonoids—Natural flavonoid compound baicalin (Figure 8) was identified as 

an inhibitor of SARS-CoV-2 Mpro with an IC50 of 6.41 μM, which inhibited replication 

of SARS-CoV-2 in cells (EC50 = 27.87 μM) [149, 150]. Baicalein, the parent compound 

of baicalin, exerted improved biochemical and cellular activities against SARS-CoV and 

-CoV-2 [149–151]. Analogs with more hydroxyl groups in the 2-phenyl substituent of 

baicalein, such as myricetin, retained the biochemical activity [152, 153]. Interestingly, 

myricetin was found to be oxidized by O2 to become a quinone and covalently bind 

to Cys145 of SARS-CoV-2 Mpro (Figure 18g, h) [152]. However, flavonoid compounds 

without the 2-phenyl substitution, such as esculetin-4-carboxylic acid ethyl ester, is a weak 

SARS-CoV Mpro inhibitor [154]. Other flavonoids and related analogs have also been 

reported to inhibit Mpro with low-μM IC50 values [151, 155–171], while their antiviral 

activities were not disclosed.

4.2.2. Quinoline analogs—Quinoline compound MAT-POS-e194df51-1 (Figure 9) was 

identified in an X-ray-based fragment screening campaign to be a potent SARS-CoV-2 Mpro 

inhibitor (IC50 = 36.8 nM), which exhibited potent anti-SARS-CoV-2 activities with EC50 

as low as 63.8 nM [172]. It had acceptable in vivo pharmacokinetic and toxicities (e.g., T1/2 

= 1.4 h in rats) with oral bioavailability (18% in rats). Quinoline compound DA-3003-1 

showed an inhibitory IC50 of 2.63 μM against SARS-CoV-2 Mpro and an EC50 of 4.47 μM 

in the SARS-CoV-2 cytopathic effect (CPE) assay, but it is cytotoxic (CC50 = 7.74 μM) 

[173]. Compound 19 was discovered from virtual screening followed by structure-based 

optimization, having an IC50 of 77 nM against SARS-CoV-2 Mpro as well as antiviral EC50 

values as low as 77 nM [174]. Compound C7, from structure-based drug development based 

on baicalein (Figure 8), exhibited a potent activity against SARS-CoV-2 Mpro (IC50 = 85 

nM) and cellular viral replication (EC50 = 1.10 μM) [175].

Several quinolone or related drugs were reported to inhibit Mpro of SARS-CoV and -CoV-2. 

Anti-hepatitis C virus (HCV) drug simeprevir, an inhibitor of HCV NS3/4A (serine) 

protease, inhibited SARS-CoV-2 Mpro with IC50 of 2.46–13.74 μM [47, 176, 177], while 

it also showed comparable activities against SARS-CoV-2 RNA-dependent RNA polymerase 

(RdRp) (IC50 = 5.5 μM) [177]. Simeprevir inhibited replication of SARS-CoV-2 in Vero 

cells with an EC50 of 1.40 μM [176]. Nelfinavir, a HIV-1 protease inhibitor, was reported 

to only partially inhibit SARS-CoV Mpro. It can inhibit cellular replication of SARS-CoV 

and -CoV-2 with EC50 values of 0.048–3.3 μM by several groups [107, 178–180]. However, 

nelfinavir was found to not inhibit Mpro by another laboratory [65]. Also, nelfinavir was 

unable to inhibit SARS-CoV-2 replication in hamsters [181]. Pelitinib, an anticancer drug 

inhibiting human epidermal growth factor receptor (EGFR), was found to bind to an 

allosteric site of SARS-CoV-2 Mpro. Although it inhibited proliferation of SARS-CoV-2 

in Vero E6 cells with an EC50 of 1.25 μM, its biochemical activity against Mpro was not 

disclosed [61].
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Compound screening or rational drug design led to discovery and development of other 

quinoline analogs [65, 182–194], with the best compounds showing strong inhibition of 

Mpro [185, 186, 188, 193]. But their cellular anti-SARS-CoV-2 activities were not evaluated 

or weak.

4.2.3. Terpenoids—Bardoxolone methyl (Figure 10) was identified as a SARS-CoV-2 

Mpro covalent inhibitor through screening of compounds bearing an electrophilic group 

[195]. With a moderate enzyme activity (IC50 = 5.81 μM), it showed potent cellular 

antiviral activity (EC50 = 0.29 μM). A cell-based Mpro inhibitor screening yielded 

hydroxyprogesterone (cellular IC50 of 2.47 μM), which blocked replication of SAR-CoV-2 

in Vero cells with an EC50 of 2.77 μM [176]. The S-enantiomer of phloroglucinol terpenoid 

3 was identified to be an inhibitor of SARS-CoV-2 Mpro from virtual screening with an IC50 

of 7.5 μM and antiviral EC50 of 4.5 μM, while its R-isomer was less active [196]. Several 

other terpenoid compounds, including betulinic acid, were found to inhibit SARS-CoV and 

-CoV-2 Mpro with micromolar IC50 values [197–203].

4.2.4. Pyridinyl ester and related compounds—Activated esters that could 

covalently bind to Cys145, including pyridinyl esters [45, 81, 130, 204–207], benzotriazole 

esters [208], and their analogs [209–212], were explored as SARS-CoV and -CoV-2 

Mpro inhibitors. Pyridinyl ester compound GRL-0920 (Figure 11) was found to be a 

potent inhibitor of SARS-CoV Mpro with an IC50 of 30 nM, which blocked the cellular 

viral replication with an EC50 of 6.9 μM [204]. It also showed comparable activities 

against SARS-CoV-2 Mpro and replication [205, 206]. Other analogs of GRL-0920 were 

developed with similar or reduced activities [81, 205, 206]. Mechanistically, the -SH 

group of Cys145 nucleophilically attacks and hydrolyzes the activated ester, with the 5-

chloropyridin-3-ol being a good leaving group. The thioester product has been confirmed by 

X-ray crystallography and mass spectrometry studies [205, 206]. Several other pyridyl esters 

or their analogs were also found to be Mpro inhibitors [45, 130, 207, 212, 213], including 

WNN2048-F004 (IC50 = 103.1 nM). However, it only showed modest cellular antiviral 

activity against SARS-CoV-2.

A series of thioesters were reported, including compound 3w with IC50s of 61.3 and 

11.4 nM against SARS-CoV and -CoV-2 Mpro [214]. It showed an EC50 of 0.11 μM 

against the replication of SARS-CoV-2 virus without cytotoxicity up to 10 μM. In addition, 

benzotriazole esters were reported as irreversible SARS-CoV Mpro inhibitors [208]. The 

most potent compound 8 (Figure 11) showed potent inhibition of Mpro with a Ki of 7.5 nM, 

while no cellular antiviral activities were disclosed. X-ray crystallography and mechanistic 

studies revealed that these inhibitors acylate the active site Cys145 with their benzotriazole 

being as a leaving group [215]. Moreover, dithiocarbamate compound 1, identified from 

high-throughput screening (HTS), potently inhibited Mpro of SAR-CoV-2 (IC50 = 21 nM), 

SARS-CoV (IC50 = 383 nM) and other coronaviruses. It covalently modifies Cys145 to 

form a dithiocarbamate adduct. Compound 1 was found to inhibit cellular proliferation of 

SARS-CoV-2 with an EC50 of 1.06 μM [216].

4.2.5. Ebselen analogs—Through high-throughput screening, selenium-containing 

compound ebselen (Figure 11) was found to be an Mpro inhibitor with an IC50 of 0.67 μM, 
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which inhibited cellular replication of SARS-CoV-2 with an EC50 value of 4.67 μM [40]. 

It was later reported to be a nonspecific inhibitor [65, 217, 218]. Modification of ebselen 

has yielded several more potent inhibitors of SARS-CoV-2 Mpro [219–227], including MR6–

18-4 with an IC50 of 0.35 μM as well as cellular anti-SARS-CoV-2 EC50 of 3.74 μM. An 

X-ray crystallographic study suggested that ebselen (and its analog) covalently modifies the 

Cys145 -SH group of SARS-CoV-2 Mpro by forming a S-Se bond, while other atoms of 

ebselen cannot be found in the structure [220].

4.2.6. Benzotriazole-based inhibitors—Benzotriazole compound ML300 (Figure 12) 

was identified as a SARS-CoV-2 Mpro inhibitor with an IC50 value of 4.99 μM through 

compound screening followed by structure-based medicinal chemistry [228, 229]. Modest 

antiviral activity in cells (EC50 = 19.90 μM) was observed. Further modification of ML300 

led to a more potent inhibitor CCF0058981 with an IC50 of 68 nM as well as an EC50 of 497 

nM against SARS-CoV-2 [229].

4.2.7. Pyrimidine analogs—High-throughput screen identified pyrimidine compound 

carmofur to be an inhibitor of SARS-CoV-2 Mpro (IC50 = 1.82 μM) [40], which modestly 

inhibited cellular replication of SARS-CoV-2 [230]. The structure of SARS-CoV-2 Mpro in 

complex with carmofur was determined [230]. Subsequent studies revealed that carmofur 

is a nonspecific inhibitor, and it also showed sub-μM activities against SARS-CoV-2 PLpro 

and other 3CLpro [65, 217]. Another pyrimidine-containing compound 23 was discovered as 

a potent SARS-CoV-2 Mpro inhibitor with an IC50 of 20 nM, using virtual screening [231, 

232]. Compound 23 was able to inhibit cellular SARS-CoV-2 proliferation with an EC50 of 

0.84 μM. Its derivative compound 19 showed significantly increased antiviral activity against 

SARS-CoV-2 (EC50 = 80 nM) [233]. Several other pyrimidine and related compounds were 

also identified to be Mpro inhibitors with low-μM IC50s [166, 207, 234–237].

4.2.8. Acrylamide and related compounds—Through screening DNA-encoded 

compound libraries, compound 1e with an acrylamide group (Figure 13) was identified 

as a novel covalent inhibitor of SARS-CoV and -CoV-2 Mpro (IC50 = 3.5 and 2.0 μM) [238]. 

However, it showed only weak anti-SARS-CoV-2 activity in cells with an EC50 of 33 μM. 

In addition, LY1 was found to be a dual inhibitor of SARS-CoV-2 Mpro (IC50 = 0.12 μM) 

and PLpro (IC50 = 0.99 μM) [239]. It can inhibit the viral proliferation with an EC50 of 3.9 

μM. Several other non-peptidic acrylamide- [240, 241], chloroacetamide- [242] and vinyl 

sulfonamide-based [243] covalent inhibitors of SARS-CoV and SARS-CoV-2 Mpro were 

also reported with low or untested antiviral activities.

4.2.9. Isatin analogs—Isatin compounds were previously found to be potent inhibitors 

of related rhinovirus 3CLpro [244], with its keto group forming a covalent bond with the 

active site cysteine residue. Isatin compounds were evaluated for their ability to inhibit Mpro 

[245–248]. Compounds 4o and 5f (Figure 13) showed strong inhibition of SARS-CoV Mpro 

with IC50s of 0.95 and 0.37 μM, respectively [245, 246]. Recently, isatin compound 5f was 

found to inhibit SARS-CoV-2 Mpro (IC50 = 45 nM) [248]. No cellular antiviral activities of 

these compounds were reported. Given the similarities between rhinovirus 3CLpro and Mpro, 

these isatin inhibitors of Mpro might covalently bind to Cys145.
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4.2.10. Metal-containing inhibitors—Transition metal complexes were reported to 

potently inhibit SARS-CoV and SARS-CoV-2 Mpro, including 1-hydroxypyridine-2-thione 

zinc, bis(L-aspartato-N,O) zinc(II) ethanate (JMF1586), thimerosal and phenylmercuric 

acetate, auranofin, and Re(I) tricarbonyl complex (Figure 14) [249–255]. X-ray 

crystallographic studies showed that His41 and C145, the catalytic dyad of Mpro, chelate 

Zn2+ of JMF1586 [250]. Mechanism of inhibition of other transition metal complexes could 

similarly involve the formation of a coordination bond(s) with Cys145 and/or His41. No 

cellular antiviral activities of these compounds were reported.

4.2.11. Triazine compounds—Trisubstituted triazine compound S-217622 (Figure 15), 

a non-covalent, potent inhibitor of SARS-CoV-2 Mpro (IC50 = 13 nM), was discovered 

from virtual screening followed by medicinal chemistry optimization [256]. It selectively 

inhibited SARS-CoV-2 Mpro over the human proteases. S-217622 showed potent antiviral 

activities in Vero cells against various strains of SARS-CoV-2 with EC50 values of 0.29–0.50 

μM. Oral administration of S-217622 significantly reduced the titers of SARS-CoV-2 in 

mice. It also possesses a good pharmacokinetic profile with T1/2 of 2.4 h and a high oral 

bioavailability of 96.7% in rats, as well as a good safety profile in clinical trials [257]. 

S-217622, renamed to be ensitrelvir, has been approved in Japan to treat COVID-19.

4.2.12. Other miscellaneous compounds—Other miscellaneous compounds were 

identified as Mpro inhibitors. Trisubstituted piperazine compound GC-14 was found to be 

a SARS-CoV-2 Mpro inhibitor with an IC50 of 0.40 μM as well as a high selectivity over 

human cysteine proteases [258]. It suppressed replication of SARS-CoV-2 in Vero cells with 

an EC50 of 1.1 μM without cytotoxicity. Replacement of the nicotinoyl group in GC-14 with 

a chloroacetyl group yielded the covalent inhibitor GD-9 with a 2-fold increase in enzyme 

inhibition, but it showed a ~2-fold decreased antiviral activity together with significant 

cytotoxicity [259]. 1,4-Naphthoquinone compound 15 was found to potently inhibit SARS-

CoV-2 Mpro (IC50 = 72 nM) but moderately blocked the viral replication in Vero cells (EC50 

= 4.55 μM) [260].

Screening of a DNA-encoded library yielded compound CDD-1976 as a potent SARS-

CoV-2 Mpro inhibitor with a Ki of 37 nM, which inhibited the virus replication with an EC50 

of 2.50 μM [261]. Compound ALG-097111 was reported to be a potent SARS-CoV-2 Mpro 

inhibitor with an IC50 of 7 nM as well as a high selectivity over cathepsin L [262]. It showed 

significant cellular (EC50 = 200 nM) and in vivo antiviral activity against SARS-CoV-2. 

However, the structure of ALG-097111 has not been disclosed. From virtual screening, 

compounds Z1244904919 and Z1759961356 were found to be inhibitors of SARS-CoV-2 

Mpro (IC50 = 0.73 and 0.69 μM), which suppressed the viral replication in Vero cells with 

EC50s of 4.98 and 8.52 μM, respectively [263]. Walrycin B, a strong inhibition against 

SARS-CoV-2 Mpro (IC50 = 0.26 μM), demonstrated an EC50 of 3.55 μM against SARS-

CoV-2 replication in Vero cells, but it showed a high cytotoxicity (CC50 = 4.25 μM) [173].

Several FDA-approved drugs were found to be SARS-CoV and/or -CoV-2 Mpro inhibitors. 

Tyrosine-kinase inhibitor masitinib (Figure 16), an anticancer drug, inhibited SARS-CoV-2 

Mpro (IC50 = 2.5 μM) and the viral replication (EC50 = 3.2 μM) [264]. Oral administration 

of masitinib significantly reduced the viral loads in the lungs and noses and prolonged 
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the survivals of SARS-CoV-2 infected mice. Phosphodiesterase inhibitor dipyridamole 

(an antiplatelet drug) [186], BCL-2 inhibitor venetoclax (an anticancer drug) [176], and 

cinacalcet (a hypercalcemia drug targeting calcium sensing receptor) [176] were also 

reported to inhibit SARS-CoV-2 Mpro with IC50s of 0.60, 3.18, and 5.99 μM, while 

they showed more potent cellular antiviral activities (EC50 = 0.1, 1.18, and 2.93 μM). 

Interestingly, dipyridamole was used in the clinic to treat severely ill COVID-19 patients 

[265]. Manidipine (an antihypertension drug) was reported to be an inhibitor of SARS-

CoV-2 Mpro with an IC50 of ~5 μM [93]. But other researchers found that manidipine had 

only weak or no inhibitory activity [65, 266].

Some other compounds were reported to inhibit SARS-CoV and/or -CoV-2 Mpro, but their 

antiviral activities were weak or unreported [40, 47, 65, 106, 134, 138, 141, 160, 163, 166, 

173, 183, 197, 206, 209, 217, 218, 226, 249, 251, 266–318].

5. Mpro-inhibitor interactions

More than 100 crystal structures of Mpro in complex with its inhibitors have been 

determined with most of them binding to the active site. Upon complexation with these 

active-site inhibitors, the overall structure of Mpro is little changed. Mpro interactions with 

three representative covalent peptidomimetic inhibitor are shown in Figure 17, which could 

facilitate future rational inhibitor design.

Compound 11a (Figure 3), an aldehyde-based inhibitor, binds to the substrate-binding 

pocket of SARS-CoV-2 Mpro, with the aldehyde group forming a covalent bond with 

Cys145 (Figure 17a, b) [41]. The binding is further stabilized by a network of hydrogen 

bonds between the newly formed hydroxyl group and the “oxyanion hole” residues Cys145, 

Gly143, Thr26 and Asn142. There are hydrophobic interactions and a hydrogen bond 

interaction between the backbone of 11a and His164. The γ-lactam P1 moiety mimics 

the substrate glutamine side chain and is located in the S1 pocket of Mpro with favorable 

hydrophobic interactions and hydrogen bonds with Phe140 and Glu166. The cyclohexyl 

group of the inhibitor fits snugly into the S2 pocket surrounded by Met49, Tyr54, Met165, 

Asp187, Arg188, and His41. The indole fragment has favorable hydrophobic as well as 

hydrogen bond interactions with Pro168, Gln189 and Glu166.

Ketone-based peptidomimitic inhibitor 13b (Figure 4) forms a covalent bond with Cys145 

to produce a thiohemiketal (Figure 17c, d), with its hydroxyl group stabilized by a 

hydrogen bond with His41 [32]. The benzyl amide moiety occupies the S1’ pocket with 

favorable hydrophobic and hydrogen bond interactions with Gly143, Ser144 and Cys145. 

The P1 γ-lactam is similarly in the S1 pocket of Mpro with favorable hydrophobic and 

hydrogen bonds with Phe140, Glu166 and His163. The cyclopropylmethyl side chain of 

the inhibitor occupies the S2 pocket, while the pyridone moiety resembles the binding 

of the substrate backbone, forming hydrogen bonds with Glu166. Although the terminal 

tert-butyloxycarbonyl (Boc) group does not fit nicely in the S4 pocket, its interactions 

with the protein contribute to the binding of compound 13b, as removal of the Boc group 

significantly reduced the inhibitory activity [32].
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Nirmatreivir/PF-07321332 is a nitrile-based inhibitor of Mpro (Figure 6), with its nitrile 

group covalently binding to Cys145 and forming a thioimidate adduct (Figure 17e, f) 

[86]. Similarly, its γ-lactam moiety fits well in the S1 pocket with favorable hydrophobic 

and hydrogen bond interactions with His163, Phe140 and Glu166. The 6,6-dimethyl-3-

azabicyclo[3.1.0]hexane moiety is located in the S2 pocket of Mpro, with mostly 

hydrophobic interactions with Met49, His41, and Asp187. The tri-fluoroacetamide group, 

along with the tert-butyl side chain, occupies the S4 pocket with favorable hydrophobic 

interactions with Gln189, Met165, and Pro168.

Protein-inhibitor interactions of four representative non-peptidic inhibitors of Mpro are 

shown in Figure 18. Compound 23R (Figure 7) is a potent, non-covalent inhibitor of Mpro 

(Figure 18a, b) [143]. Its furan-carboxyl moiety is located in the S1’ pocket of Mpro with 

both hydrophobic and hydrogen bond interactions. The 3-pyridine ring occupies the S1 

pocket with favorable hydrophobic interacts as well as hydrogen bonds with His163 and 

Ser144. The biphenyl moiety fits nicely into the S2 pocket with hydrophobic and π-π 
stacking interactions. There is another hydrogen bond between the other amide oxygen of 

the inhibitor and Glu166. The chiral α-methylbenzyl group is extended into the S4 pocket of 

Mpro with mostly hydrophobic interactions.

S-217622 (Figure 15) is a potent, non-covalent inhibitor of Mpro [256]. The 1-

methyl-1H-1,2,4-triazole group of S-217622 occupies the S1 pocket with favorable 

hydrophobic and hydrogen bond interactions with Ser144, His163 and Asn142 (Figure 

18c, d). Its central triazine-2,4-dione core resides on a shallow platform linking the S1 

and S2 pockets, forming a network of direct or water-mediated hydrogen bonds with 

Asn142, Ser144, Cys145, and Glu166. There might be also favorable hydrophobic or other 

interactions between the aromatic ring and the -SH of Cys145 (with the distance of ~5 Å). 

The 2,4,5-trifluorobenzylic substituent fits well in the S2 pocket with favorable hydrophobic 

and π-π stacking (with His41) interactions. The indazole moiety of S-217622 is situated 

in the S1’ pocket with stabilizing hydrophobic as well as hydrogen bond interactions with 

Thr26. The -NH- linker group interacts with His41 and Gln189 through water-mediated 

hydrogen bonds. Furthermore, this fragment may establish hydrophobic interactions with 

Met49 and Thr25.

Masitinib (Figure 16) is a moderate, non-covalent inhibitor SARS-CoV-2 Mpro, with its 

long, linear body binding across the S1 and S2 pockets of the protein (Figure 18e, f) 

[264]. Its thiazole-pyridine moiety is located the S1 pocket with hydrophobic interactions 

as well as a hydrogen bond with His163. The -NH- linker group forms a hydrogen bond 

with His164. The toluene fragment is situated in the S2 pocket of Mpro with hydrophobic 

and π-π stacking (with His41) interactions. Its benzamide and terminal N-methylpiperaze 

moieties protrude from the S2 pocket further into the protein, with mostly hydrophobic 

interactions as well as hydrogen bonds with His41 and Thr24.

Natural flavonoid compound myricetin (Figure 8) was found to be oxidized by O2 to 

become an ortho-quinone, which is a covalent inhibitor of SARS-CoV-2 Mpro with a unique 

binding mode (Figure 18g, h) [152]. The ortho-quinone acts as an electrophile and forms a 

covalent bond with Cys145. The molecule is mainly located in the S1’ and S2 pockets. 
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The hydroxyl (or its oxidized form) groups in the pyrogallol fragment form multiple 

hydrogen bond interactions with Thr26 and Cys145. The pyrogallol ring might also have 

hydrophobic interactions with Leu27, Asn28, Asn142, Gly143 and Ser144. In addition, the 

hydroxyl-substituted chromone moiety has hydrogen bond interactions with Gln189 and 

His164. There are also favorable π–π stacking and hydrophobic interactions between the 

chromone core and His41, Met165, Asp187 and Arg188.

6. Mpro inhibitors that are FDA-approved or in clinical trials

Nirmatrelvir in combination with ritonavir (brand name Paxlovid) has been approved by 

FDA for the treatment of mild-to-moderate SARS-CoV-2 infected patients. This clinical 

trial (NCT04960202) included 2246 adult patients (1120 treated and 1126 controls) with 

confirmed SARS-CoV-2 infection within 5 days. Treatment with Paxlovid lowered the risk 

of progression to severe diseases by 89% without obvious safety issues [319]. A large 

retrospective study including 180,351 high-risk COVID-19 patients revealed that treatment 

with Paxlovid showed high efficacies in reducing hospitalization and mortality [320]. 

Another anti-SARS-CoV-2 drug, ensitrelvir fumaric acid (brand name Xocova), has been 

granted emergency regulatory approval in Japan. As shown in Table 1, a handful of other 

Mpro inhibitors (including several with their structures undisclosed) have been in different 

stages of clinical trials (data from clinicaltrials.gov).

7. Conclusion and perspectives

The Covid-19 pandemic caused by SARS-CoV-2 has been an unprecedented catastrophe of 

the global health in modern history with millions of mortalities and morbidities. It has also 

resulted in enormous economic losses worldwide. Thanks to expedited development and 

deployment of effective vaccines and antiviral drugs against SARS-CoV-2, the pandemic 

has been largely over within 3 years. However, with continuous viral evolution as well as 

possible emergence of a new coronavirus, drug discovery targeting SARS-CoV-2 and related 

viruses is needed.

Mpro is a validated drug target for the coronavirus family because of its essential role in the 

life cycle of coronaviruses. Mpro is a highly conserved protein during evolution [321], which 

renders a high likelihood of developing a broadly active anti-coronavirus drug or expediting 

drug discovery against other coronaviruses. Different from the vaccines targeting the spike 

protein (with frequent mutations), Paxlovid has retained effectiveness against the original 

to the recent Omicron strains of SARS-CoV-2 [321]. However, treatment with an Mpro 

inhibitor may pose a selective pressure to generate drug resistance, as recently observed 

nirmatrelvir-resistant strains of SARS-CoV-2 [322]. Therefore, continued research and 

development on Mpro inhibition are warranted. Indeed, the rapid development of nirmatrelvir 

within 2 years has been based on a lead compound against Mpro of SARS-CoV identified in 

2003 [323].

This article represents a comprehensive review of small molecule inhibitors of SARS-CoV 

and -CoV-2 Mpro since 2003. Currently, the highly potent inhibitors are mostly peptidic/

peptidomimetic compounds with an electrophilic “warhead” to covalently bind Cys145. 
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Aldehyde and chloroacetamide group exhibit a high chemical reactivity, but they are often 

associated with non-specific binding, off-target effects and cytotoxicity. With a reduced 

and tunable reactivity, ketone, epoxide and Michael acceptor groups represent a balanced 

choice for the warhead and have been successfully utilized in numerous drugs, such as 

telaprevir, carfilzomib and neratinib. Due to its weak reactivity, nitrile has been rarely 

used for this application, but it generally possesses improved chemical and metabolic 

stabilities as well as target specificity, which are critical for clinical use. As for the main 

body of the inhibitor, Mpro’s substrate sequence as well as its X-ray structures can be 

used to guide peptidic/peptidomimetic inhibitor design and facilitate optimization of the 

activity and selectivity. Non-peptidic inhibitors were mostly from compound screening, with 

fewer compounds having potent biochemical and antiviral activities. Since non-peptidic 

compounds tend to resist enzyme-mediated hydrolysis with improved pharmacokinetics, 

more work on developing non-peptidomimetic Mpro inhibitors is desirable.

In addition, other technologies could be explored to counteract Mpro. Proteolysis-targeting 

chimera (PROTAC) technology [324] has been developed for target protein degradation, 

which complements and is often similar to protein inhibition. Several PROTAC molecules 

with antiviral activities have been reported [325, 326]. PROTAC has other potential benefits, 

such as sub-stoichiometric activity, more selectivity and retained activity against a mutant 

target protein. But unlike a typical small molecule inhibitor, PROTAC molecules are 

generally less drug-like with a large molecular mass and various issues in pharmacokinetics 

and pharmacodynamics. Artificial intelligence (AI) has been rapidly evolving in recent years 

and could become a powerful tool for drug discovery. Given the large amount of data of in 

vitro, in vivo and clinical inhibition of cysteine proteases, AI could significantly contribute 

to the antiviral drug discovery against SARS family of coronaviruses.
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Abbreviations

SARS-CoV severe acute respiratory syndrome-associated coronavirus

Mpro main protease

RdRp RNA-dependent RNA polymerase

PLpro papain-like protease

ACE2 angiotensin-converting enzyme 2

ORF open reading frame

nsps non-structural proteins
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ERGIC endoplasmic reticulum-Golgi intermediate compartment

CPE cytopathic effect

HCV hepatitis C virus

EGFR epidermal growth factor receptor

Boc tert-butyloxycarbonyl

EUA Emergency Use Authorization

PROTAC proteolysis-targeting chimera

HTS high-throughput screening

AI artificial intelligence
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Highlights

• Main protease (Mpro) is essential for SARS-CoV and -CoV-2 and therefore an 

antiviral drug target.

• Function, structure and mechanism of catalysis of Mpro are reviewed.

• Small-molecule inhibitors of Mpro and their biological activities are 

summarized.

• Protein-inhibitor interactions of representative compounds are described.
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Figure 1. 
Schematic illustrations of (a) SARS coronavirus; and (b) The RNA genome of SARS 

coronavirus containing a 5’-untranslated region, 3’-untranslated region and open reading 

frames (ORF). ORF1a/b encode non-structure proteins (nsp) and other sequences encode 

the spike protein (S), envelope protein (E), membrane protein (M), nucleocapsid protein (N) 

and several accessory proteins (in black). The viral polyproteins (pp1a and pp1ab) translated 

from ORF1a/b are site-specifically cleaved by the viral Mpro (nsp5, red arrows) and PLpro 

(nsp3, black arrows) to give viral non-structure proteins.

Li and Song Page 35

Eur J Med Chem. Author manuscript; available in PMC 2024 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
SARS-CoV-2 Mpro structure, substrates and mechanism of catalysis. (a) The homodimeric 

structure of SARS-CoV-2 Mpro (PDB: 6Y2G), with one monomer shown in cyan and the 

other in magentas. (b) The active site of Mpro-N3 complex (PDB: 6LU7), with Mpro shown 

as an electrostatic surface and N3 as a tube model with C atoms in green; (c) The Mpro-N3 

interactions with hydrogen bonds shown as dashed lines. Cys145 forms a covalent bond with 

the inhibitor; (d) Sequences of the SARS-CoV-2 Mpro substrates; (e) Mechanism of catalysis 

for Mpro.
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Figure 3. 
Structures and biological activities of aldehyde-based peptidomimetic inhibitors of Mpro.
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Figure 4. 
Structures and biological activities of ketone-based peptidomimetic inhibitors of Mpro.

Li and Song Page 38

Eur J Med Chem. Author manuscript; available in PMC 2024 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Structures and biological activities of α, β-unsaturated ester inhibitors of Mpro.
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Figure 6. 
Structures and biological activities of haloacetyl- and nitrile-based peptidomimetic inhibitors 

of Mpro.
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Figure 7. 
Structures and biological activities of the other peptidic inhibitors of Mpro.
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Figure 8. 
Structures and biological activities of flavonoid inhibitors of Mpro.
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Figure 9. 
Structures and biological activities of quinolone and related inhibitors of Mpro.
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Figure 10. 
Structures and biological activities of terpenoid inhibitors of Mpro.
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Figure 11. 
Structures and biological activities of pyridinyl ester- and ebselen-based inhibitors of Mpro.
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Figure 12. 
Structures and biological activities of benzotriazole- and pyrimidine-based inhibitors of 

Mpro.

Li and Song Page 46

Eur J Med Chem. Author manuscript; available in PMC 2024 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 13. 
Structures and biological activities of acrylamide, isatin and related inhibitors of Mpro.
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Figure 14. 
Structures and biological activities of metal-containing inhibitors of Mpro.
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Figure 15. 
Structures and biological activities of triazine and other miscellaneous inhibitors of Mpro.
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Figure 16. 
Structures and biological activities of clinical drugs that inhibit Mpro.
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Figure 17. 
X-ray structures of Mpro in complex with representative peptidomimetic covalent inhibitors. 

(a, c, e) The active site of Mpro (shown as an electrostatic surface) in complex with (a) 

11a (PDB: 6LZE), (c) 13b (PDB: 6Y2G) and (e) nirmatrelvir (PDB: 7RFW); (b, d, f) The 

Mpro-inhibitor interactions for (b) 11a, (d) 13b and (f) nirmatrelvir. Hydrogen bonds are 

shown as yellow dashed lines.
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Figure 18. 
X-ray structures of Mpro in complex with non-peptidic inhibitors. (a, c, e, g) The active 

site of Mpro (shown as an electrostatic surface) in complex with (a) 23R (PDB: 7KX5), 

(c) S-217622 (PDB: 7VU6), (e) masitinib (PDB: 7JU7) and (g) oxidized myricetin (PDB: 

7DPP); (b, d, f, h) The Mpro-inhibitor interactions for (b) 23R, (d) S-217622, (f) masitinib 

and (h) oxidized myricetin. Hydrogen bonds are shown as yellow dashed lines.
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Table 1.

SARS-CoV and -CoV-2 Mpro inhibitors in clinical trial.

Name Clinical stage Clinical trial identifier Sponsor

ensitrelvir (S-217622) (Figure 15) Approved in Japan NCT05897541, NCT05305547, 
NCT05605093

Shionogi Inc., University of Minnesota

STI-1558 Phase I/III NCT05523739, NCT05716425 Zhejiang ACEA Pharmaceutical Co. Ltd.

pomotrelvir (PBI-0451) Phase II NCT05543707 Pardes Biosciences, Inc.

EDP-235 Phase II NCT05616728 Enanta Pharmaceuticals, Inc.

ASC11 Phase I NCT05718518 Ascletis Pharmaceuticals Co., Ltd.

HS-10517 Phase II NCT05779579 Jiangsu Hansoh Pharmaceutical Co., Ltd.

PF-07304814 (Figure 4) Phase I NCT04627532, NCT04535167, 
NCT05050682

Pfizer

nirmatrelvir (Figure 6) /ritonavir Approved worldwide NCT05668091, NCT05576662 Harlan M Krumholz / Stanford University

montelukast Phase II NCT04718285 Bahcesehir University

masitinib (AB1010) (Figure 16) Phase II NCT05047783 AB Science
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