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Abstract

Stargardt maculopathy, caused predominantly by mutations in the ABCA4 gene, is characterized 

by an accumulation of non-degradable visual pigment derivative, lipofuscin, in the retinal pigment 

epithelium (RPE) - resulting in RPE atrophy. RPE is a monolayer tissue located adjacent to retinal 

photoreceptors and regulates their health and functioning; RPE atrophy triggers photoreceptor 

cell death and vision loss in Stargardt patients. Previously, ABCA4 mutations in photoreceptors 

were thought to be the major contributor to lipid homeostasis defects in the eye. Recently, we 

demonstrated that ABCA4 loss of function in the RPE leads to cell-autonomous lipid homeostasis 

defects. Our work underscores that an incomplete understanding of lipid metabolism and lipid-

mediated signaling in the retina and RPE are potential causes for lacking treatments for this 

disease. Here we report altered lipidomic in mouse and human Stargardt models. This work 

provides the basis for therapeutics that aim to restore lipid homeostasis in the retina and the RPE.
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1. Introduction

Understanding cellular physiology under healthy conditions and how a dysfunction in that 

physiology relates to a diseased state requires a thorough understanding of the cellular 

and tissue molecular composition – the transcriptome, the proteome, and the lipidome of 

a cell. Lipids are an essential component of biological activities and physiology of most 

cells across the body and, in particular, play a crucial role in retinal function (David MG 

Anderson, et al., 2020). Changes in the lipidomic profile and lipid homeostasis of the 

retina have been reported in various monogenic and polygenic retinal degenerative diseases 

(Allikmets, Singh, et al., 1997; Zhang, et al., 2001). Despite their significance in normal 

cellular physiology and as causative and diagnostic molecules for several retinal diseases, 

little is known about the lipid profiles in the normal and diseased retina.

Two genes encoding lipid-processing proteins have been linked to hereditary retinal 

degenerative disorders (Allikmets & Consortium, 2000; Allikmets, Shroyer, et al., 1997; 

Zhang, et al., 2001). Mutations in the gene encoding the elongase enzyme ELOVL4, 

involved in the elongation of very long-chain fatty acids, are associated with autosomal 

dominant Stargardt-like macular dystrophy disease (STDG3, OMIM 600110) (Zhang, et al., 

2001). Patients with STGD3, a juvenile form of macular degeneration, develop a loss of 

central vision at a young age (Bennett, et al., 2014). The enzyme ELOVL4 catalyzes the 

first condensation phase in the elongation of polyunsaturated fatty acids (PUFA) with more 

than 26 carbons (C26) to very long chain PUFA (VLC-PUFA; C28 and larger) (Marchette, 

et al., 2014). Retinal phosphatidylcholine VLC-PUFA analysis of the conditional KO (Cre+/

Elovl4f/f) retinas showed reduced VLC-PUFA and a loss of photoreceptors, mainly affecting 

rod photoreceptors (Bennett, et al., 2014).

STGD4 (OMIM No. 603786) is another autosomal dominant Stargardt-like macular 

dystrophy (Kniazeva, et al., 1999). STGD4 was identified in 1999 and is linked to mutations 

in the PROM1 gene, a common mutation being p.R373C (Kniazeva, et al., 1999). PROM1 

is generally found in the retina's photoreceptor outer segments (Yang, et al., 2008). STGD4 

patients with PROM1 p.R373C mutations may have ocular phenotypes similar to STGD1 

and STGD3 and also cone-rod dystrophy (Kniazeva, et al., 1999; Michaelides, et al., 2010; 

Palejwala, et al., 2016; Yang, et al., 2008).

ABCA4, an ATP-binding cassette, sub-family A, member 4, gene mutations result in 

autosomal recessive Stargardt macular degeneration (STDG1, OMIM 248200) and related 

retinal degenerative disorders (Allikmets, Shroyer, et al., 1997; Allikmets, Singh, et al., 

1997; Cremers, et al., 1998; de Jong & Allikmets, 2000). Most STDG1 cases show a 

progressive bilateral appearance of yellow-orange flecks (lipofuscin) in and around the 

macula (central retina) and eventual atrophy of the retinal pigment epithelium (RPE) and 

photoreceptors (PR) cell death in that region (K. L. Anderson, et al., 1995; Lambertus, et al., 
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2015) .In fact, lipofuscin accumulation in the RPE is a hallmark phenotype in the eyes of 

STGD1 patients and the Abca4−/− mice model of Stargardt disease (Kong, et al., 2008).

ABCA4 was previously demonstrated to be preferentially expressed in the PR outer segment 

(POS) disc (Molday, Zhong, & Quazi, 2009). However, recent studies suggest that ABCA4 

is also expressed on the plasma membrane of mouse and human RPE cells (Farnoodian, 

et al., 2022; Lenis, et al., 2018). In PRs, ABCA4 transposes a retinal phospholipid 

compound known as N-retinylidene-phosphatidylethanolamine (N-ret-PE) across POS disc 

membranes after photoexcitation, enabling the removal of this potentially toxic compound 

from photoreceptor cells (Molday, 2007; Sun, Molday, & Nathans, 1999; Weng, et al., 

1999). A similar function is proposed in RPE cells where ABCA4 may perform ATP-

dependent translocation of N-ret-PE from the luminal to the cytoplasmic side of lysosomes 

or phagosomes (Lenis, et al., 2018). In Stargardt patients with ABCA4 dysfunction, N-ret-

PE accumulates inside the lumen of the POS disc and leads to the formation of the A2E 

precursor (A2PE). When A2PE containing POS are phagocytosed by RPE cells; inside RPE 

lysosomes, A2PE is converted to N-retinylidene-N-retinyl-ethanolamine (A2E), a compound 

that cannot be degraded by any enzymes in the body. This A2E is thought to react with 

other lipids and convert into lipofuscin deposits (Boyer, et al., 2012; Molday, et al., 2009; 

Sparrow, et al., 2003). In support of this idea, lipofuscin deposits were discovered in the 

RPE cells of Abca4−/− and Abca4+/− mice subjected to continuous or cyclic illumination 

(Kim, et al., 2007; Mata, Weng, & Travis, 2000; Sparrow & Boulton, 2005). Similar A2E 

rich molecules have been discovered in lipofuscin deposits from people with Stargardt 

disease (Delori, et al., 1995; Eldred & Lasky, 1993). Historically, all alterations in key 

lipids have been attributed to phagocytosis of Stargardt POS by RPE and A2E accumulation 

(Molday, et al., 2009; Sparrow & Boulton, 2005). That's because until recently, it was 

thought that ABCA4 predominantly functions in POS of PR, and atrophy of the RPE is an 

indirect phenomenon due to the accumulation of toxic A2E and lipofuscin (Molday, 2007; 

Molday, et al., 2009). However, recent evidence suggests that ABCA4 is critical for lipid 

homeostasis in RPE cells independent of its known function in PRs. For instance, Stargardt 

patient stem cell-derived and ABCA4−/− stem cell-derived RPE show cell-autonomous lipid 

handling defects without the presence of Stargardt POS (Farnoodian, et al., 2022). This 

observation further underscores the critical role of ABCA4 in lipid homeostasis in the retina 

and the RPE.

Over 1000 mutations are known to affect ABCA4 function and are associated with a 

broad spectrum of Stargardt's disease phenotypes (Quazi, Lenevich, & Molday, 2012; Quazi 

& Molday, 2013). Thus, it is enticing to speculate that mutations in different ABCA4 

domains may affect RPE and PR differently – suggesting that ABCA4 may have slightly 

different functions in the two cell types. A genotype-phenotype study with iPSCs-derived 

RPE and PRs with such different mutations may help further clarify this hypothesis. 

Furthermore, cells with different mutations provide an important tool for understanding the 

differences in severity of disease phenotype in individuals harboring these mutations. Here 

we focus on lipidomic alteration due to ABCA4 loss of function and review Stargardt POS 

dependent and independent lipid profile alterations in Abca4 −/− mice and in vitro human 

Stargardt disease models and discuss the relative contributions of those changes to disease 

pathogenesis. Highlighting specific lipid metabolism defects in the RPE and the retina 
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suggest a potential therapeutic mechanism for Stargardt diseases involving lipid-lowering 

drugs. This review adds to our understanding of cellular lipid metabolism events in response 

to ABCA4 loss of function, which may contribute to Stargardt disease pathogenesis.

2. Stargardt POS Dependent Lipidomic Changes in Retina and RPE

2.1. Abca4−/− mouse model

Mice lacking a functional Abca4 gene show specific phenotypes of human ABCA4 

retinopathy, particularly lipofuscin deposits in the RPE (Charbel Issa, et al., 2013). 

Characterization of the Abca4−/− mouse retina also showed delayed dark adaptation, 

elevated levels of all-trans-retinal, and increased phosphatidylethanolamine (Weng, et al., 

1999). The Abca4−/− mice show a normal rate of all-trans-retinal conversion to 11-cis retinal 

during the visual cycle for functional rhodopsin regeneration. However, Abca4−/− animals 

exhibit significant light-dependent alterations in lipids (Mata, et al., 2000). Compared 

to age-matched wild-type (WT) mice or Abca4−/− animals kept in the dark, the outer 

segments of Abca4−/− mice subjected to cyclic or continuous lighting had enhanced levels 

of pathological visual cycle intermediates all-trans-retinal, N-ret-PE, and PE and decreased 

levels of functional visual cycle intermediates all-trans-retinol and all-trans-retinal esters 

(Mata, et al., 2001). Albino Abca4−/− animals exhibit the buildup of bisretinoids such 

as A2E in the RPE, the deposition of luminous lipofuscin granules in RPE cells, and 

the gradual degeneration of photoreceptors (Radu, et al., 2011). Below we discuss the 

pathological consequence of lipofuscin accumulation in the RPE and its contribution to 

Stargardt disease pathogenesis.

2.2. Lipofuscin and A2E lipid derivatives

Lipofuscin (also known as "aging pigment") refers to intracellular, luminous pigment 

granules that develop mostly in postmitotic cells such as neurons, heart muscle, and the 

RPE. This substance differs from ceroids, the lipo-pigments found in mitotic cells in 

different tissues that accumulate in neurodegenerative lysosomal storage diseases (Seehafer 

& Pearce, 2006). Lipofuscin is a heterogeneous mixture of oxidized proteins, lipids, 

carbohydrates, and metals (mostly iron), and its composition varies greatly depending on the 

tissue of origin (Brunk & Terman, 2002; Terman & Brunk, 2004). Lipofuscin is known to 

fluoresce at approximately 600 nm wavelength, but the spectral range depends on the tissue 

from which it was isolated. The significance of lipofuscin in general cellular function is 

unknown. Ocular lipofuscin is highly photoreactive, producing reactive oxygen species upon 

exposure to visible light, which has been hypothesized to disrupt lysosomal activity and 

other cellular functions and is a potential mechanism of age-related macular degeneration 

and Stargardt disease pathology (Yin, 1996).

The RPE lipofuscin is highly fluorescent. (Mata, et al., 2000; Sparrow, Parish, Hashimoto, 

& Nakanishi, 1999; Yin, 1996). Ex vivo, RPE lipofuscin has an excitation spectrum with 

peaks at 450-490 nm and maximum fluorescence emission at 600 nm (Sparrow, Wu, et 

al., 2010). As stated above, POS phagocytosed by RPE cells is believed to be the primary 

source of this lipofuscin. Proteomic analysis of the RPE revealed that lipofuscin granules 

contained little (~2%) protein (K.-P. Ng, et al., 2008). Up to this point, approximately 25 
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bis-retinoid components of lipofuscin, including several photo-oxidized compounds, have 

been reported for lipofuscin isolated from the RPE (Sparrow & Yamamoto, 2012). A 

detailed explanation of the above summary of the established mechanism for bisretinoid 

production in the RPE is that the clearance of retinaldehyde produced from bleached 

visual pigments in rod POS is slowed due to the loss of N-ret-PE flippase activity in 

Stargardt patients with ABCA4 mutations (Lenis, et al., 2018). This promotes secondary 

condensation of N-ret-PE with another retinaldehyde molecule to produce a phospholipid-

conjugated bisretinoid, dihydro-N-retinylidene-N-retinyl-phosphatidylethanolamine (A2PE-

H2) or its oxidized version (A2PE). These bisretinoids are thought to be transformed into 

the main lipofuscin fluorophore A2E in the acidic environment of RPE phagolysosomes 

with continued diurnal phagocytosis of POS (Lenis, et al., 2018; Mata, et al., 2000; 

Young & Bok, 1969, 1970). Consistent with this idea, the formation of RPE bisretinoids 

is increased several-fold in the Abca4−/− mouse (Mata, et al., 2000; Sparrow & Boulton, 

2005; Weng, et al., 1999; Y. Wu, Fishkin, Pande, Pande, & Sparrow, 2009). This increased 

bisretinoid formation is associated with photoreceptor cell degeneration that is readily 

detectable at 8-9 months old animals (L. Wu, Nagasaki, & Sparrow, 2010). Furthermore, 

Matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI IMS), a 

powerful tool for detecting and identifying biomolecules in tissues, revealed a high relative 

abundance of A2E metabolites, including A2GPE in Abca4 −/− mice (D. M. Anderson, 

et al., 2014; Kubo, Kajimura, & Suematsu, 2012). A2E is both cationic and amphiphilic 

and is known to accumulate in lysosomes (Sparrow, et al., 2003; Sparrow, Kim, & Wu, 

2010). A2E accumulation in lysosomes is proposed as a potential cause of elevated 

Bis(monoacylglycero)phosphate (BMP) lipids level in the RPE of Abca4−/− mice (D. M. G. 

Anderson, et al., 2017). In vitro studies have demonstrated that A2E inhibits the lysosomal 

degradation of POS, leading to alterations in cholesterol and ceramide levels and delayed 

lipid degradation (Finnemann, Leung, & Rodriguez-Boulan, 2002; Lakkaraju, Finnemann, 

& Rodriguez-Boulan, 2007; Toops, Tan, Jiang, Radu, & Lakkaraju, 2015). Furthermore, 

accumulation of A2E in the RPE of Abca4−/− mice and Stargardt-iRPE cultures was shown 

to activate the alternate complement pathway, increase inflammatory markers, and cause 

oxidative stress (E. S. Y. Ng, et al., 2022; Radu, et al., 2011).

2.3. Bis(monoacylglycero)phosphate lipids

Bis(monoacylglycero)phosphate lipids (BMP) are a structurally distinct family of lipids that 

are highly enriched in the intraluminal vesicles of late endosomes/lysosomes (Kobayashi, 

et al., 2002). BMP is negatively charged at acidic lysosomal pH and can operate as a 

docking platform that recruits positively charged lipid hydrolases to intraluminal vesicles, 

hence improving lipid cargo breakdown, which is critical for the degradation of lipids 

and membranes in lysosomes (Grabner, et al., 2020). Furthermore, through its interactions 

with cholesterol transport and sphingolipid activator proteins, BMP is a key cofactor in 

lysosomal cholesterol and sphingolipid metabolism (Enkavi, Mikkolainen, Güngör, Ikonen, 

& Vattulainen, 2017; Locatelli-Hoops, et al., 2006). Multiple studies have found that 

BMP lipids regulate cellular cholesterol content in the endosome-lysosome compartment 

(Chevallier, et al., 2008; Gallala & Sandhoff, 2011). BMP lipids are enriched in a variety 

of endosomal/lysosomal storage diseases (Chevallier, et al., 2008; Walkley & Vanier, 2009). 

BMP lipids have a unique structural variation in the stereospecific numbering (sn) position 
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of fatty acid chains (Akgoc, et al., 2015). Fatty acids are esterified to three stereospecific 

sites on the glycerol backbone in the original TAG molecule (Karupaiah & Sundram, 2007). 

Accumulation of BMP lipids with varying fatty acid chains, such as BMP (20:4 22:6) 

at m/z 841.50, BMP (20:4 20:4), and BMP (18:2 22:6) at m/z 817.50, was found in the 

RPE of Abca4−/− mice using MALDI IMS. Targeted liquid chromatography-tandem mass 

spectrometry (LC-MS/MS) in both negative ion mode (to identify the fatty acid chains) 

and positive ion mode (to validate the sn configuration of the fatty acid chains) is used 

to distinguish lipid species, especially differentiating BMP lipids from others (Duffin, 

Obukowicz, Raz, & Shieh, 2000). MALDI IMS combined with LC-MS/MS analysis 

revealed the presence of BMP lipids in the aging human retina (D. M. G. Anderson, et 

al., 2017; Hankin, Murphy, Barkley, & Gijón, 2015). Notably, the majority of the fatty 

acid constituents of BMP lipids are polyunsaturated fatty acids, such as docosahexaenoic 

acid (DHA) (22:6), a fatty acid that is known to be highly abundant in photoreceptors and 

to be essential for photoreceptor cell recycling and survival (D. M. G. Anderson, et al., 

2017; N. G. Bazan, 2006). DHA in the endosomes, in the form of BMP lipids, is known 

to prevent the production of neuroprotectin D1 (NPD1) - which protects RPE cells from 

oxidative stress-induced apoptosis (N. G. Bazan, 2006). Despite some understanding of 

BMP lipid structure, pathways leading to the formation of BMP lipids are not well studied. 

It is thought that the accumulation of phospholipids in drug-induced phospholipidosis results 

from interactions between cationic amphiphilic drugs and endogenous lipids to produce 

indigestible metabolites or the direct inhibition of enzymes involved in lipid recycling and 

degradation (Hullin-Matsuda, Luquain-Costaz, Bouvier, & Delton-Vandenbroucke, 2009). 

The formation of BMPs is most likely due to endogenous lipid interactions that produce 

indigestible metabolites or due to direct inhibition of the enzymes involved in lipid recycling 

and degradation. In Abca4−/− mice, the accumulation of A2E most likely triggers the 

formation of BMP (D. M. G. Anderson, et al., 2017). Since A2E is both cationic and 

amphiphilic, and it accumulates in lysosomes (Sparrow, Kim, et al., 2010). Previous studies 

have demonstrated that A2E accumulation can inhibit lipid degradation and the phagocytosis 

of photoreceptor outer segments and result in free and esterified cholesterol (Finnemann, et 

al., 2002; Kaur, et al., 2018; Lakkaraju, et al., 2007; Poliakov, et al., 2014). These findings 

suggest that BMP accumulation in the RPE due to the disrupted lipid metabolism associated 

with lysosomal dysfunction can contribute to the Stargardt pathogenesis; BMP accumulation 

in the Stargardt patient retina further highlights the role of BMP and similar lipids in 

Stargardt disease pathogenesis (D. M. G. Anderson, et al., 2017; Hankin, et al., 2015).

2.4. Cholesterol and Ceramide

The majority of sterol part of lipid membranes is cholesterol, which acts as a buffer 

to create space in the membrane (Lewandowski, et al., 2021). Cholesterol regulates 

membrane biophysical properties and plays a crucial role in lipid and protein trafficking. 

Furthermore, cholesterol is the predominant sterol in the retina, especially in POS. It 

can be produced within the retina. However, cholesterol synthesis is a slow process (A. 

J. Fliesler & Anderson, 1983; Keller, Fliesler, & Nellis, 1988). In the vertebrate retina, 

cholesterol stabilizes rhodopsin in POS disks and slows visual cycle kinetics (Albert & 

Boesze-Battaglia, 2005). Daily phagocytosis and processing of POS impose a substantial 

metabolic burden on RPE cells. RPE cells express several receptors and cholesterol 
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transporters to regulate cholesterol homeostasis and metabolism (Tserentsoodol, et al., 

2006). In the RPE, cholesterol can be metabolized to ceramide by acid sphingomyelinase 

(ASMase) (Toops, et al., 2015). High levels of A2E and other bisretinoids are shown 

to result in cholesterol metabolism defects leading to excess cholesterol in the RPE 

(Toops, et al., 2015). The A2E-induced lysosomal cholesterol storage activates ASMase 

by sequestering BMP, an ASMase cofactor, leading to increased ceramide levels in the RPE 

(Toops, et al., 2015). Ceramide is a metabolite of sphingolipids, a family of membrane 

lipids that play essential structural roles in the fluidity regulation and subdomain structure 

of the lipid bilayer, particularly lipid rafts (Martin, Elliott, Brush, & Anderson, 2005; 

Tsui-Pierchala, Encinas, Milbrandt, & Johnson, 2002). Ceramide also plays key functional 

roles in receptor function, cell–cell interactions, and pathogen internalization (Hannun & 

Obeid, 2008; Huwilera, 2000). In vitro studies have established ceramide as a crucial second 

mediator in activating photoreceptor apoptosis (German, Miranda, Abrahan, & Rotstein, 

2006). In addition, ceramide involvement in the activation of RPE cell death was shown 

previously (Barak, Goldkorn, & Morse, 2005; Barak, Morse, & Goldkorn, 2001; Kannan, 

Jin, Gamulescu, & Hinton, 2004; Zhu, Sreekumar, Hinton, & Kannan, 2010). Furthermore, 

increased ceramide at the apical surface of the RPE promotes endosome enlargement, 

which results in the internalization of complement protein C3 into the RPE and the 

formation of intracellular C3a fragments. In turn, elevated C3a activates the mammalian 

target of rapamycin (mTOR), a regulator of metabolic processes, including autophagy, 

leading to decreased autophagosome biogenesis and chronic metabolic reprogramming in 

the RPE (Kaur, et al., 2018). These findings suggest that ceramide accumulation disrupts 

autophagosome biogenesis, and reduces autophagosome traffic, and autophagic flux, all of 

which contribute to Stargardt disease pathogenesis (Kaur, et al., 2018; Lakkaraju, et al., 

2007; Toops, et al., 2015).

2.5. New discoveries: Major Phospholipids/Fatty acids

Proper composition of membrane phospholipids, cholesterol, and fatty acids is critical in the 

function of membrane receptors, ion channels, and membrane-bound enzymes involved in 

'RPE's ability to phagocytose POS and transport visual pigment to PRs (Kwon & Freeman, 

2020; Lewandowski, et al., 2021). The lipid content of RPE cells differs from that of the 

retina, with a lower phospholipid content (60% <RPE vs. >85% retina) and a higher level 

of cholesteryl esters (19% RPE vs. 1.7% retina) (Bretillon, et al., 2008). Most membrane 

lipid bilayers comprise three major classes: phospholipids, sterols, and free fatty acids 

(FFAs) (Lewandowski, et al., 2021). Phospholipids are typically discussed in terms of 

charge/polarity. For example, while phosphatidylcholine (PC), phosphatidylserine (PS), and 

phosphatidylinositol (PI) are charged, phosphatidylethanolamine (PE) is not. These lipids 

play a fundamental role in retinal function and disease. The predominant long-chain PUFAs 

(LC-PUFAs) in the retina and POS membranes of all vertebrate species studied thus far 

are Docosahexaenoic Acid (DHA; 22:6n3), a highly unsaturated fatty acid, and arachidonic 

acid (AA; 20:4n6) (A. J. Fliesler & Anderson, 1983; SanGiovanni & Chew, 2005). For 

example, PUFAs with DHA (22:6, 22 carbons with 6 double bonds) are representative of 

the retina, accounting for approximately 50% of the fatty acids in photoreceptors (Gu, et 

al., 2003). The accumulation of such large amounts of DHA in retinal membranes makes 

them fluid-like, favoring efficient conformational changes during phototransduction. RPE 
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cell-autonomous functions are meditated in specific lipid signaling crucial for photoreceptor 

integrity (N. G. Bazan, 2007). RPE synthesizes a DHA-derived lipid mediator that prompts 

balancing cell-protective, anti-inflammatory, and pro-survival repair signaling called NPD1 

(N. G. Bazan, 2005, 2006; Nicolas G Bazan, Gordon, & Rodriguez de Turco, 1992).

Small changes in the dietary level of phospholipids/fatty acids (AA and/or DHA) and VLC-

PUFA-containing AA and/or DHA are important determinants of visual cell membrane fatty 

acid composition during the development of the retina (Suh, Wierzbicki, Lien, & Clandinin, 

2000; Uauy, Hoffman, Peirano, Birch, & Birch, 2001).

To determine the impact of ABCA4 loss of function (LOF) on major phospholipids/fatty 

acids lipids, we performed LC-MS/MS analysis on RPE/choroid and retina samples from 

11-month-old WT (C57BL/6J) and Abca4−/− mice. For the phospholipid analysis semi–

targeted analysis was performed. For PC and SM, parent ion scans were performed for 

the fragment m/z 184; for PE, PS parent ion scans were performed for the neutral loss 

of fragments m/z 141 and m/z 185, respectively. The sum of the peak area for one class 

of phospholipids was used to determine the percentage for each individual species. This 

percentage was then normalized to the WT. The Multiple reaction monitoring (MRM) 

method was used to analyze fatty acids. Retention time and mass transition were determined 

using fatty acid standards (Cayman, Ann Arbor, MI, USA), and the data were used to 

identify/quantify fatty acid species in samples.

Our analysis revealed an altered lipid profile in the RPE's major phospholipids/fatty acids in 

the absence of Abca4 (Figure 1). Abca4−/− mice exhibited a 30% decrease in PC38:6 (DHA/

16:0) and PC40:6 (DHA/18:0), whereas PC38:4 and PC36:4 (16:0/20:4) were marginally 

(10-20%) higher relative to WT mice (Figure 1A). The changed PC phospholipid profile was 

associated with a decrease in VLC-PUFA-containing PC (PC50:12) and DHA-containing 

species in Abca4−/− RPE and an increase in AA-containing species (Table 1). Relevant 

changes identified in the most common PC species (with a concentration range of 4-13 

nmol/eye) in Abca4−/− RPE are shown in Figure 1A. PE is the second main type of 

glycerophospholipid class in the retina (the first being PC) (S. J. Fliesler, 2010). PE 

phospholipids may also participate in the movement of the retinoid in the membrane (Ahn, 

Wong, & Molday, 2000). PE (40:6) (DHA/18:0) was 30% lower in Abca4−/− RPE as 

compared to the WT RPE, while PE (36:1) and PE (38:7) were 15-30% higher (Figure 

1B). Figure 1B shows variations in the most frequent PE species (with a concentration 

range of 2-19 nmol/eye) in Abca4−/− RPE. Similar to PC species, a large reduction of DHA-

containing PE species was observed in the Abca4−/− RPE, while AA-containing species 

were noted to increase (Table 1, Figure 1B). Table 1 shows changes in the less common 

PC species with a concentration (<4 nmol/eye) and PE species with a concentration (<2 

nmol/eye) in the Abca4−/− RPE.

PS phospholipid involvement in phagocytosis signaling has been shown previously 

(Lewandowski, et al., 2021). The observed differences in specific molecular species of PS 

included a 30% reduction of DHA-containing species in the Abca4−/− RPE and a 30-50% 

increase in AA-containing species (Figure 1C). The commonly found PS species (with a 

concentration range of 1.5-10 nmol/eye) are shown in Figure 1C. PS (46:12) was 30% 
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lower in the Abca4−/− than in WT animals, while PS (38:4) (18:0/20:4) and PS (38:5) were 

30-50% higher (Figure 1C). The levels of PS are higher in RPE compared to the retina. 

In addition, sphingolipids, crucial lipids for the retina, are higher in the RPE, indicating 

sphingolipid metabolism is a major component of the RPE (Sinha, Naash, & Al-Ubaidi, 

2020). Analysis of sphingomyelin (SM) species in RPE and retina revealed no difference 

between Abca4−/− and WT (data not shown).

Phospholipid PC and PE did not show clear differences between Abca4−/− and WT retina, 

including DHA-containing or VLC-PUFA-containing species (data not shown). The most 

frequent PS phospholipid species in the retina (with a concentration range of 1.5-4.5 nmol/

eye) are shown in Figure 1D. PS (38:4) and PS (42:9) were 10-30% lower in the Abca4−/− 

than in WT animals, while PS (46:11) (18:0/20:4) were 20 % higher (Figure 1D).

Elovanoids (ELVs) are formed as a result of the breakdown of membrane lipids. They 

are derived from VLC-PUFAs and have primarily protective properties (Lewandowski, 

et al., 2021). In addition, ELVs have been discussed explicitly regarding their general 

neuroprotective effects on the retina (Nicolas G Bazan, et al., 1992). The majority of 

DHA in RPE cells is a component of photoreceptor disc membrane phospholipids that 

are recycled as part of outer segment renewal following phagocytosis (Nicolas G Bazan, 

2006). It has been previously shown that RPE cells utilize free DHA for NPD1 production 

when exposed to oxidative stress. These signals activate phospholipase A2 or A1 to cleave 

docosahexaenoic chains or VLC-PUFAs from POS disk membrane phospholipids, leading 

to NPD1 or ELVs production, respectively (N. G. Bazan, 2018; Mukherjee, Marcheselli, 

de Rivero Vaccari, et al., 2007). These findings imply that DHA-NPD1- ELVs signaling 

enhances photoreceptor and RPE cellular integrity and function. The active secretion of 

NPD1 and ELVs from RPE cells shows that these lipid mediators have autocrine and 

paracrine bioactivity. The disruption of this homeostatic DHA-NPD1-ELVs regulation could 

play a role in the onset and progression of retinal degenerative disorders (N. G. Bazan, 

2007; Miyagishima, et al., 2021; Mukherjee, Marcheselli, Barreiro, et al., 2007; Mukherjee, 

Marcheselli, de Rivero Vaccari, et al., 2007). Free VLC-PUFAs (FA32:6 n3 and FA34:6 

n3) were more abundant in the WT RPE compared with the Abca4−/− mice, so were the 

monohydroxy-derivatives, 27-monohydroxy 32:6 and 29-monohydroxy 34:6, which are the 

stable metabolites in the pathway of ELVs Synthesis (data not shown).

The polyunsaturated long-chain fatty acid concentration varies with cell type, age, and 

ocular diseases (Agbaga, et al., 2018; Liu, Chang, Lin, Shen, & Bernstein, 2010). For 

example, DHA, AA, and other VLC-PUFAs were significantly lower in AMD retina and 

RPE/choroid compared to age-matched normal donors (Liu, et al., 2010). Our findings 

indicate that the loss of ABCA4 function leads to an altered lipid profile in DHA-containing 

or VLC-PUFA-containing species, primarily in RPE, with minimal impact on the retina. 

Therefore, a potential disruption of homeostatic DHA-NPD1- ELVs regulation due to the 

loss of ABCA4 function in the RPE needs further investigation. In addition, the effects of 

changes in lipid species and specific metabolic enzymes involved in these processes remain 

unknown and merit further investigation.
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3. Stargardt POS Independent Lipidomic Change

3.1. In vitro Stargardt Disease Model

In vitro model for Stargardt disease using ABCA4 mutant induced pluripotent stem cell 

(iPSC)-derived RPE (Stargardt-iRPE) demonstrated disease phenotype of intra/subcellular 

lipid deposition and progressive RPE atrophy (Farnoodian, et al., 2022). Previously intra/

subcellular lipid and cholesterol deposits in Stargardt patients and Abca4−/− mice were 

thought to be caused by A2E-induced lipid metabolism defects. A2E increases cholesterol's 

chemical activity and displacement from membranes, providing a biophysical mechanism 

for cholesterol sequestration leading to aberrant cholesterol metabolism in RPE cells 

(Lakkaraju, et al., 2007). We recently showed Stargardt-iRPE could reproduce the same 

lipid handling defects cell-autonomously without exposure to Stargardt POS. We replicated 

cholesterol and ceramide accumulation without exogenously adding A2E or Stargardt POS 

to our Stargardt-iRPE cultures, indicating a Stargardt POS-independent pathway for lipid 

homeostasis in RPE cells. The LC-MS/MS analysis confirmed increased cholesterol and its 

metabolites and ceramide species in the Stargardt-iRPE compared to the WT-iRPE treated 

with WT POS for seven days (Figures 2A and B). Our findings suggest that ABCA4 LOF 

in iRPE cells induces phagolysosomal dysfunction, resulting in ineffective POS digestion 

(Farnoodian, et al., 2022).

Bisretinoids and their oxidation products elicit a robust alternate complement response 

in RPE cells in culture (Zhou, Kim, Westlund, & Sparrow, 2009). In addition, A2E 

accumulation in the RPE in Abca4−/− mice is shown to activate complement, induce 

inflammatory responses, and result in oxidative stress (Radu, et al., 2011). Recent research 

published by Radu's group revealed complement dysregulation in ABCA4-deficient patient-

iRPE cells. They discovered a strong correlation between aging RPE and MAC deposition 

resulting in RPE cell loss, similar to the RPE phenotype observed in Abca4−/− mice (E. S. Y. 

Ng, et al., 2022).

Stargardt in vitro disease model using human iRPE cells reproduced similar phenotypes and 

lipid alteration observed in Abca4−/− mice (Figure 2 C and D), suggesting the use of these 

models to better understand mechanisms involved in lipid metabolism and lipid handling 

defects that contribute to the pathogenesis of Stargardt disease.

4. Potential Therapeutic Mechanisms Targeting Lipid Homeostasis 

Defects

It is commonly acknowledged that lipid metabolism plays a critical role in therapeutic 

processes (Islam & Manna, 2019). Consistently, several studies have tried ameliorating 

Stargardt disease phenotype by targeting the vitamin A–dependent nature of A2E 

biosynthesis (Radu, et al., 2005). In the case of lacking ABCA4 function, retinaldehyde-PE 

conjugates may react to create vitamin A dimers (A2E and ATR-dimer, among others), 

which are then deposited in the RPE after photoreceptor outer segment phagocytosis, 

resulting in lipofuscin accumulation and retinal degeneration (Lamb & Simon, 2004; 

Sparrow, et al., 2003). Radu et al. showed that N-(4-hydroxyphenyl) retinamide (HPR), 
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known to diminish serum retinol and retinol-binding protein reversibly, effectively inhibited 

the development of A2E and other lipofuscin fluorophores with no adverse effects on 

visual function or retinal morphology (Radu, et al., 2005). In addition, ABCA4 mutant 

albino mice treated with vitamin A deuterated at the C20 position (C20-D3-vitamin A), 

which inhibits vitamin A's innate reactivity to dimerize, exhibited a decrease in A2E and 

fundus autofluorescence, resulting in decreased lipofuscin accumulation and improved eye 

function (Ma, Kaufman, Zhang, & Washington, 2011). Modulating cholesterol efflux in RPE 

cells to reduce cholesterol and cholesteryl esters accumulation has also been considered a 

potential therapeutic target. Activating the liver X receptor (LXR)/peroxisome proliferator-

activated receptor (PPAR) pathway restores cholesterol homeostasis in A2E-laden RPE cells 

(Lakkaraju, et al., 2007). Furthermore, LXR agonist is shown to rescue the cell autonomous 

lipid-handling defect seen in Stargardt-iRPE (Farnoodian, et al., 2022). ASMase inhibition 

could be a viable therapeutic target for lowering cholesterol and ceramide accumulations 

induced by lipofuscins bisretinoid. Desipramine, a functional inhibitor of ASMase, lowers 

ASMase activity and ceramide levels, restoring autophagic flux in RPE with the lipofuscin 

bisretinoid A2E(Kaur, et al., 2018; Toops, et al., 2015). These approaches further underscore 

our observation of broad lipid homeostasis defects as the key disease inducing feature in 

Stargardt patients.

5. Conclusions

There is currently inadequate information on the complexity of changes in lipid 

composition, homeostasis, metabolism, and lipid-mediated signaling in the RPE, leading 

to ABCA4 retinopathy. The development of novel therapies targeting Stargardt disease 

is enabled by identifying and investigating the pathobiological processes implicated in 

Stargardt. Here we reviewed two pathways leading to lipidomic changes in the RPE and 

retina and their contributions to Stargardt disease pathogenesis (Figure 3). Furthermore, we 

discussed how lipofuscin and its metabolites, including A2E, may cause cascading changes 

in the RPE lipid profile, including elevated BMP, cholesterol, and ceramide, contributing 

to abnormal RPE phenotype. These lipid pathway changes are potential therapeutic targets 

to rescue disease phenotype in RPE cells (Figure 3). Published work in Stargardt disease 

pathogenesis and our recent findings underscore the need for further investigation of lipid 

metabolism and lipid-mediated signaling in the retina and RPE and their contributions to 

disease pathogenesis. These findings are expected to lead to new, effective treatments for a 

number of retinal degenerative diseases, including Stargardt maculopathy and AMD.

Abbreviations:

RPE retinal pigment epithelium

POS photoreceptor outer segment

BMP Bis(monoacylglycero)phosphate

ASMase acid sphingomyelinase

DHA docosahexaenoic acid
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FA fatty acid

LC-PUFA long-chain polyunsaturated fatty acid

LPC lysophosphatidylcholine

NPD1 neuroprotectin D1

PC phosphatidylcholine

PS phosphatidylserine

PI phosphatidylinositol

PE phosphatidylethanolamine

AA Arachidonic Acid

LOF loss of function

PUFA polyunsaturated fatty acid

VLCFA very long chain fatty acid

VLC-PUFA very long-chain polyunsaturated fatty acid

ELVs Elovanoids
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Figure 1: ABCA4 loss of function altered major phospholipids/fatty acids lipids in the RPE.
LC-MS/MS analysis on the RPE/choroid and retina tissues from 11M WT and Abca4−/− 

mice (n=16 eye/animal). LC-MS/MS analysis was performed in a Xevo TQ - S equipped 

with Acquity I class UPLC with a flow-through needle (Waters, Milford, MA, USA). A: A 

box plot showing relevant changes in the most common PC species (with a concentration 

> 4-13 nmol/eye) in the RPE. Note decreased levels of PC38:6 (DHA/16:0) and PC40:6 

(DHA/18:0) and increased PC36:4 and PC38:4 in Abca4−/− mice (*: p<0.05, ***: p<0.001). 

B: Box plot showing variations in the most frequent PE species (concentrations > 2-19 

nmol/eye) in Abca4−/− RPE. Note decreased PE (40:6) (DHA/18:0) and increased PE 

(36:1) and PE (38:7) in Abca4−/− mice (*: p<0.05, ***: p<0.001). C: The most common 

phosphatidylserine(PS) species (concentrations > 1.5-10 nmol/eye) are shown using a box 

plot. Note decreased PS (46:12) and increased PS (38:5), PS (38:4) (18:0/20:4) in the 

Abca4−/−(*: p<0.05). D: Box plots showing relevant changes in the most common PS 

species phospholipids (concentrations > 1.5-4.5 nmol/eye) in the retina (*: p<0.05, **: 

p<0.01). n represents independent samples from each group. The statistical analysis was 

performed using GraphPad Prism software (La Jolla, CA).
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Figure 2: ABCA4 loss of function increased cholesterol, its metabolite, and ceramide species in 
the Stargardt-iRPE cultures and Abca4−/−-RPE/choroid.
LC-MS/MS analysis on t Stargardt-iRPE treated with POS for seven days (n=3) and the 

RPE/choroid tissues from 11M WT and Abca4−/− mice (n=12 eye/animal). A: A box plot 

showing relevant changes in the ceramide species in the Stargardt-iRPE treated with POS. 

Note Increased levels of Cer 16:0 in the collected apical medium from Stargardt-iRPE ( ***: 

p<0.001). B: A box plot showing relevant changes in the cholesterol and its metabolite in 

the Stargardt-iRPE treated with POS. Note Increased levels of cholesterol and 5, 6-Epoxy 

Cholestanol in the collected medium from the apical and basal side in Stargardt-iRPE (*: 

p<0.05, **: p<0.01, ***: p<0.001). C: Box plot showing variations in the ceramide species 

in Abca4−/− RPE. Note Increased levels of Cer 24:0 in the Abca4−/− RPE ( **: p<0.01). D: 

Box plots showing relevant changes in the cholesterol and its metabolite in the Abca4−/− 

RPE. Note Increased levels of cholesterol and 5, 6-Epoxy Cholestanol in the Abca4−/− RPE 

( **: p<0.01). n represents independent samples from each group.
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Figure 3. Schematic design of summarizing lipidomic change in Stargardt disease.
In Stargardt POS-dependent pathway, ABCA4 loss of function results in the ongoing 

intracellular accumulation of lipofuscin material, including A2E, which has been associated 

with lysosomal dysfunction, activating the complement system and autophagy down-

regulation through elevated BMP, cholesterol, and ceramide level in the RPE cells. As 

shown in the figure, these defects can be restored by targeting cholesterol transport 

and the ceramide pathway. ABCA4 deficiency can also cause lipid handling defects cell 

autonomously in the RPE cells. In addition, the accumulated cholesterol and ceramide are 

associated with lysosome dysfunction in iRPE cells. Diagram created with BioRender.com.
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Table 1.

LC-MS/MS analysis on the RPE/ Choroid from 12M WT and Abca4−/− mice showing alerted phospholipids/

fatty acids lipids including PC, and PE species phospholipids [ (n=16 eye/animal), (*: p<0.05, **: p<0.01, 

***: p<0.001, ****: p<0.0001)]. n represents independent samples from each group.

Phosphatidylcholine (PC) Phosphatidylethanolamine (PE)

Increased Decreased Increased Decreased

PC54:10 (*) PC50:12 (*) PE 38:8 (**) PE 44:10 (***)

PC36:00 (**) PC44:11 (**) PE 38:1 (*)

PC46:8 (***) PE 38:2 (**)

PC38:7 (***) PE 40:9 (*)
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