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Abstract: Non‑alcoholic fatty liver disease, commonly abbreviated to NAFLD, is a pervasive ail‑
ment within the digestive system, exhibiting a rising prevalence, and impacting individuals at in‑
creasingly younger ages. Those afflicted by NAFLD face a heightened vulnerability to the onset of
profound liver fibrosis, cardiovascular complications, and malignancies. Currently, NAFLD poses
a significant threat to human health, and there is no approved therapeutic treatment for it. Recent
studies have shown that synbiotics, which regulate intestinal microecology, can positively impact
glucolipid metabolism, and improve NAFLD‑related indicators. Sonchus brachyotus DC., a Chinese
herb, exhibits hepatoprotective and potent antioxidant properties, suggesting its potential therapeu‑
tic use in NAFLD. Our preclinical animal model investigation suggests that the synergy between
Sonchus brachyotus DC. extracts and synbiotics is significantly more effective in preventing and treat‑
ing NAFLD, compared to the isolated use of either component. As a result, this combination holds
the potential to introduce a fresh and encouraging therapeutic approach to addressing NAFLD.

Keywords: NAFLD; synbiotics; gut microbiota; Sonchus brachyotus DC. extracts

1. Introduction
NAFLD is a clinicopathological condition characterized by hepatic steatosis and lipid

accumulation. It serves as a prominent underlying factor for chronic liver diseases, carry‑
ing a notable risk of liver fibrosis, which can occur in up to 25% of cases [1]. NAFLD, often
correlated with metabolic syndrome and type 2 diabetes mellitus (T2DM), fosters the pro‑
gression of cirrhosis, hepatocellular carcinoma, cardiovascular disease, and extrahepatic
cancers. Consequently, cardiovascular ailments, malignant tumors, and advanced liver
conditions are the chief contributors to mortality in individuals afflicted by NAFLD.

In recent years, the prevalence of NAFLD has continued to rise, due to improved ma‑
terial living standards and dietary changes. Presently, non‑alcoholic fatty liver disease
(NAFLD) stands as one of the most widespread chronic liver conditions globally. It affects
roughly 30% of adults, constituting a substantial fraction of the hepatic‑related morbidity
and mortality [2]. In 2018, the global prevalence of NAFLD was estimated at 25%, with
27.37% of cases in Asia. Modeling studies project a continuous 30% increase in fatty liver
disease worldwide by 2030 compared to previous years in eight countries, including China,
the UK, France, and Germany [3,4]. This alarming trend, with the NAFLD prevalence in
China rising from 13% to 43% over the last 20 years [5], signifies a growing burden on in‑
dividuals and society. Currently, there are no approved therapies for NAFLD, except for
weight loss through various interventions to slow the disease progression. Current treat‑
ments focus on improving insulin sensitivity, and reducing liver enzyme levels through
lifestyle changes and medications. However, these interventions lack comprehensiveness
and effectiveness in alleviating NAFLD. The side effects and long‑term administration of
insulin sensitizers and vitamin E may limit their widespread acceptance [6]. Although
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dietary intervention and exercise are recommended as first‑line therapies, they are often
required in combination with pharmacological or surgical treatments for disease improve‑
ment, which are not entirely effective. Consequently, the lack of an efficient therapy for
NAFLD continues to be a significant problem in healthcare. The current NAFLD research
aims to develop single‑agent and effective therapies to improve patient compliance.

As the research on intestinal microecology advances rapidly, probiotics and prebiotics
have attracted increasing interest among researchers, due to their regulatory functions in
the gut. Synbiotics, a synergistic blend of probiotics and prebiotics, offer an indirect yet
profound advantage to human wellbeing. They operate by fostering the growth of advan‑
tageous gut microbiota, and overseeing their metabolic processes. This intricate interplay
culminates in a fortified immunity, and refined metabolic equilibrium. Moreover, synbi‑
otics have been found to improve blood glucose and insulin levels [7], which aligns with the
prevailing view that NAFLD has a connection with metabolic levels and insulin resistance.
This suggests the potential efficacy of synbiotics in treating NAFLD and related disorders.

This article presents a systematic review of the research on synbiotics development, in‑
testinal microecology, NAFLD treatment, and the application of synbiotics in NAFLD treat‑
ment. Additionally, it proposes an improved synbiotic combination, comprising lactulose,
arabinose, and Lactobacillus plantarum, which enhances the therapeutic efficacy of synbiotics
for NAFLD when paired with traditional Chinese herbal Sonchus brachyotus DC. extracts.

2. NAFLD and Its Treatment
2.1. Nonalcoholic Fatty Liver Disease (NAFLD)

Nonalcoholic fatty liver disease (NAFLD) is a prevalent liver metabolic syndrome
characterized by an abnormal metabolism and excessive lipid accumulation, resulting in
steatosis in over 5% of liver cells [8]. While its pathological alterations bear a resemblance
to alcoholic liver disease, NAFLD manifests in individuals who do not have a history of
significant alcohol intake. It is frequently associated with metabolically abnormal obesity,
featuring dyslipidemia and hyperglycemia. NAFLD is a leading cause of chronic liver dis‑
eases, progressing to nonalcoholic steatohepatitis (NASH), cirrhosis, and complications
such as an abnormal glucose tolerance, hypertension, hyperviscosity, and coronary heart
disease. Additionally, NAFLD has a close connection with the development of hepato‑
cellular carcinoma [9]. Recent studies have introduced the term metabolic dysfunction‑
associated fatty liver disease (MAFLD) to encompass NAFLD, expanding its pathology
classification, and explicitly associating it with type 2 diabetes and metabolic dysfunction.
This redefinition opens up new avenues for future NAFLD treatment [10,11].

2.2. The Pathogenesis of NAFLD
The pathogenesis of NAFLD is still not understood. Petersen et al. [12] suggest that

NAFLD results from an overabundance of triglyceride accumulation in the liver due to
an energy surplus, which is consistent with the higher prevalence of NAFLD in obese in‑
dividuals. The liver accumulates lipids by absorbing fatty acids released from peripheral
adipose tissue and ingested orally. Skeletal muscle insulin resistance leads to excessive
hepatic fat accumulation via the shifting of glucose from skeletal muscle glycogen synthe‑
sis to de novo lipid synthesis [13]. Consequently, hepatic insulin resistance hinders the
function of glycogen synthase, redirecting glucose into lipogenic processes, and promot‑
ing NAFLD. Studies using mice lacking hepatic glycogen synthase have shown increased
hepatic adipogenesis and NAFLD development due to hepatic insulin resistance [14]. In
conclusion, insulin resistance promotes excessive fatty acid intake and de novo lipogenesis
in the liver, ultimately leading to hepatocyte dysfunction and NAFLD development.

The “second hit” theory, first proposed internationally in 1998, has gained wide ac‑
ceptance [14]. It suggests that unhealthy lifestyles and dietary habits lead to lipid accumu‑
lation in the liver, causing hepatocyte steatosis and sustained cellular damage (“first hit”).
This damage triggers the secretion of inflammatory cytokines, contributing to mitochon‑
drial dysfunction, oxidative stress, and massive liver cell death, ultimately resulting in hep‑
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atocyte damage and steatohepatitis (“second hit”) (Figure 1). The emergence of NAFLD is
intricately linked to heightened oxidative stress, an undue accumulation of lipids within
the liver, and inflammatory processes. Research has elucidated that disruptions in lipid
metabolism lead to the buildup of hepatic lipids, thereby exerting a profound impact on
the generation of various reactive oxygen species (ROS). These sources of ROS span from
mitochondria and the endoplasmic reticulum (ER) to NADPH oxidase, contributing to the
oxidative milieu within the liver. NAFLD results in excessive mitochondrial ROS produc‑
tion in the liver, and increased ROS generation is involved in the regulation of insulin
signaling and lipid‑metabolism‑related enzyme expression and activity, further promot‑
ing NAFLD development [15]. The redox signaling pathway interacts with the immune
signaling network to regulate the inflammatory response. Consequently, the pathogenic
progression of NAFLD is extremely intricate, prompting the formulation of the “multiple
hit” theory to elucidate its developmental mechanisms [16].
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Figure 1. The second‑hit pathogenesis of NAFLD. A genetic predisposition coupled with an un‑
healthy diet leads to an excessive accumulation of fatty acids in the liver. Concurrently, the height‑
ened insulin resistance in the adipose tissue initiates an inflammatory response, prompting the re‑
lease of adipocytokines. These cytokines activate hepatic stellate cells, initiating a cascade that culmi‑
nates in hepatic fibrosis and fatty liver, constituting the “first hit”. Subsequently, this sets the stage
for persistent hepatocyte damage, stress responses, and hepatocyte apoptosis, collectively manifest‑
ing as liver hepatitis, or the “second hit”.

Although the exact pathogenesis of NAFLD remains enigmatic, there is a consensus
regarding its substantial correlation with metabolic disorders and insulin resistance. This
connection is substantiated by the “second hit” and “multiple hit” theories, along with the
corresponding empirical findings [17,18]. Amongst the two theories, the former garners
greater acceptance. This theory posits that, subsequent to hepatocytes undergoing the ini‑
tial impact, insulin resistance and leptin resistance ensue, culminating in hepatic steatosis.
This process, in turn, triggers inflammation, necrosis, and fibrosis as a response to oxida‑
tive stress. This highlights the role of an abnormal endocrine axis function in NAFLD
development. These findings may provide new directions for the development of drugs
or functional foods to treat NAFLD, with the goal of improving insulin resistance, and
preventing the second blow to hepatocytes from oxidative stress, thus preventing the de‑
velopment of hepatocellular carcinoma, cirrhosis, and complications.
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2.3. The Treatment for NAFLD
Ganesh et al. [6] summarized the current global treatment options and recommenda‑

tions for NAFLD in their review. Currently, there are no approved treatments for NAFLD,
and weight loss interventions may be the most effective approach. Pharmacological inter‑
ventions for NAFLD primarily seek to enhance insulin sensitivity, while reducing hepatic
inflammation and fibrosis biomarkers. An ongoing study in the United States for NASH
treatment has shown that omega‑3 fatty acid esters (eicosapentaenoic acid) may be a po‑
tential candidate for the first‑line treatment of hypertriglyceridemia in NAFLD patients.
Certain studies propose that polyunsaturated fatty acids (PUFAs) play a pivotal role in en‑
hancing hepatic steatosis and the biochemical markers associated with non‑alcoholic fatty
liver disease (NAFLD), while also improving insulin sensitivity, and mitigating inflamma‑
tion [19,20]. However, another study indicated that PUFA did not have disease‑modifying
effects in NASH patients with diabetes [21], suggesting certain limitations in its use for
these patients. Further research is required to determine the optimal dosage of omega‑3
PUFA supplementation, and its effects on hepatic lipids.

Insulin sensitizers, extensively evaluated and recognized in previous treatment studies
for NASH, have shown promising results. For instance, pioglitazone, a trial drug, has demon‑
strated an improvement in steatohepatitis, compared to vitamin E and the placebo [22]. Long‑
term pioglitazone treatment resulted in significant improvements in liver damage. How‑
ever, long‑term administration may carry the risks of cardiovascular disease and bone
loss [23–28]. Metformin, commonly used to treat type 2 diabetes, also improves NAFLD,
by increasing glucose utilization in the peripheral tissues. Studies have demonstrated that
metformin improves insulin sensitivity, liver histology, and serum alanine transaminase
(ALT) levels, particularly in obese NASH patients [29]. Vitamin E, a lipophilic antioxidant,
has been shown to slow down the progression of NAFLD, by effectively reducing oxida‑
tive damage, and inhibiting inflammatory cytokine production in the liver [22,30]. Clini‑
cal trials have revealed that, after 96 weeks of treatment, a notable 43% of all participants
exhibited marked histological enhancements. These improvements were particularly pro‑
nounced in relation to the amelioration of inflammation in both the hepatocyte ballooning
and lobular areas. These positive changes can be largely attributed to a reduction in oxida‑
tive stress‑induced damage [31].

Probiotics have also been mentioned in treatment protocols, and have shown poten‑
tial benefits in NAFLD treatment. In a review published in 2021, Yao et al. [32] analyzed the
application of intestinal flora in NAFLD treatment, specifically highlighting the positive ef‑
fects of Lactobacillus plantarum in reducing ALT and AST levels in patients. The use of active
ingredients from Chinese herbal medicine, following the discovery of artemisinin for the
treatment of malaria, has gained increasing attention. Traditional Chinese medicine often
refers to fatty liver as “liver accumulation” and “liver gangrene”, and several herbs, such
as Rhizoma Coptidis (Huang Lian), Radix Salvia Miltiorrhizae (Dan Shen), Rhei Rhizoma (Da
Huang), Fructus Gardeniae (Zhi Zi), and Semen Cassiae (Jue Ming Zi), are commonly used
in NAFLD treatment, due to their natural ingredients that can reverse steatosis, regulate
blood lipids, inhibit inflammation, and resist oxidative stress. Studies have shown the ther‑
apeutic effects ofRadix SalviaMiltiorrhizae extract salvia phenolic acid B, Semen Cassiae, and
Fructus Gardeniae extracts in NAFLD via the inhibition of inflammation, and anti‑oxidative
stress [33–35]. These findings provide valuable insights into, and theoretical support for,
combining synbiotics with active ingredients from herbal medicines in NAFLD treatment.

3. Definition and Function of, and Research into, Synbiotics
3.1. Definition

Synbiotics are a combination of probiotics and prebiotics that promote the physiolog‑
ical activity of probiotics, selectively adjust the distribution of intestinal flora, and enhance
the effectiveness and longevity of beneficial bacteria. Probiotics are beneficial intestinal
bacteria that colonize the human body, and positively impact the body’s microecology.
They achieve this goal by regulating the host mucosa and systemic immune function, or
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by balancing the intestinal flora, promoting nutrient absorption, and maintaining intestinal
and overall health. Common examples of intestinal probiotics include Bifidobacterium and
Lactobacillus. On the contrary, prebiotics are organic compounds that cannot be digested
or absorbed. They are specifically designed to nourish and promote growth in the benefi‑
cial microbes essential for metabolic functions and overall development. Their profound
impact on the host’s wellbeing stems from their ability to modulate changes within the
intestinal microbe community. These changes, in turn, exert influence over the endocrine,
barrier, and immune functions, effectively restoring a harmonious balance to the intestinal
microecology. The concept of synbiotics emerged in 1995, and they were defined as a syn‑
ergistic blend of probiotics and prebiotics. This unique combination serves to enhance the
host’s health, by fostering the survival and successful integration of microorganism food
supplements in the digestive tract. Additionally, synbiotics selectively stimulate growth
in specific health‑promoting bacteria, and activate their metabolism, thereby yielding a
targeted and amplified positive impact [36]. This definition is consistent with those of pre‑
biotics and probiotics, confirming their complementary and synergistic relationship. In
August 2020, the International Scientific Association of Probiotics and Prebiotics (ISAPP)
updated the term “synbiotics”, and redefined it as “a mixture comprising live microorgan‑
isms and substrate (s) selectively utilized by host microorganisms that confers a health
benefit on the host” [37], emphasizing the valuable effects and potential of synbiotics for
human health, and providing insights and guidance for future synbiotics development.

3.2. Functions of Synbiotics
Probiotics, functioning as beneficial microorganisms within the intestinal tract, play a

pivotal role in mitigating the host’s weight, and ameliorating metabolic irregularities. This
is achieved through the regulation of distinct metabolic pathways and immune responses,
via their metabolites. Furthermore, they contribute to weight reduction in the host, by fa‑
cilitating the absorption of fats and cholesterol. Probiotics play a role in improvements
in the digestion of lactose [38], the treatment of antibiotic‑associated diarrhea [39], and
the prevention of necrotizing small intestinal colitis in preterm neonates, as demonstrated
in systematic reviews and meta‑analyses [40], remission induction in inflammatory bowel
disease [41], the prevention and control of hyperglycemia [7], the improvement of lipid lev‑
els and inflammation, including a reduction in total cholesterol, the level of high‑density
lipoprotein (HDL), and the inflammatory marker tumor necrosis factor (TNF)‑α [42], and
blood glucose and insulin resistance in diabetic patients [43]. Probiotics additionally gen‑
erate short‑chain fatty acids. These compounds help reduce the local pH, encourage the
production of immunomodulatory cytokines, and stimulate mucin generation. As a result,
they foster a more robust and beneficial intestinal microenvironment [44].

Synbiotics represent a synergy between probiotics and prebiotics, endowing the host
with augmented advantages. This synergy manifests through the selective enhancement
of favorable bacterial growth within the intestinal tract, as well as the activation of path‑
ways that bolster the metabolism of bacteria conducive to human wellbeing. Furthermore,
they amplify the viability in, and integration of, probiotics within the gut, consequently
fostering a more propitious microbial milieu within the intestines, thus promoting human
health. These benefits include enhancing immunity, preventing respiratory and gastroin‑
testinal infections, promoting lactose digestion, alleviating symptoms such as bloating and
abdominal pain due to lactose intolerance, enhancing nutrient absorption, and facilitating
the degradation of indigestible plant fibers into short‑chain fatty acids. Overall, synbiotics
significantly improve insulin secretion and sensitivity, by modulating the intestinal flora’s
composition. This therapeutic effect has been demonstrated in NAFLD, via the alleviation
of insulin resistance and the promotion of the organism’s metabolism. Furthermore, syn‑
biotics enhance the absorption of antioxidant components in the combination, leading to
hepatoprotective effects.
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3.3. Gut Microecology and NAFLD
The human gut microbiota comprises 10–100 trillion microorganisms, surpassing the

number of human cells. Its distribution and composition are closely related to the host’s
life, and play essential roles in the host’s immune response, food digestion, regulation of
the intestinal secretory function, neural signaling, drug metabolism, and catabolism [45].
In recent years, the advancements in intestinal microecology have garnered considerable
interest. Studies have identified a correlation between the distribution of intestinal mi‑
croflora and various diseases, leading to research on the potential treatment of human
diseases through regulation of the intestinal microecology.

The “hepatic–intestinal axis” is a critical component of the human metabolic system.
It entails intricate biliary, portal, and systemic interconnections, linking the liver and the
intestine. This axis is regulated by various signals from the intestinal flora and its metabo‑
lites, environmental toxins, and food antigens [46]. Long‑term studies have demonstrated
that a healthy intestinal flora helps regulate the function of crucial metabolic organs such as
the liver, promoting host metabolic stability [45]. Irregularities within the intestinal micro‑
biota, including an excessive proliferation of pathogenic bacteria, bacterial translocation,
the generation of harmful metabolites, and perturbation in the signaling for substance and
energy metabolism along the gut–liver axis, have the potential to modify the immune land‑
scape of the host. These alterations, in turn, play a pivotal role in fostering the emergence
of liver‑related disorders, notably non‑alcoholic fatty liver disease (NAFLD) and alcoholic
liver disease (ALD) [47] (Figure 2). Studies with NAFLD case studies have shown statisti‑
cally significant differences in the levels of Lactobacillus, Bifidobacterium, and Escherichia coli
in patients, compared to the control group [48]. Multiple case studies focusing on NAFLD
(non‑alcoholic fatty liver disease) and NASH (non‑alcoholic steatohepatitis) have unveiled
noteworthy distinctions in the intestinal flora, within both animal models and patients.
These disparities underscore the paramount importance of the intestinal microecology in
the progression of NAFLD [49,50]. Recent research indicates that interventions aimed at
manipulating the gut microbiota could present a promising therapeutic avenue for liver
diseases [51,52].
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Moreover, NAFLD is not a singular fatty liver disorder but, rather, a spectrum of
metabolism‑related diseases closely associated with diabetes mellitus and metabolic syn‑
drome. T2DM is a common complication of NAFLD, and shares similarities with NAFLD,
such as insulin resistance and a chronic low‑grade inflammatory state. Research has shown
a close association between the intestinal microecology and T2DM, revealing potential
mechanisms through which regulating the intestinal microecology benefits T2DM patients.
Furthermore, patients with NAFLD and T2DM exhibit similar patterns in microflora dis‑
tribution, suggesting the possibility of simultaneously improving NAFLD and T2DM by
modulating intestinal microflora [53]. In light of these findings, a new synbiotic combi‑
nation consisting of lactulose, arabinose, and Lactobacillus plantarum has been developed,
showing promising results in treating T2DM [54]. Its efficacy on NAFLD model mice has
been validated, and further formulation modification is underway, to obtain a new synbi‑
otic mixture.

4. Sonchus brachyotus DC.
According to Flora of China (FRPS), both Sonchus brachyotus DC. and Sonchus arven‑

sis L. are annual herbs belonging to the genus Sonchus, in the family Compositae. Sonchus
brachyotus DC. is also known as Ixeris sonchifolia, wild bitter cabbage, and Ixeris polycephala
Cass. It has a lengthy history of medicinal use in Chinese medicine, where it is referred
to as bitter cabbage. Early Chinese medical texts, such as the classic Shennong Threshes the
Hundred Grasses and Compendium of Materia Medica, describe its bitter and cold taste, and
highlight its effects in clearing heat, eliminating toxins, reducing swelling and pus, promot‑
ing blood circulation and removing blood stasis, clearing the lungs and relieving cough,
invigorating the liver and promoting diuresis, and aiding digestion and harmonizing the
stomach. Additionally, as well as its medicinal uses, Sonchus brachyotus DC. is commonly
consumed as a wild vegetable in folk traditions, due to its high nutritional value, as it
contains protein, various amino acids, carotene, and rich trace elements [55].

Several studies have showcased that disruptions in the ecosystem of the gastrointesti‑
nal tract can hinder the organism’s typical metabolic functions. This can trigger a range
of pathological damages, and contribute to the advancement of chronic diseases [56–59].
Hence, the precise manipulation of the intestinal microbiota emerges as indispensable in
addressing metabolic irregularities. Over recent years, bioactive compounds derived from
botanical sources have assumed a pivotal role in fostering diverse functionalities, particu‑
larly in governing the dynamics of intestinal microecology, a domain where investigations
have borne remarkable outcomes. Abundant research underscores the fact that Sonchus
species, apart from their culinary use, boast a plethora of medicinal properties [60–64].
Sonchus species boast an abundance of vitamin C and omega‑3 PUFA [65], potentially imbu‑
ing them with noteworthy anti‑inflammatory and antioxidant properties. Omega‑3 PUFA
has been employed in numerous clinical trials for the therapeutic intervention of NAFLD,
according to reports [66–68]. Significantly, species of Sonchus have been documented for
their potential therapeutic effects in diabetes management [65]. The findings showcased
in these studies underscore the potential of Sonchus species in contributing to the man‑
agement of metabolic syndromes. With Sonchus brachyotus DC. serving as a traditional
vernacular herb, renowned for its efficacy in dispelling heat‑related pollutants, arresting
hemorrhages, and addressing ailments such as acute dysentery and enteritis, its significant
anti‑inflammatory and antioxidant attributes have been documented. These has been es‑
tablished through the identification of compounds that exhibit robust antioxidant and anti‑
inflammatory properties [61,69]. The components derived from Sonchus brachyotus DC.
exhibit the ability to effectively restrain the production of free radicals, as well as the pro‑
cess of lipid peroxidation [61]. Furthermore, recent research has unveiled the finding that
Sonchus brachyotus DC. harbors a plethora of bioactive constituents, notably flavonoids [70].
These compounds have demonstrated a remarkable capability to impede the proliferation
of various microbes, such as Escherichia coli, Enterobacter cloacae, and Klebsiella pneumoniae,
while concurrently fostering the induction of apoptosis [71]. Apart from its demonstration



Foods 2023, 12, 3393 8 of 19

of antioxidant and antibacterial activities in vitro, there are reports suggesting that Sonchus
brachyotus DC. holds the capability to mitigate drug‑induced oxidative stress damage, by
regulating the abundance of the intestinal microflora [72]. This further substantiates the
favorable contribution of Sonchus brachyotus DC. in the treatment of NAFLD.

Sonchus brachyotus DC. has identified several chemical constituents in the plant, in‑
cluding β‑sitosterol, lignan, apigenin, and quercetin, which possess biological activities,
such as antibacterial, hepatoprotective, anti‑inflammatory, antioxidant, and insulin‑resista
nce‑improving properties. For example, studies conducted at the University of Science
and Technology of Tianjin have identified potent antioxidant active components in an ex‑
tract from Sonchus brachyotus DC., suggesting its potential application in the treatment of
NAFLD, due to its remarkable hepatoprotective and antioxidant effects (unpublished data
from our collaborators). Additionally, Sonchus species are abundant in fatty acids, such as
Omega‑3 PUFA [73], which is the main active ingredient in drugs under development for
NAFLD treatment, further supporting its potential use in NAFLD treatment.

Utilizing these data, the article suggests a therapeutic approach for NAFLD, involving
a synergistic utilization of extracts from Sonchus brachyotus DC. (SBE) and a synbiotics com‑
pound. An appropriate amount of SBE is added to the previously developed synbiotics,
consisting of lactulose, arabinose, and Lactobacillus plantarum, for compounding. The effi‑
cacy of this combination is then tested in a mouse model of NAFLD, to assess the improve‑
ment in their pathology. As a result, the addition of herbal active ingredients significantly
improves the liver condition of NAFLD‑model mice.

5. Synbiotic Compounds for NAFLD Treatment
5.1. Synbiotic Compounds

The synbiotic compound is composed of functional sugars and Lactobacillus plantarum,
with a cell count of live bacteria ranging from 108 to 1010 CFU/g under deposit number
CGMCC 8198. By weight percentage, the synbiotic compound consists of 30% lactulose,
30% arabinose, and 40% Lactobacillus plantarum. To obtain SBE, an aqueous solution of
ethanol is mixed with the crude powder of Sonchus brachyotus DC., followed by the ultra‑
sonic extraction, rotary evaporation, and freeze‑drying of the supernatant. The resulting
SBE is used at a dosage of 2.0 g/kg per serving.

L‑arabinose is beneficial for controlling glycolipid metabolism, by inhibiting the meta‑
bolic conversion of sucrose, effectively reducing blood glucose levels. It does so by inhibit‑
ing the activity of disaccharide‑hydrolyzing enzymes, which leads to an increase in sucrose
metabolism [74,75]. The remaining undigested sucrose is then catabolized by microorgan‑
isms in the colon, producing organic acids that inhibit fat synthesis in the liver. L‑arabinose
has been demonstrated to alter the abundance and diversity of the intestinal flora as a pre‑
biotic, resulting in improvements in the body lipid rate, blood lipid levels, fasting blood
glucose, glucose tolerance status, and the extent of liver damage in an animal model of
metabolic syndrome [76,77].

Lactulose, a disaccharide composed of galactose and fructose, is not digested after
ingestion, but is catabolized by the intestinal flora in the colon, leading to changes in the
pH value in the intestinal tract [78]. This change stimulates colonic motility, relieves con‑
stipation, and regulates the physiological rhythm of the colon. The breakdown products
of lactulose also inhibit the proliferation of harmful bacteria, and alter the number of dom‑
inant intestinal flora. Studies have shown that lactulose supplementation in mice fed a
high‑salt diet resulted in changes in the structure of the intestinal flora, and an improve in
intestinal permeability [79].

Lactobacillus plantarum belongs to the Lactobacillus genus of the phylum Firmicutes, and
is commonly used in fermented foods, due to its numerous health benefits. Experimen‑
tal studies have confirmed the beneficial effects of Lactobacillus plantarum in decreasing
blood lipid levels, and regulating the intestinal flora [80–87]. These effects include im‑
munomodulatory properties, lower levels of ALT and AST, the inhibition of pathogenic
bacteria proliferation, decreased serum cholesterol levels, and the prevention of cardio‑



Foods 2023, 12, 3393 9 of 19

vascular diseases. Lactobacillus plantarum also helps maintain the balance of the intestinal
microflora, promotes nutrient absorption, alleviates lactose intolerance, and inhibits the
growth of tumor cells. In this experiment, the strain used is Lactobacillus plantarum (L. plan‑
tarum) CGMCC 8198, which has demonstrated the abilities to decrease serum cholesterol,
and exhibit antioxidant activity [88].

The synbiotic compounds composed of L‑arabinose, lactulose, and Lactobacillus plan‑
tarum have demonstrated hypoglycemic and hypolipidemic effects, as well as control of
the body weight. A study by Jiang et al. [54] used this synbiotic compound in a T2DM
mouse model, and observed a significant decrease in body weight and the levels of blood
glucose and blood lipids. These findings provide a basis for the further application of this
combination in NAFLD. Additionally, SBE is added to the list of compounds to enhance
liver antioxidative capacities and further improve the body’s metabolic capacity. The com‑
bination effectively controls blood glucose and blood lipid levels, reduces body weight,
decreases ALT and AST levels, and improves liver damage in NAFLD patients.

5.2. Animal Experiment
In preclinical experiments, an increasing body of research underscores the therapeu‑

tic potential inherent in extracts from various traditional Chinese medicines (TCMs) for ad‑
dressing NAFLD. Ye et al. [89] discovered that administering luteolin to db/db mice over
an 8‑week period yielded notable outcomes. Through the mediation of LXR‑SREBP‑1c
signaling, luteolin exhibited a remarkable capacity to mitigate both liver cholesterol accu‑
mulation, and the initiation of novel lipid synthesis, in the context of NAFLD. This, in turn,
contributed to the promotion of hepatic steatosis attenuation. Further investigations per‑
taining to NAFLD demonstrated that rutin, a natural flavonoid replete with diverse biolog‑
ical effects, holds promise. Rutin exhibited the potential to reinstate PPAR enzyme activity,
while concurrently suppressing the expression of fatty acid synthases, including FAS and
ACC, in murine models of NAFLD. This dual action effectively hindered the escalation
of oxidative stress levels, and facilitated an amelioration of liver disease‑associated dam‑
age [90,91]. A comparable outcome was observed in another flavonoid study conducted by
Panchita et al. [92], who discovered that administering quercetin‑3‑O‑β‑glucoside (Q3G)
and fructooligosaccharide (FOS) to rats on a dextrin diet for 45 days resulted in a reduction
in both oral glucose tolerance tests (OGTTs) and total cholesterol levels. Additionally, there
was an increase in GLP‑1, indicating that the combination of Q3G and FOS holds therapeu‑
tic potential for NAFLD. Sonchus brachyotus DC. has been found to contain multiple iden‑
tifiable flavonoids. These discoveries strongly indicate that Sonchus brachyotus DC. may
possess predictable therapeutic effects on NAFLD. In order to substantiate the efficacy of
the Sonchus brachyotus DC. extract and synbiotics combination for NAFLD treatment, this
blend was tested on an established murine NAFLD model, to evaluate its capacity for ame‑
liorating NAFLD pathology. Upon the successful induction of the NAFLD model, groups
of seven mice were analyzed for NAFLD‑related markers (Table 1), and diverse interven‑
tions were implemented during the designated period. The potential therapeutic impact
of Sonchus brachyotus DC. on NAFLD was evaluated via an assessment of its phenotypic
influence, and the liver histology and plasma levels of the pertinent cytokines in the mice.

Table 1. The proportion of symbiotics components and supplementation.

Groups Assignment Symbiotic Components Supplementation

Experimental Group 30% Lactulose 30% Arabinose 40% Lactobacillus plantarum
CGMCC 8198 2.0 g/kg SBE

Control Group 1 30% Lactulose 30% Arabinose 40% Lactobacillus plantarum
CGMCC 8198 \

Control Group 2 \ \ \ 2.0 g/kg SBE
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5.3. Efficacy of SBE in Combination of Synbiotics in Alleviating NAFLD
Following drug interventions, the mice in the model group showed elevated blood

sugar and insulin levels, while the treatment groups exhibited varying degrees of control
over their blood glucose and lipids, leading to significant reductions in FBG and INS lev‑
els (Figure 3B,C). This indicates that the synbiotics combination has a significant positive
effect on NAFLD progression in mice, with the experimental group (NAFLD+Synb+SBE)
showing the most significant improvement. Therefore, the synbiotics combination demon‑
strates an effective control of blood glucose and insulin levels.
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Figure 3. Effects of a synbiotic and SBE compound on NAFLD. After administration in mice, the
changes in (A) body weight, (B) fasting blood glucose (FBG), (C) serum insulin concentration (INS),
(D) total cholesterol (TC), (E) triglycerides (TG), and (F) alanine aminotransferase are shown. The rep‑
resentative results from three independent experiments are included. NS, no significance; * p < 0.05;
** p < 0.01. n = 3 biological replicates/group; one‑way ANOVA. All analyses were performed using
the GraphPad Prism 8 software (Version 8.0.2; GraphPad Software, Inc., San Diego, CA, USA).

The levels of total cholesterol and triglyceride content in the mice under intervention
were assessed (Figures 3D and 3E, respectively). The TG level was reduced in the drug
intervention groups, compared to the model group (NAFLD), and the experimental group
(NAFLD+SBE+Synb) showed the most significant decrease. Although the total cholesterol
(TC) levels were not significantly different, each group still demonstrated some control
ability compared to the model group (NAFLD). This suggests that a combination of synbi‑
otics and SBE plays a more effective role in regulating hyperlipidemia.

Furthermore, the alanine aminotransferase (ALT) levels in the serum of the NAFLD
mice were significantly reduced by the combination of extract from Sonchus brachyotus DC.
and synbiotics, compared to the model control group and the control groups (Figure 3F).
This reduction indicates a reversal in the progression of chronic liver damage due to oxida‑
tive stress.

Histological analysis of the liver further confirmed the beneficial effects of the treat‑
ment. The liver wet weight and the liver coefficient in the embodiment and proportional
groups were reduced compared to the NAFLD model group. The reduction in liver tissue
abnormalities was more significant in the embodiment (SBE+Synb) and proportion 2 (SBE)
groups, compared to proportion 1 (Synb), suggesting a favorable role of SBE in liver protec‑
tion (Table 2). All these data are from our accepted Chinese patent (no. CN2022110780786).
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Table 2. Results of the liver histological analysis.

Groups Liver Wet Weight Liver Coefficient

Blank Group (NC) 1.137 0.0433
Model Group (NAFLD) 2.274 0.0477

Experimental Group (NAFLD+Synb+SBE) 1.347 0.0426
Control Group 1 (NAFLD+Synb) 1.663 0.0481
Control Group 2 (NAFLD+SBE) 1.408 0.0447

5.4. Clinical Research
The gut microbiome is considered a key factor in the development of NAFLD [59],

so the regulation of the intestinal microecology is a crucial focus for future NAFLD treat‑
ments. In recent years, the clinical research on synbiotics for NAFLD treatment has shown
promising results [93–102]. The selection of appropriate probiotics and prebiotics to im‑
prove NAFLD progression is becoming increasingly feasible and predictable.

One randomized controlled trial (RCT) involving 50 NAFLD patients demonstrated that
a combination of Lactobacillus reuteri and inulin led to reduced hepatic steatosis, along with im‑
provements in body weight, BMI, and serum uric acid levels [95]. Another study by Behrouz
et al. [103], which treated 89 NAFLD patients with various probiotics, also showed signifi‑
cant effects on blood glucose levels, and other related biochemical markers of NAFLD [103].
Similarly, in patients with NASH, the administration of Bifidobacterium longum along with
fructooligosaccharides resulted in significant reductions in inflammation‑related factors, AST
levels, and steatosis [104]. Combining probiotics with metformin in a NASH trial showed
improved outcomes for liver injury [105]. A separate RCT involving Lactobacillus acidophilus
supplementation in NAFLD patients demonstrated reduced ALT and AST levels [106]. Aller
et al. [107] utilized Lactobacillus bulgaricus and Streptococcus thermophiles, observing similar ben‑
eficial effects in NAFLD patients.

These clinical studies provide strong evidence of the positive effects of synbiotics in
NAFLD treatment. Building on these developments, the positive impact of prebiotics in
NAFLD treatment is further confirmed. Our experiments demonstrated that administer‑
ing appropriate prebiotic combinations to model mice improved liver damage and overall
condition. The intestinal microecology’s application in treating various diseases has be‑
come a significant research area, with ongoing investigations in experimental and clinical
research. Compared to traditional drug therapies, synbiotics offer milder, safer, and more
cost‑effective options that are suitable for most patients, and have a more noticeable effect.
Introducing synbiotics formally into NAFLD treatment, and enhancing their therapeutic
effect through new synbiotic combinations, will offer great hope to patients.

Based on our results and models of previous clinical studies, we propose a clinical re‑
search plan for new synbiotic combinations. The plan involves several main areas of focus,
including the effects of an oral intake of synbiotic combinations with SBE on the control
of body weight, blood glucose levels, and other physiological indexes in NAFLD patients,
and whether this treatment would effectively improve liver damage in these patients. Only
systematic medical examinations would be able to reveal the clinical significance of this
synbiotic and SBE combination.

6. Possible Mechanisms of Synbiotics in NAFLD
Numerous studies have shown that the dysregulation of the gut microbiome is strongly

linked to NAFLD severity [108–112]. Animal experiments by Roy et al. [113] demonstrated
that gut microbial transplantation (FMT) from different mouse models led to germ‑free
mice exhibiting distinct phenotypes of liposynthesis and steatosis. Another experiment
by Chiu et al. [93] involved transferring gut microbes from NASH patients to germ‑free
mice on a high‑fat diet, resulting in mice showing biochemical changes similar to those of
NASH patients, including increased serum ALT and AST levels [114]. This suggests that
the gut microbiome plays a decisive role in NAFLD development.
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Further research indicates that the gut microbiome mainly influences the human body through
its metabolites, with changes in bile acid metabolism signals, intestinal permeability, and short‑
chain fatty acid production being the main mechanisms involved [115–117]. Primary bile acids
support fat‑soluble substance digestion and absorption in the intestine, maintain the intestinal
barrier, and regulate lipid and sugar metabolism, by activating receptors such as the farnesoid X
receptor (FXR) and G protein‑coupled bile acid receptor 1 (GPBAR1/TGR5) [118–120]. The acti‑
vation of FXR promotes the secretion of fibroblast growth factor 15/19 (FGF15/19), which targets
the liver, and inhibits hepatic accumulation and degeneration [97–99]. TGR5 activation increases
the secretion of glucagon‑like peptide‑1 (GLP‑1), which, together with FXR, reduces blood lipid
levels, and improves fatty liver symptoms [121,122]. Intestinal flora regulation also impacts in‑
testinal permeability, with changes in the intestinal bacteria affecting the synthesis and secretion
of angiopoietin‑like 4 protein (ANGPTL4) in the small intestine, thereby regulating liver fat stor‑
age [123,124].

Studies by Okubo et al. [125], using methionine‑choline‑deficient NASH mice, demon‑
strated that administering the Lactobacillus casei strain Shirota (Lcs) increased the number
of other lactic acid bacteria. This led to decreased intestinal inflammation and serum LPS
concentration in NASH mice, improved liver damage, and proved the effectiveness of the
Lactobacillus casei strain Shirota (Lcs) in NAFLD. Similar results were obtained by Nguyen
et al. [126] using Lactobacillus plantarum PH04, which showed significant cholesterol and
triglyceride‑lowering effects. A report by Zhao et al. [127] indicated that administering
Lactobacillus plantarum NA136 to a high‑fat diet‑induced NAFLD mouse model effectively
reduced NAFLD severity, and reversed insulin resistance (Figure 4).
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Figure 4. The potential mechanisms of synbiotics in NAFLD. The therapeutic impacts of synbiotics
on NAFLD encompass three key aspects. Firstly, the catabolism of prebiotics results in the generation
of SCFAs. These SCFAs enter hepatocytes via the MCP1 transporter and, subsequently, bind to PPAR,
effectively inhibiting leptin signaling. Secondly, the catabolism of prebiotics yields active acidic sub‑
stances (such as H2O2 and SCFAs), along with antibacterial agents (including bacteriocin and bacte‑
riophages). This dual action serves to impede the proliferation of detrimental bacteria. Lastly, the in‑
fluence of probiotics is manifested in their ability to enhance the maintenance of the intestinal barrier
integrity. This is achieved through mechanisms involving the TLR‑ or DN‑SIGN‑mediated regula‑
tion of tight junctions. DC‑SIGN, dendritic cell‑specific intercellular adhesion molecule‑3‑grabbing
non‑integrin; IECs, intestinal epithelial cells; MCP1, monocyte chemoattractant protein 1; SCFAs,
short‑chain fatty acids; TLR, toll‑like receptor.
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7. Future Prospective
NAFLD is a widespread chronic liver disease affecting nearly one‑quarter of the world’s

population, and its prevalence is projected to keep increasing at a high rate, imposing a
significant burden on healthcare systems. Currently, there are no approved treatments
for NAFLD, leading to considerable distress among patients. Lifestyle modifications are
considered the most reliable approach to managing the condition. However, with the
deepening research on the intestinal microbiome and its connection to metabolic diseases,
synbiotics, as food items capable of regulating the intestinal flora, offer great promise in
alleviating NAFLD.

Various probiotics and prebiotics possess distinct characteristics, and their combi‑
nation as a synbiotic provides a dietary option that benefits human health, and shows
promise in regulating and alleviating diseases. This approach is expected to become one
of the essential methods for preventing and treating metabolism‑related diseases in the fu‑
ture. The synbiotic combination used in this experiment effectively regulates the intestinal
flora through L‑arabinose, lactulose, and Lactobacillus plantarum. It leads to reduced blood
glucose and blood lipids, improved insulin resistance and liver damage in patients, and
enhanced protection and improvement of liver function, through the addition of active
ingredient extracts from traditional Chinese medicinal herbs. Animal experiments have
demonstrated the positive effects of this synbiotic combination in treating NAFLD.

We anticipate that this synbiotic combination will perform similarly well in clinical
trials, serving as a dietary aid to control patients’ weight, reduce blood glucose, lipid, ALT,
and AST levels, improve liver damage, and promote overall health in NAFLD patients, and
individuals with metabolism‑related diseases. Furthermore, it may enhance the defenses
of healthy individuals, and serve as a preventive measure against metabolic syndrome,
NAFLD, T2DM, and other diseases, when incorporated into their diets.

Given the ongoing rise in NAFLD incidence, effective preventive or early interven‑
tion methods will significantly alleviate the burden of NAFLD on the general population.
We are optimistic about the potential of the synbiotics combination research to eventually
provide a low‑cost, safe, and highly effective therapeutic approach to the public, bringing
good news to NAFLD patients, and contributing to improved overall health.
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