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Abstract

Unprotected cis-2,3-diarylpiperidines are synthesized through an unprecedented palladium-

catalyzed cross-coupling reaction between aryl halides and elusive endocyclic 1-azaallyl anions. 

These intermediates are generated in situ by the deprotonation of 2-aryl-1-piperideines, precursors 

that are readily prepared in two operations from simple piperidines. An asymmetric version of 

this reaction with (2R, 3R)-iPr-BI-DIME as the ligand provides products in moderate to good 

yields and enantioselectivities. This study significantly expands the synthetic utility of endocyclic 

1-azaallyl anions.

Graphical Abstract

Unprotected cis-2,3-diarylpiperidines are synthesized from readily available piperidines in 

only three operations. The key step is a palladium-catalyzed cross-coupling reaction between 

aryl halides and endocyclic 1-azallyl anions, elusive intermediates derived from the in 
situ deprotonation of 2-aryl-1-piperideines. This cross-coupling reaction can be achieved 

enantioselectively with a chiral mono-phosphine ligand.
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3-Arylpiperidines are core structures found in various bioactive molecules (Figure 1).[1] 

However, the synthesis of piperidines containing aryl substituents at the 3-position remains 
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challenging.[2–3] Known methods usually involve the de novo synthesis of piperidine 

rings from linear precursors,[4] or functional group transformations of piperidines already 

containing a substituent at the 3-position.[5] Catalytic hydrogenations of 3-arylpyridines[6] 

and direct C–H bond functionalizations of N-protected piperidines[7] have also been 

reported. The majority of these established methods utilize costly reagents, require 

lengthy syntheses of substrates, and ultimately provide N-protected products. In addition, 

enantioselective syntheses of 3-arylpiperidines remain scarce.[8] Here we report a new 

approach to the β-arylation of piperidines, along with an asymmetric variant.

In 2020, we reported a convenient one-pot procedure for the direct β-C–H bond 

functionalization of unprotected alicyclic amines, involving alkylation of endocyclic 1-

azaallyl anions (metalloenamines).[9] Prior to our investigation, these elusive intermediates 

had rarely been studied in a synthetic context.[10] As summarized in Scheme 1a, endocyclic 

1-azaallyl anions were generated by deprotonation of the corresponding imines with lithium 

diisopropylamide (LDA), followed by regioselective SN2 reaction with alkyl halides, and 

then reduction. The imines themselves were obtained in situ by treatment of Li-amides 

with a ketone oxidant. This strategy enabled the synthesis of unprotected 3-alkyl-substituted 

alicyclic amines in a single operation. However, this method cannot directly be applied to 

the synthesis of 3-aryl-substituted azacycles. To expand the synthetic utility of endocyclic 

1-azaallyl anions, we proposed employing these intermediates in transition metal-catalyzed 

cross-coupling reactions with aryl halides. The resulting 3-aryl-substituted endocyclic 

imines can then be readily converted to the corresponding amines. Related work involving 

acyclic 1-azaallyl anions has been reported by Barluenga and co-workers.[11] These 

researchers developed a palladium-catalyzed synthesis of indoles from ortho-dibromoarenes 

and acyclic 1-azaallyl anions generated in situ by the deprotonation of the corresponding 

imines (Scheme 1b). Subsequent studies on reactions with 1-azaallyl anions exclusively 

utilized acyclic variants, while the majority of transformations are annulations proceeding 

with concurrent functionalization of the nitrogen atom.[12] Our envisioned cross-coupling 

reaction with endocyclic 1-azaallyl anions is arguably significantly more challenging when 

compared with those of acyclic 1-azaallyl anions (Scheme 1c). While acyclic imines can be 

readily prepared by the condensation of carbonyl compounds and primary amines, there is 

a dearth of modular methods for the preparation of requisite endocyclic imine precursors 

containing various ring substituents. Further, due to the significant amount of ring strain 

experienced by medium-sized endocyclic 1-azaallyl anions,[13] these species may not be 

sufficiently stable under cross-coupling reaction conditions where high temperatures are 

often needed. The regioselectivity of the coupling step is another concern, since 1-azaallyl 

anions are ambident nucleophiles.

Our study commmenced with the development of a modular synthesis of 2-aryl-1-

piperideines 1 (Scheme 2), motivated by the notion that a 2-aryl group can stabilize not 

only endocyclic 1-azaallyl anion intermediates, but the corresponding imine precursors 

as well. Requisite imines can thus be isolated and used as substrates in pure form, 

thus avoiding potential side reactions and simplifying reaction setup and development. 

Unprotected 2-arylpiperidines were first prepared in a single operation from readily 

available piperidines utilizing our previously reported method for the facile α-C–H 
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bond functionalization of unprotected cyclic amines using simple ketones to oxidize 

N-lithiated cyclic amines to imines.[14–16] Subsequent N-chlorination of unprotected 2-

arylpiperidines with N-chlorosuccinimide (NCS) and regioselective dehydrohalogenation 

with potassium hydroxide provided 2-aryl-1-piperideines in overall acceptable yields.
[17] An initial test of the cross-coupling reaction between 2-phenyl-1-piperideine 

and chlorobenzene (PhCl) employed sodium tert-butoxide (NaOtBu) as the base, 

tris(dibenzylideneacetone)dipalladium (Pd2(dba)3) as the catalyst and XPhos as the ligand 

in 1,4-dioxane at 50 °C. Gratifyingly, cis-2,3-diphenylpiperidine (±)-2a was obtained in 

44% yield after diastereoselective reduction of initially formed 2,3-diphenyl-1-piperideine. 

However, bis-arylation product 3 was identified as the major product (Table 1, entry 1). 

Shortening the reaction time from 6 to 3 hours led to an increased yield of (±)-2a, 

while simultaneously reducing the amount of 3 (Table 1, entry 2). Weaker bases such as 

K3PO4 and Cs2CO3 failed to promote the reaction (Table 1, entries 3–4), likely due to 

inefficient formation of the 1-azaallyl anion intermediate. A variety of phosphine ligands 

were evaluated next (Table 1, entries 5–14). Most Buchwald-type ligands[18] tested provided 

the desired product (±)-2a, but offered no improvements over XPhos. Several bidentate 

phosphine ligands failed to provide observable amounts of product. A decreased yield 

of (±)-2a was obtained from a reaction performed in a 1:1 mixture of 1,4-dioxane and 

toluene (Table 1, entry 15). Considering that the formation of one equivalent of 3 consumes 

two equivalents of PhCl, conditions were evaluated where PhCl was used as the limiting 

reagent in an effort to improve the ratio of (±)-2a to 3. Interestingly, when PhCl was 

used as the limiting reagent and the reaction performed in a 1:1 mixture of 1,4-dioxane 

and toluene, the yield of the desired product increased compared with the reaction in neat 

1,4-dioxane, and, as we anticipated, the amount of bis-arylation product 3 dramatically 

decreased (Table 1, entries 16–17). These results indicate that the first coupling reaction 

occurs regioselectively at the C-terminus of the endocyclic 1-azaallyl anion intermediate, 

pior to the second coupling reaction at the nitrogen atom. Extension of the reaction time to 

4 hours and the addition of 4 Å molecular sieves further improved the yield of the desired 

product (±)-2a (Table 1, entries 18–20).

The substrate scope of the arylation was then explored (Scheme 3). Chloroarenes and 

chloroalkenes readily underwent reactions with endocyclic 1-azaallyl anions generated in 
situ by the deprotonation of various 2-aryl-1-piperideines. Following reduction, unprotected 

cis-2,3-diarylpiperidines were obtained in generally moderate to good yields and excellent 

diastereoselectivities. Readily separable bis-arylation side products were observed in most 

cases. To suppress the formation of these undesired materials and to improve the yields 

of product 2, increased amounts of imines and base were utilized for some substrates. 

Reactions employing 3-chloropyridine and quinoline were performed at room temprature, 

since these electrophiles were more reactive than chlorobenzenes and chloroalkenes. Due 

to the presence of a vicinal aryl group, this reaction was sensitive to sterics. Sterically 

congested substrates usually gave unsatisfactory reaction outcomes. For the reduction 

step, the hydride attacked intermediate 2,3-diaryl-1-piperideines from the opposite face 

of the 3-aryl groups to avoid steric hindrance and form 2,3-cis products, however, the 

diastereoselectivity of this step was also influenced by additional ring-substituents in the 

substrates (products (±)-2u–2x). Moreover, the triisopropylsilyloxy (TIPSO) group might 
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also act as a directing group for the imine reduction forming 2,6-trans product (±)-2v. 

Endocyclic 2-aryl imine precursors derived from alicyclic amines with other ring sizes were 

also examined, but unfortunately failed to provide desired products. Parent 1-piperideine 

lacking 2-substitution is prone to trimerize and cannot be isolated in the form of monomer.
[19] The trimer, however, was found to be unreactive under typical conditions. 1-Piperideines 

with 2-alkyl substituents were also evaluated briefly. However, deprotonation of these 

substrates is known to occur selectively at the exocyclic α-position to form exocyclic 

1-azaallyl anions due to reduced ring strain compared to their endocyclic counterparts.[13] 

The cross-coupling reaction between an exocyclic 1-azaallyl anion and chlorobenzene gave 

a product corresponding to N-phenylation.[20]

We next sought to develop an asymmetric version of the title reaction (Scheme 4).[21] 

Enantioenriched unprotected cis-2,3-diarylpiperidines were obtained in moderate to good 

yields and enantioselectivities when (2R, 3R)-iPr-BI-DIME[22] was used as the ligand in 

place of XPhos. It was found that the replacement of chloroarenes with bromoarenes, 

and a reduction in the amount of NaOtBu from 2 equivalents to 1.5 equivalents provided 

superior enantioselectivities. The BI-DIME ligand exhibited lower reactivity than XPhos. 

Thus, 2 equivalents of imines were needed to improve yields, although this led to 

slightly reduced enantiomeric ratios as illustrated in the synthesis of (2R, 3R)-2a and 

(2R, 3R)-2d. As indicated by the results, base-catalyzed racemization of intermediate 

2,3-diaryl-1-piperideines might take place to only a minor extent. Whereas considering 

the formation of small amounts of the bis-arylation side products were observed for the 

enantioselective reactions as well, it cannot rule out the possibility that deprotonated 2,3-

diaryl-1-piperideines undergo a second N-arylation via the intermediacy of enamines. In this 

scenario, the base-catalyzed isomerization led to decreased yields rather than enantiopurities 

of the desired products.

Cis-2,3-diarylpiperidine products obtained from the Pd-catalyzed arylation of endocyclic 

1-azaallyl anions could be further functionalized regioselectively at the α’-position. For 

example, α’-phenylation of (±)-2a with phenyl lithium as the nucleophile provided 

compound (±)-4 in 59% yield (Scheme 5, eq 1), and Lewis acid promoted α’-benzylation 

of (±)-2a with benzyl Grignard reagent gave (±)-5 in 47% yield (Scheme 5, eq 2). Excellent 

diastereoselectivities were observed for both transformations. It is noteworthy that product 

(±)-4 could not be obtained through 3-arylation of 2,6-diphenyl-1-piperideine. The situation 

is identical for product (±)-5. While the reasons for this are not entirely clear, one possible 

explanation might be a reduced nucleophilicity of the corresponding 1-azaallyl anion 

intermediates. The late-stage α’-functionalization of cis-2,3-diarylpiperidines thus provides 

an alternative method to access compounds such as (±)-4 and (±)-5. Another example for 

the modification of the arylation product is the regioselective decarboxylative alkylation 

with β-ketoacid 7, which provided compound (±)-6 in 45% yield and also with excellent 

diastereoselectivity (Scheme 5, eq 3).

In conclusion, we have developed an unprecedented Pd-catalyzed cross-coupling reaction 

between aryl halides and endocyclic 1-azaallyl anions generated in situ by the 

deprotonation of readily prepared 2-aryl-1-piperideines. Unprotected enantioenriched 

cis-2,3-diarylpiperidines were obtained through a concise sequence of reactions from 
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cheap commercially available piperidines. Further expansion of the substrate scope and the 

improvement of enantioselectivities are the subject of ongoing studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Representative bioactive molecules containing 3-arylpiperidine core structures.
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Scheme 1. 
Proposed synthesis of unprotected cis-2,3-diarylpiperidines through Pd-catalyzed cross-

coupling of endocyclic 1-azaallyl anions and aryl halides and relevant precedent.

Zhang et al. Page 9

Angew Chem Int Ed Engl. Author manuscript; available in PMC 2024 September 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 2. 
Modular synthesis of 2-aryl-1-piperideines.
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Scheme 3. 
Substrate scope for Pd-catalyzed arylation of endocyclic 1-azaallyl anions forming 

unprotected cis-2,3-diarylpiperidines. Reactions were performed on a 0.2 mmol scale. Yields 

correspond to isolated yields of products. Diastereomeric ratios are >20:1 unless otherwise 

specified. [a] The reaction was performed on a 2 mmol scale. [b] Imines were used in 2 

equiv. [c] NaOtBu was used in 4 equiv. [d] Reactions were performed at 25 °C. [e] The 

imine was used as the limiting reagent, and PhCl was used in 2 equiv.
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Scheme 4. 
Pd-Catalyzed enantioselective arylation of endocyclic 1-azaallyl anions forming unprotected 

enantioenriched cis-2,3-diarylpiperidines. Reactions were performed on a 0.2 mmol scale. 

Yields correspond to isolated yields of the unprotected products, and enantiomeric ratios 

were determined with Boc-protected (2R, 3R)-2. Diastereomeric ratios are >20:1 for 

all substrates. [a] The absolute configuration was determined by X-ray diffraction of p-

bromobenzenesulfonyl-protected product. [b] 1.5 Equiv of the imine was used.
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Scheme 5. 
α’-C–H bond functionalization of (±)-cis-2,3-diphenylpiperidine.
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Table 1.

Evaluation of reaction conditions for Pd-catalyzed arylation of 2-phenyl-1-piperideine forming cis-2,3-

diphenylpiperidine.[a]

Entry Ligand[b] Yield of (±)-2a (%) Yield of 3 (%)[c]

1[d] XPhos 44 68

2 XPhos 54 60

3[e] XPhos NR NR

4[f] XPhos NR NR

5 Ph-XPhos 29 ND

6 tBu-XPhos Trace Trace

7 RuPhos 35 ND

8 SPhos 36 ND

9 Cy-JohnPhos 12 ND

10 PCy3 Trace Trace

11 (±)-BINAP NR NR

12 dppf NR NR

13 XantPhos NR NR

14 dppe NR NR

15[g] XPhos 21 61

16[h] XPhos 55 30

17[g,h] XPhos 59 32

18[g,h,i] XPhos 64 ND

19[g,h,j] XPhos 56 ND

20[g,h,i,k] XPhos 71 28

[a]
Reactions were performed on a 0.2 mmol scale. Yields correspond to isolated yields of products. Diastereomeric ratio (dr) of (±)-2a is >20:1 for 

all entries. NR: no reaction. ND: not determined.

[b]
See the Supporting Information for the chemical structures of the ligands.

[c]
The yield of 3 is calculated based on the fact that two equivalents of PhCl are needed to form one equivalent of 3.

[d]
The reaction time was 6 hours.

[e]
K3PO4 was used as the base.

[f]
Cs2CO3 was used as the base.
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[g]
A mixture of 1,4-dioxane and toluene (1:1) was used as the solvent.

[h]
PhCl was used as the limiting reagent and the imine was used in 1.5 equiv.

[i]
The reaction time was 4 hours.

[j]
The reaction time was 5 hours.

[k]
4 Å molecular sieves (50 mg) was added.
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