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Summary

By combining mass spectrometry-based proteomics and phosphoproteomics with genomics, 

epi-genomics, and transcriptomics, proteogenomics provides comprehensive molecular 

characterization of cancer. Using this approach, the Clinical Proteomic Tumor Analysis 

Consortium (CPTAC) has characterized over 1,000 primary tumors spanning 10 cancer types, 

many with matched normal tissues. Here, we present LinkedOmicsKB, a proteogenomics 

data-driven knowledge base that makes consistently processed and systematically precomputed 

CPTAC pan-cancer proteogenomics data available to the public through ~40,000 gene-, 

protein-, mutation-, and phenotype-centric web pages. Visualization techniques facilitate efficient 

exploration and reasoning of complex, interconnected data. Using three case studies, we illustrate 

the practical utility of LinkedOmicsKB in providing new insights into genes, phosphorylation 

sites, somatic mutations, and cancer phenotypes. With precomputed results of 19,701 coding 

genes, 125,969 phosphosites, and 256 genotypes and phenotypes, LinkedOmicsKB provides a 

comprehensive resource to accelerate proteogenomics data-driven discoveries to improve our 

understanding and treatment of human cancer. A record of this paper’s Transparent Peer Review 

process is included in the Supplemental Information.
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eTOC blurb

LinkedOmicsKB makes consistently processed and systematically precomputed CPTAC pan-

cancer proteogenomics data easily accessible to the public through a web portal. With 

approximately 40,000 gene-, protein-, mutation-, and phenotype-centric web pages, it enables 

anyone with internet access to conduct meaningful inquiries into CPTAC data, facilitating data-

driven scientific discoveries.
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Introduction

Cancer is a disease of genetic aberrations, but there are many molecular processes 

downstream of the genome that may affect cancer phenotype. Proteins and their 

modifications connect genotype to phenotype and are central components in understanding 

cancer and finding effective treatments. In early large-scale cancer multi-omics studies, 

while genomic, epigenomic, and transcriptomic assays provide unbiased, genome-wide 

measurements, proteomics data are either missing or generated through antibody-based 

analysis of a small number of pre-selected proteins1. More recent cancer studies have 

combined unbiased mass spectrometry (MS)-based proteomics and phosphoproteomics with 

other genome-wide assays, an approach known as proteogenomics2,3. As the pioneer and a 

catalyst of cancer proteogenomics, the National Cancer Institute’s Clinical Proteomic Tumor 

Analysis Consortium (CPTAC) has systematically characterized over 1,000 treatment naïve 

primary tumors spanning 10 cancer types. Published CPTAC studies have demonstrated the 

value of these proteogenomics datasets for reinforcing existing knowledge, identifying new 

biological insights, and generating therapeutic hypotheses4–16. Beyond these publications, 

proteogenomics data generated in these studies also holds great potential to serve as a 
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rich resource for the broad cancer research community to address their own basic and 

translational research questions for years to come17. However, until computational tools are 

available for biologists and clinicians to efficiently explore the vast amount of complex, 

interconnected data, the potential of these data will be severely underexploited.

Previously, we developed LinkedOmics18, which makes proteogenomics data from 

individual CPTAC studies available through a web portal to enable on the fly association 

analysis for one cancer type and one omics data type at a time. Despite its quickly increasing 

popularity, performing one analysis across all cancer types and all omics data types will take 

hundreds of clicks and many hours. Moreover, because effective methods for integrating and 

co-visualizing results from multiple cancer types and multiple data types remain severely 

underdeveloped in proteogenomics, it is challenging for data consumers to gain a holistic 

understanding of pan-cancer, multi-omics results.

Here, we present LinkedOmicsKB (http://kb.linkedomics.org), a proteogenomics data-driven 

knowledge base that makes consistently processed and systematically precomputed CPTAC 

pan-cancer proteogenomics data readily available to the public through a user-friendly 

web portal. We devised powerful visualization techniques to facilitate efficient exploration 

and reasoning of these data. Using three case studies, we illustrate the practical utility of 

LinkedOmicsKB in allowing users to gain new insights into genes, phosphorylation sites, 

somatic mutations, and cancer phenotypes.

Results

Overview of the proteogenomics data-driven knowledge base

LinkedOmicsKB was built upon omics and clinical data recently harmonized by the CPTAC 

pan-cancer resource working group (Fig. 1a, Methods). Clinical and histopathological data 

were carefully curated. Standardized reprocessing of data from all omics platforms and 

all cancer types using common computational pipelines and the same versions of genome 

assembly and gene annotation enabled streamlined and accurate downstream pan-cancer 

multi-omics data integration. Somatic mutation calls and copy number variation (CNV), 

methylation, mRNA, and protein quantifications were aggregated to gene level, whereas 

phosphorylation quantifications were aggregated by phosphosites. The complete dataset 

included mutation, CNV, methylation, mRNA, and protein data from 1,043 cancer patients 

spanning 10 cancer types for 18,469, 19,688, 12,809, 19,701, and 14,949 genes, respectively, 

as well as data for 125,969 phosphosites (Fig. 1a, Table S1).

Based on the above harmonized data at DNA, RNA, protein, and phosphosite levels, 

we computed various molecular phenotypes, including chromosome instability, mutation 

burden, tumor purity, mutational signature, hallmark signature, signaling pathway activity, 

kinase activity, and immune infiltration and tumor microenvironment scores (Methods). 

To reduce online response time, which is critical for good user experience, we performed 

extensive offline analyses using carefully selected statistical tests, and meta p-values were 

calculated to integrate results at the pan-cancer level (Methods). To enable fast retrieval 

of the vast amount of heterogeneous precomputed data, we used MongoDB to store all 

relevant data (e.g., for a gene) in a hierarchical document (Fig. 1b). The web portal organizes 
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precomputed analysis results into ~40,000 gene-, protein-, mutation-, and phenotype-centric 

web pages, which can be easily accessed by querying a gene, mutation, or phenotype of 

interest from the homepage (Fig. 1c).

Each gene-, protein-, mutation-, and phenotype-centric page includes several sections (see 

details in Method S1). Information in the portal includes phosphosites detectability across all 

studies, tumor vs normal difference at mRNA, protein, and phosphosite levels, respectively, 

mutation and phenotype associations for individual mRNAs, proteins, and phosphosites, 

cis-association across omics layers, and pairwise trans-associations between mRNAs, 

proteins, and phosphosites and kinases/phosphatases. Association results are directly fed 

into WebGestalt19 for pathway and network analysis.

Visualization to facilitate data exploration and reasoning

To address the key challenge of making complex pan-cancer, multi-omics results easily 

comprehensible to the users, we devised several advanced data visualization approaches. 

Associations between a gene and all clinical phenotypes, molecular phenotypes, and somatic 

mutations across all cancer types at copy number, mRNA, and protein levels, respectively, 

are summarized in an interactive pan-cancer, multi-omics Manhattan plot (Fig. 2a). This 

plot enables quick identification of cancer types and omics data types with interesting 

associations, as well as interactive examination of the top, highly significant associations. 

Detailed association results are presented in a sortable, searchable, filterable, and expandable 

table that can be switched between protein, mRNA, and copy number views (Fig. 2b). The 

table was designed to hold four dimensions of information, with columns corresponding 

to individual cancer types or pan-cancer, primary rows corresponding to associations 

between a phenotype/mutation and the omics data type of the primary view, expandable 

rows displaying associations at other omics levels for multi-omics comparison, and pop-

up windows with appropriate statistical plots supporting the signed p-values displayed in 

the table, such as scatter plot, box plot, or Kaplan-Meier plot. Pan-cancer, multi-omics 

association results between a gene and a phenotype or mutation is depicted in a heatmap 

(Fig. 2c). Cis-associations between protein, mRNA, copy number, and methylation levels 

of a gene within each cancer type are visualized in a correlogram (Fig. 2d), in which 

each circle can be clicked to show the corresponding scatter plot. A correlogram is also 

used to visualize cis-associations between individual phosphosites and measurements at 

protein, mRNA, copy number and methylation levels, respectively, which facilitates the 

prioritization of phosphosites that are regulated independent of protein abundance (Fig. 2e). 

Zoomable lollipop plot and 3D protein structure viewer are used to visualize all identified 

phosphosites in the context of protein sequence, domains, and structure (Fig. 2f). In the 

phenotype and mutation pages, a scatter plot comparing mRNA and protein associations 

and another comparing protein and phosphosite associations (Fig. 2g) help prioritize protein 

and phosphosite-specific associations, respectively. Moreover, WebGestalt provides pathway 

and network visualization for mRNA, protein, and phosphosite-level association results (Fig. 

2h).
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Proteogenomics insights into an understudied druggable protein

A primary utility of LinkedOmicsKB is to gain insights into any gene or phosphosite of 

interest. Because LinkedOmicsKB is data-driven and independent of existing knowledge, 

it is particularly useful for shedding light on understudied genes20 and the dark 

phosphoproteome21. To illustrate this utility, we analyzed CALHM5 (calcium homeostasis 

modulator family member 5), one of the 328 understudied druggable proteins nominated by 

the Illuminating the Druggable Genome (IDG) program22 for increased investigation.

The pan-cancer, multi-omics Manhattan plot highlighted extremely strong correlation 

between CALHM5 mRNA abundance and the stroma score, the epithelial-mesenchymal 

transition (EMT) pathway activity score, and the TGFbeta perturbation signature score (Fig. 

3a). A closer look at the pan-cancer, multi-omics gene-phenotype association heatmaps 

showed that both CALHM5 mRNA and protein abundance were significantly associated 

with TGFbeta signaling (Fig. 3b, Fig. S1) and EMT (Fig. 3c, Fig. S2) in almost all ten 

cancer types, suggesting a role of CALHM5 in these tumor progression-related biological 

processes.

In tumor versus normal comparison, protein abundance of CALHM5 was significantly 

decreased in CCRCC, LSCC, LUAD, and UCEC but significantly increased in HNSCC 

and PDAC (Fig. 3d), and the same trend was observed at the mRNA level when data 

was available (Fig. 3e). Interestingly, phosphosite abundance of CALHM5 S238 was 

significantly increased in almost all cohorts where phosphoproteomics measurements are 

available (Fig. 3f), suggesting strong post-translational regulation of this gene during 

tumorigenesis. Identified in 1,026 tumor samples, S238 is located at the C terminal of 

the calcium homeostasis modulator domain (Fig. 3g) and the cytoplasmic region of the 

protein (Fig. 3h). Based on the kinase association table in LinkedOmicsKB, PRKG1 (protein 

kinase cGMP-dependent 1) ranked among the top kinases showing highly significant 

positive correlations with the phosphorylation abundance of CALHM5 S238 in LSCC 

(Fig. 3i) and other cancer types. PRKG1 is reported to phosphorylate numerous other 

proteins implicated in modulating cellular calcium in the UniProt database23, and thus 

LinkedOmicsKB connected CALHM5 S238 to a putative regulator.

Together, a quick analysis in LinkedOmicsKB generated abundant information and multiple 

testable hypotheses on cancer-associated function of CALHM5 and its regulation, paving the 

way to further investigation of this understudied druggable protein and its putative kinase 

regulator as targets for cancer treatment.

Proteogenomics insights into clinical phenotypes

Another important utility of LinkedOmicsKB is to gain insights into clinical and 

molecular phenotypes of interest. We explored the tumor vs normal comparison page 

to identify proteins that may play important roles in tumorigenesis. Among the top 

10 most significantly elevated proteins in the pan-cancer tumor vs normal comparison 

(Fig. 4a), only three (FEN1, HSP90AB1, and CBFB) have corresponding encoding genes 

documented in the Cancer Gene Census24, demonstrating the potential of LinkedOmicsKB 

proteomics data in revealing putative cancer genes that were missed in genomic studies, 
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such as NSUN2, PLOD2, P4HA1, NRDC, SMARCA5, UTP4, NUP93. The scatter plot 

comparing pan-cancer tumor vs normal differences at mRNA and protein levels further 

showed protein-specific elevation for SMARCA5 and UTP4 (Fig. 4b). SMARCA5 protein 

abundance was poorly correlated with its mRNA abundance in all cancer types (Fig. 

4c–d, Fig. S3a); however, it showed the highest correlation with the protein abundance 

of its interaction partner BAZ1B among all proteins in pan-cancer analysis, with highly 

significant associations observed in all cancer types (Fig. 4e–f, Fig. S3b). SMARCA5 

binds to BAZ1B to form a complex known as WICH (WSTF-ISWI chromatin remodeling 

complex), which facilitates DNA replication and promotes DNA repair25. The pan-cancer, 

multi-omics Manhattan plot highlighted extremely strong correlation between SMARCA5 

protein abundance and the G2M checkpoint signature score, E2F targets signature score, 

MYC targets signature score, and chromosomal instability score (Fig. 4g), and these 

associations were much weaker or missing based on SMARCA5 mRNA measurements 

(Fig. 4h, Fig. S3c). These data suggest that the protein abundance of SMARCA5 in tumor 

samples is determined primarily by the abundance of its interaction partner BAZ1B instead 

of its mRNA abundance, and protein abundance better reflects known function of the gene in 

DNA replication and DNA repair than mRNA abundance.

To further explore potential roles of the top 10 tumor-overexpressed proteins in tumor 

progression, we overlapped them with the top 10 poor prognosis-associated proteins 

identified through pan-cancer analysis in LinkedOmicsKB (Fig. S4) and found an 

overlapping protein PLOD2 (Fig. 4i). The top 10 poor prognosis-associated proteins 

also included its paralogue PLOD1 (Fig. 4j). These procollagen-lysine, 2-oxoglutarate 

5-dioxygenases catalyze lysyl hydroxylation to hydroxylysine, which is a critical step in 

biosynthesis of fibrillar collagens26. mRNA and protein abundance of both PLOD1 and 

PLOD2 were significantly associated with EMT in tumor samples in almost all ten cancer 

types (Fig. 4k), consistent with their reported role in cancer cell invasion and migration in 

model systems27,28. In summary, analysis in LinkedOmicsKB not only identified genes that 

are important in cancer initiation and progression but also enhanced our understanding of the 

function and regulation of these genes.

Proteogenomics insights into TP53 mutations

LinkedOmicsKB also provides an effective means to gain new insights into somatic 

mutations. As an example, TP53 mutants were associated with increased TP53 protein 

abundance in all cancer types with sufficient sample size for statistical analysis, but TP53 

mRNA showed no difference or decreased abundance in TP53 mutants compared to other 

samples (Fig. 5a), suggesting a direct impact of the mutations on protein translation 

or stability. Moreover, TP53 mutants showed highly increased phosphorylation levels 

of multiple phosphosites on TP53BP1 (e.g., S1758, S398, S1618, S1971, and T922), 

independent of TP53BP1 protein abundance (Fig. 5b). TP53BP1, a tumor suppressor protein 

with a critical role in DNA double-strand break repair, is an extensively phosphorylated 

protein with 198 phosphorylation sites identified in the CPTAC pan-cancer data (Fig. 5c). 

The correlogram further showed moderate or even negative correlations between TP53BP1 

protein abundance and the phosphorylation level of these TP53 mutation associated sites in 

many cancer types (Fig. 5d), such as a negative correlation between S1618 phosphorylation 
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and TP53BP1 protein and RNA abundance in breast cancer (Fig. 5e). Phosphorylation 

of S1618 was significantly positively associated with G2M checkpoint signature score in 

breast cancer (Fig. 5f), whereas TP53BP1 protein abundance showed an opposite direction 

of association (Fig. 5g), suggesting phosphorylation significantly affects TP53BP1 activity. 

Moreover, the kinase association table connected these phosphorylation events to multiple 

cell cycle kinases including TTK, PLK1, AURKA, CDK1, and PRKDC (Fig. 5h), among 

which CDK1 and PLK1 have been previously reported to phosphorylate TP53BP1 within 

its ubiquitin dependent recruitment (UDR) domain to suppress its function in DNA repair29. 

Together, this analysis revealed a previously undocumented relationship between TP53 
mutation and TP53BP1 hyperphosphorylation, which may underlie reduced DNA repair in 

TP53 mutants.

Discussion

Proteogenomics is becoming a powerful approach to comprehensive molecular 

understanding of human cancer, but meanwhile, the resulting large multi-omics data have 

led to an increasing gap between data generation and investigators’ ability to interpret 

the data. LinkedOmicsKB makes consistently processed and systematically precomputed 

CPTAC pan-cancer proteogenomics data available through ~40,000 gene-, protein-, 

mutation-, and phenotype-centric web pages and uses intuitive yet effective visualization 

techniques to facilitate efficient exploration and reasoning of the complex, interconnected 

data.

LinkedOmicsKB provides a powerful platform to gain functional insights into proteins and 

their phosphorylation in an unbiased manner. Proteomics and other omics technologies 

enable genome-wide molecular profiling; however, there remain many functionally 

uncharacterized or poorly characterized proteins20. For example, 18% of the 1,878 genes 

that are essential for proliferation in a human cell line remained uncharacterized as of 

201530, and only 5–10% of the potentially druggable proteins are targeted by FDA-approved 

drugs22. This problem is even worse for protein modifications including phosphorylation21. 

Among the 125,969 phosphosites identified in the CPTAC studies, only 5% have known 

regulatory kinase or functional annotation in PhosphositePlus31, the most comprehensive 

knowledge base of phosphosites. As demonstrated in the case study of the understudied 

druggable protein CALHM5, analysis in LinkedOmicsKB generated experimentally testable 

hypotheses on the function of CALHM5 and the regulation of its phosphorylation. Similar 

analysis can be applied to all genes and phosphosites in the knowledge base, independent of 

existing knowledge.

LinkedOmicsKB democratizes the investigation of the relationship between proteins as 

well as their modifications and genotypes or phenotypes, a hallmark of proteogenomics. 

Moreover, convenient exploration of such relationships across cancer types expedites the 

discovery of shared and cancer-type-specific associations. One limitation of the CPTAC 

dataset is that the clinical follow-up time is relatively short because the samples were 

prospectively collected. Moreover, treatment and response information is also limited. To 

compensate for the shortage of clinical phenotype information, we quantified a wide range 

of molecular phenotypes for individual tumor samples, allowing users to associate proteins 
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and phosphorylations to not only clinical phenotypes but molecular phenotypes. Another 

limitation of LinkedOmicsKB is that molecular subtype information is not specifically 

considered. This is due to the pan-cancer focus of the resource, which makes it difficult 

to consider cancer subtypes across all cancer types. Moreover, most of the analyses in 

LinkedOmicsKB are based on associations, and statistical power would be greatly reduced 

when analyses are limited to individual cancer subtypes. For the same reason, genotype 

association analysis was limited to genes with coding mutations in at least 10 samples in a 

cohort, and we did not further separate the mutations into different categories in association 

analysis. In the future, we will aggregate mutations to pathway level, which will allow more 

comprehensive protein-genotype association analysis.

To ensure that LinkedOmicsKB remains up-to-date, we will follow a systematic plan for 

updating the portal with new data as it becomes available. This plan involves identifying 

relevant sources of data, assessing their quality, processing the data using our standardized 

pipelines, and integrating it into the existing database. We will prioritize maintaining 

the comprehensiveness, quality, and consistency of the portal throughout this process. 

Regular updates will be scheduled and communicated to users, providing relevant metadata, 

annotations, and summary statistics to aid in the interpretation of the new data. Additionally, 

we also plan to make the analysis pipeline and web portal customizable in the future, so 

that the framework can be applied to other cohort-based proteogenomic studies both within 

and outside the cancer community. For example, a breast cancer portal can be developed to 

integrate proteogenomics data generated from multiple independent breast cancer studies.

Despite the above-mentioned limitations and planned updates and developments, the three 

case studies clearly demonstrated the practical utility of LinkedOmicsKB in generating 

novel testable hypotheses on genes, phosphorylation sites, somatic mutations, and cancer 

phenotypes, and they are just a quick glimpse of what can be achieved using the tool. 

With easily browsable data on 19,701 protein coding genes, 125,969 phosphosites, and 256 

genotypes and phenotypes from 10 cancer types and pan-cancer analyses, LinkedOmicsKB 

provides a user-friendly platform for anyone with internet access to conduct meaningful 

inquiries into CPTAC data and to make data-driven scientific discoveries.

STAR Methods

LEAD CONTACT AND MATERIALS AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the lead author, Bing Zhang (bing.zhang@bcm.edu).

Materials Availability—This study did not generate new materials.

Data and Code Availability

• Processed CPATC pan-cancer data matrices used in this study have been 

deposited at LinkedOmicsKB and are publicly available as of the date of 

publication. These accession numbers for the datasets are listed in the key 

resources table. In addition, raw and processed proteomics as well as open access 

genomic data can be obtained via Proteomic Data Commons (PDC) at https://
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pdc.cancer.gov/pdc/cptac-pancancer. Raw genomic and transcriptomic data files 

can be accessed via the Genomic Data Commons (GDC) Data Portal at https://

portal.gdc.cancer.gov.

• Original code has been deposited at Figshare and is publicly available as of the 

date of publication. DOIs are listed in the key resources table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

METHOD DETAILS

Data sets—CPTAC pan-cancer proteogenomics data processed using standardized data 

processing pipelines by the CPTAC pan-cancer working group and harmonized by the BCM 

harmonization pipeline were used in this study. Detailed information on data processing 

and harmonization is described in a companion paper (Li et al., accepted, Cancer Cell, 
CANCER-CELL-D-22–00603). Briefly, the data included only cases and samples used in 

the flagship manuscripts4–10,13,16,72. For gene harmonization between omics, all data were 

processed using a common reference genome annotation, GENCODE V34 basic (CHR)32. 

A single primary isoform was selected for each gene. For coding genes, MANE Select 

and SwissProt were used to prioritize isoforms. If a gene did not have a single MANE 

Select and/or SwissProt isoform, then the isoform was prioritized using the longest protein 

sequence followed by the longest transcript. Additionally, remaining Swiss-Prot proteins and 

MANE Plus Clinical isoforms were retained as secondary isoforms for web portal display. 

For data harmonization across cohorts, standardized pipelines were used to process each 

omics type. For RNA and proteomics, expression levels were normalized to a common 

value. Below, we provide a brief overview of the data processing methods used for each 

omics data type, and further details are available in the companion paper (Li et al, accepted, 
Cancer Cell, CANCERCELL-D-22–00603).

Identification of significantly mutated genes—The Strelka v248, MUTECT v1.749, 

VarScan v2.3.850, and Pindel v0.2.551 were used by the Broad Institute and Washington 

University in St Louis teams in the CPTAC pan-cancer working group to call mutations 

from whole exome sequencing (WES). Mutations from any two tools with a minimal 

variant allele frequency (VAF) of 0.05 in tumors were retained and rare mutations in 

cancer driver genes reported in Bailey et al. 201838 with a VAF of at least 0.015 were 

rescued. Somatic mutations were converted from the genome assembly hg38 to hg19 by 

CrossMap (version 0.5.3)52. Unmapped mutations were excluded from downstream analysis. 

MutSigCV (version 1.41)53 was applied to the converted somatic mutations to identify 

significantly mutated genes (q value < 0.01) for each cancer type. Synonymous mutations 

were not included. The default reference files, background coverage (exome full192), 

mutation types, and gene covariates, were used in this analysis.

DNA methylation processing—We downloaded processed probe level beta values 

(methylated to unmethylated signal intensities) from the GDC. All loci in the EPIC 

Manifest file infinium-methylationepic-v-1–0-b5-manifest-file-csv.zip were reannotated 

using ANNOVAR (v 04.16.2018)54 with the selected gene annotation GENCODE V34 
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basic (CHR). For downstream integrated analyses, CpG islands annotated as upstream 

(1kb upstream of the transcription start site) and UTR’5 were included for coding genes. 

For noncoding genes, only CpG islands annotated as upstream were included. Then, the 

gene-level methylation was derived by averaging these probe-level methylation beta values.

Copy-number assessment—For somatic copy number alteration quantification, WES 

bam files were processed by the CopywriteR package55 to derive log2 tumor-to-normal 

copy number ratios, and the circular binary segmentation (CBS) algorithm73 implemented 

in the CopywriteR package55 was used for the copy number segmentation, with default 

parameters. Next, a GISTIC247 reference was built using GENCODE V34 basic (CHR) gene 

annotation. Then GISTIC2 with this reference and CNV threshold of +/−0.3 was used to 

identify gene-wise and focal level copy number alterations. Each gene of every sample was 

assigned a thresholded copy number level and a log2 tumor-to-normal copy number ratio.

RNA quantification—CIRI v2.0.656 with BWA v0.7.17-r118857 was used to call circular 

RNA with at least 10 supporting reads. RSEM v1.3.158 and Bowtie2 v2.3.359 were used 

to quantify both linear and circular RNA expression. The upper quantiles of coding gene 

RSEMs were normalized to 1500 and the same normalization factors were applied to 

noncoding genes. Then, the normalized RSEM values were log2-transformed.

Proteomics and phosphoproteomics data processing—MSFragger v3.460, the 

Philosopher v4.0.161 toolkit, and the TMT-Integrator62 pipeline were used by the Michigan 

University team in the CPTAC pan-cancer working group to process and quantify the mass 

spectrometry data. Data were normalized by median centering the medians of the reference 

intensities.

Phosphoproteomics isoform mapping—Single phosphosites were re-annotated to the 

selected primary and secondary protein isoforms. First, if the original selected isoform 

protein sequence matched the primary selected isoform sequence, only the protein isoform 

ID was changed. If the protein sequences did not match, the primary selected sequence 

was searched for all peptides identified for the phosphorylation site. If at least one peptide 

matched exactly once to the sequence, that peptide was used to update the site position. 

Otherwise, for peptides that matched more than one location, the one that matched the 

fewest locations was selected and the first matching position was used to update the site 

position. Finally, if no peptides exactly matched the selected protein sequence, all I’s were 

changed to L’s in both the sequence and peptides and the matching step was performed 

again. All sites with no peptides that could be mapped to the selected protein sequence were 

discarded after this step. Because some re-annotated site IDs were no longer unique, the data 

row with the fewest missing values was selected for that site and all others discarded. The 

site ID finally consisted of the Ensembl gene ID, Ensembl protein ID, site position based on 

the selected protein ID, fifteenmer (+/− 7 amino acids) based on the selected protein ID, and 

a flag for whether the protein is a primary (1) or secondary (2) selected sequence.

Gene ID to gene name mapping—For web portal display, all Ensembl gene IDs for 

primary selected protein isoforms were mapped uniquely to a gene name. “PAR_Y” was 

added to the name of all PAR_Y gene names. The following order of priority was used 
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to assign the gene symbol to the gene ID; the Ensembl gene ID was appended to the 

gene symbol for all following duplicates (e.g., AHRR_ENSG00000063438). First, order by 

presence of a SwissProt ID assigned to the protein ID, isoforms listed in the MANE plus 

Clinical annotation, longer CCDS length, longer transcript length, and alphabetic order of 

the Ensembl gene ID.

Clinical data—The clinical data used in the portal were collected from CPTAC with the 

May 2022 update. Age was truncated to 90 years. Tumors with a size <=0 were replaced 

with NA. For overall survival analysis, cases were removed if a death occurred within 30 

days of initial diagnosis and for progression free survival analysis, cases were removed with 

follow up or a new tumor event that occurred within 10 days of the initial diagnosis.

CIN score—The chromosome instability (CIN) score reflects the overall copy number 

aberration across the whole genome. From the segmentation result, we used a weighted-

sum approach to summarize the chromosome instability for each sample10. The absolute 

segment level log2 ratios of all segments (indicating the copy number aberration of these 

segments) within a chromosome were weighted by the segment length and summed up to 

derive the instability score for the chromosome. The genome-wide chromosome instability 

index was calculated by summing up the instability score of all 22 autosomes. The R 

package genomicWidgets was used to implement the method (https://github.com/bzhanglab/

genomicWidgets).

Mutation burden—Tumor mutation burden (TMB) was extracted from the mutation 

annotation file (maf) by the maftools R package (V2.10.0)63. It was calculated as the number 

of non-synonymous variants per million bp.

Immune deconvolution—The R package immunedeconv (V2.0.4)64 was used to 

perform immune cell deconvolution using RNA expression data (TPM). Among the seven 

deconvolution methods in immunedeconv, CIBERSORT65 and xCell66 were selected in our 

analysis. CIBERSORT was performed in the ‘abs’ mode.

ESTIMATE

The ESTIMATE scores reflecting the overall immune and stromal infiltration were 

calculated by the R package ESTIMATE67 using the normalized RNA expression data 

(RSEM). We removed genes with 0 expression in >=50% samples of a cohort.

PROGENy score—The PROGENy scores were inferred using the R package progeny 

(V1.10.0)68 with default parameters using the RNA expression data (FPKM). Genes with 

mean expression = 0 in a cohort were removed from the analysis.

MSigDB hallmark pathway single sample gene set enrichment analysis 
(ssGSEA)—ssGSEA was performed for each cancer type using gene-wise Z-

scores of the RNA expression data (RSEM) for the MSigDB Hallmark gene 

sets v7.074 via the ssGSEA2.0 R package40. RNA data were filtered to coding 

genes with < 50% 0 expression. (Parameters: sample.norm.type=“rank”, weight=0.75, 
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statistic=“area.under.RES”, nperm=1000, min.overlap=10). Pathway activity scores are 

normalized enrichment scores from ssGSEA.

Phosphosite signature scores—Phosphosite signature scores were calculated using 

the PTMsigDB v1.9.0 database and the ssGSEA2.0 R package40. The parameters were the 

same as those used for Hallmark pathway activity (sample.norm.type=“rank”, weight=0.75, 

statistic=“area.under.RES”, nperm=1000, min.overlap=10). Phosphoproteomics data were 

filtered to the fifteenmer phosphosites with complete data across all samples within a 

cohort. If there were multiple rows with complete data for identical fifteenmers, one row 

was selected at random. Each site was z-score transformed. Activity scores are normalized 

enrichment scores from ssGSEA.

Mutation signature calling—The R package SigProfilerMatrixGeneratorR69 (version 

1.0) was used to call mutation signatures from WES-derived somatic mutation data. All 

synonymous and non-synonymous mutations were included. The maximum number of 

signatures was set to 10 and nmf replicates parameter was set to 100. The activity scores 

of the decomposed solution suggested by SigProfilerMatrixGenerator were used as signature 

scores.

Tumor purity—The DoAbsolute R package (V2.2)70 with ABSOLUTE (V1.0.6)71 was 

used to infer tumor purity and ploidy from somatic mutations and WES-based CNV. 

The parameters min.mut.af and max.as.seg.count were set to 0.02 and 5000, respectively. 

All other parameters were set as default. These results are referred to as Tumor Purity 

(ABSOLUTE) in the portal. Additionally, CNVEX16 was used to infer tumor purity using 

both whole genome sequencing (WGS) and WES data (https://github.com/mctp/cnvex) by 

the University of Michigan team, and these results are referred to as Tumor Purity (WGS) in 

the portal.

Statistical associations—For all association tests, at least 10 samples within a group 

were required to have measurements. The statistical test was tailored to the data type. 

Spearman’s correlation was used for continuous data, Jonckheere-Terpstra trend test for 

ordinal data, Student’s T-test for binary data, and Cox regression for time to event data.

Meta p-value calculation—Meta p-values were calculated with the “sumz” method from 

the R package metap (V1.4). P-values of individual cohorts were first converted to one-sided 

p-values and the sign for p-values not consistent with the majority were reversed. The 

calculated meta p-value was converted back to two-sided p-values and then the major sign of 

association was added.

Tumor versus normal comparison—Paired tumor samples and normal samples derived 

from 8 cancer types (CCRCC, COAD, HNSCC, LSCC, LUAD, OV, PDAC, and UCEC) 

for both proteomics and phosphoproteomics and 5 cancer types (CCRCC, HNSCC, LSCC, 

LUAD and PDAC) for RNASeq were used for differential expression analysis. Proteins 

were required to be detected in at least 20 tumor samples and 10 normal samples for 

proteomics and phosphoproteomics datasets. The unpaired Wilcoxon Rank Sum test was 

used to calculate significance.
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Gene annotations—Gene names and descriptions were acquired from RefSeq. 

Additionally, genes were annotated with important functions and categories. Kinases 

were defined as those listed in KinBase (http://kinase.com/web/current/kinbase/genes/

SpeciesID/9606/)41 or SwissProt (keyword:”Kinase [KW-0418]” AND reviewed:yes AND 

organism:”Homo sapiens (Human) [9606]”)23. Phosphatases with an “active” status 

were collected from DEPOD http://www.depod.bioss.uni-freiburg.de/download.php)42. 

Transcription factors were downloaded from http://humantfs.ccbr.utoronto.ca44 and filtered 

to those with the ‘Is TF’ = “Yes”. Receptors and ligands were downloaded from CellTalkDB 

(https://github.com/ZJUFanLab/CellTalkDB/tree/master/database)43 and mouse interactions 

were excluded. Essential genes were defined as those deemed pan cancer essential genes 

in cell lines downloaded from DepMap Public 21Q445. Cancer drivers were collated from 

the Cancer Gene Census37 (Tier 1), Bailey et al, 201838 Table S1 (high confidence calls 

from 20/20+), and Tokheim et al, 201639 Table S1 (all three tools). Drug targets were 

collected from DrugBank33 and Guide to Pharmacology34 and potentially druggable genes 

were collected from the Drug Gene Interaction Database36 and the Cell Surface Protein 

Atlas35.

Website development—Precomputed data were stored in MongoDB (v4.2). The backend 

was developed with PHP (v5.6) and Slim framework (v3). The frontend was based on 

Bootstrap 4 and some extension JavaScript libraries (Bootstrap-table v1.19). The interactive 

visualizations were built with D3.js (v5).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We gratefully acknowledge contributions from the CPTAC and its Pan-Cancer Analysis Working Group. This study 
was supported by grants U24 CA210954, U24 CA271076, R01 CA245903, and U01 CA271247 from the National 
Cancer Institute (NCI), the Cancer Prevention & Research Institutes of Texas (CPRIT) award RR160027, and 
funding from the McNair Medical Institute at The Robert and Janice McNair Foundation. B.Z. is a CPRIT Scholar 
in Cancer Research and a McNair Scholar.

References

1. Hutter C, and Zenklusen JC (2018). The Cancer Genome Atlas: Creating Lasting Value beyond Its 
Data. Cell 173, 283–285. [PubMed: 29625045] 

2. Zhang B, Whiteaker JR, Hoofnagle AN, Baird GS, Rodland KD, and Paulovich AG (2019). Clinical 
potential of mass spectrometry-based proteogenomics. Nature Reviews Clinical Oncology 16, 256–
268. 10.1038/s41571-018-0135-7.

3. Mani DR, Krug K, Zhang B, Satpathy S, Clauser KR, Ding L, Ellis M, Gillette MA, and Carr SA 
(2022). Cancer proteogenomics: current impact and future prospects. Nat. Rev. Cancer 22, 298–313. 
[PubMed: 35236940] 

4. Cao L, Huang C, Cui Zhou D, Hu Y, Lih TM, Savage SR, Krug K, Clark DJ, Schnaubelt M, Chen 
L, et al. (2021). Proteogenomic characterization of pancreatic ductal adenocarcinoma. Cell 184, 
5031–5052.e26. [PubMed: 34534465] 

5. Satpathy S, Krug K, Jean Beltran PM, Savage SR, Petralia F, Kumar-Sinha C, Dou Y, Reva B, Kane 
MH, Avanessian SC, et al. (2021). A proteogenomic portrait of lung squamous cell carcinoma. Cell 
184, 4348–4371.e40. [PubMed: 34358469] 

Liao et al. Page 13

Cell Syst. Author manuscript; available in PMC 2024 September 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://kinase.com/web/current/kinbase/genes/SpeciesID/9606/
http://kinase.com/web/current/kinbase/genes/SpeciesID/9606/
http://www.depod.bioss.uni-freiburg.de/download.php
http://humantfs.ccbr.utoronto.ca/
https://github.com/ZJUFanLab/CellTalkDB/tree/master/database


6. Wang L-B, Karpova A, Gritsenko MA, Kyle JE, Cao S, Li Y, Rykunov D, Colaprico A, Rothstein 
JH, Hong R, et al. (2021). Proteogenomic and metabolomic characterization of human glioblastoma. 
Cancer Cell 39, 509–528.e20. [PubMed: 33577785] 

7. Huang C, Chen L, Savage SR, Eguez RV, Dou Y, Li Y, da Veiga Leprevost F, Jaehnig EJ, Lei JT, 
Wen B, et al. (2021). Proteogenomic insights into the biology and treatment of HPV-negative head 
and neck squamous cell carcinoma. Cancer Cell 39, 361–379.e16. [PubMed: 33417831] 

8. Krug K, Jaehnig EJ, Satpathy S, Blumenberg L, Karpova A, Anurag M, Miles G, Mertins P, Geffen 
Y, Tang LC, et al. (2020). Proteogenomic Landscape of Breast Cancer Tumorigenesis and Targeted 
Therapy. Cell 183, 1436–1456.e31. [PubMed: 33212010] 

9. Gillette MA, Satpathy S, Cao S, Dhanasekaran SM, Vasaikar SV, Krug K, Petralia F, Li Y, Liang 
W-W, Reva B, et al. (2020). Proteogenomic Characterization Reveals Therapeutic Vulnerabilities in 
Lung Adenocarcinoma. Cell 182, 200–225.e35. [PubMed: 32649874] 

10. Vasaikar S, Huang C, Wang X, Petyuk VA, Savage SR, Wen B, Dou Y, Zhang Y, Shi Z, Arshad 
OA, et al. (2019). Proteogenomic Analysis of Human Colon Cancer Reveals New Therapeutic 
Opportunities. Cell 177, 1035–1049.e19. [PubMed: 31031003] 

11. Zhang B, Wang J, Wang X, Zhu J, Liu Q, Shi Z, Chambers MC, Zimmerman LJ, Shaddox KF, Kim 
S, et al. (2014). Proteogenomic characterization of human colon and rectal cancer. Nature 513, 
382–387. [PubMed: 25043054] 

12. Mertins P, Mani DR, Ruggles KV, Gillette MA, Clauser KR, Wang P, Wang X, Qiao JW, Cao S, 
Petralia F, et al. (2016). Proteogenomics connects somatic mutations to signalling in breast cancer. 
Nature 534, 55–62. [PubMed: 27251275] 

13. Dou Y, Kawaler EA, Cui Zhou D, Gritsenko MA, Huang C, Blumenberg L, Karpova A, 
Petyuk VA, Savage SR, Satpathy S, et al. (2020). Proteogenomic Characterization of Endometrial 
Carcinoma. Cell 180, 729–748.e26. [PubMed: 32059776] 

14. McDermott JE, Arshad OA, Petyuk VA, Fu Y, Gritsenko MA, Clauss TR, Moore RJ, Schepmoes 
AA, Zhao R, Monroe ME, et al. (2020). Proteogenomic Characterization of Ovarian HGSC 
Implicates Mitotic Kinases, Replication Stress in Observed Chromosomal Instability. Cell Rep 
Med 1. 10.1016/j.xcrm.2020.100004.

15. Zhang H, Liu T, Zhang Z, Payne SH, Zhang B, McDermott JE, Zhou J-Y, Petyuk VA, Chen L, Ray 
D, et al. (2016). Integrated Proteogenomic Characterization of Human High-Grade Serous Ovarian 
Cancer. Cell 166, 755–765. [PubMed: 27372738] 

16. Clark DJ, Dhanasekaran SM, Petralia F, Pan J, Song X, Hu Y, da Veiga Leprevost F, Reva B, Lih 
T-SM, Chang H-Y, et al. (2019). Integrated Proteogenomic Characterization of Clear Cell Renal 
Cell Carcinoma. Cell 179, 964–983.e31. [PubMed: 31675502] 

17. Rodriguez H, Zenklusen JC, Staudt LM, Doroshow JH, and Lowy DR (2021). The next horizon 
in precision oncology: Proteogenomics to inform cancer diagnosis and treatment. Cell 184, 1661–
1670. [PubMed: 33798439] 

18. Vasaikar SV, Straub P, Wang J, and Zhang B (2018). LinkedOmics: analyzing multi-omics data 
within and across 32 cancer types. Nucleic Acids Research 46, D956–D963. 10.1093/nar/gkx1090. 
[PubMed: 29136207] 

19. Liao Y, Wang J, Jaehnig EJ, Shi Z, and Zhang B (2019). WebGestalt 2019: gene set analysis toolkit 
with revamped UIs and APIs. Nucleic Acids Research 47, W199–W205. 10.1093/nar/gkz401. 
[PubMed: 31114916] 

20. Kustatscher G, Collins T, Gingras A-C, Guo T, Hermjakob H, Ideker T, Lilley KS, Lundberg E, 
Marcotte EM, Ralser M, et al. (2022). Understudied proteins: opportunities and challenges for 
functional proteomics. Nat. Methods 19, 774–779. [PubMed: 35534633] 

21. Needham EJ, Parker BL, Burykin T, James DE, and Humphrey SJ (2019). Illuminating the dark 
phosphoproteome. Sci. Signal 12. 10.1126/scisignal.aau8645.

22. Oprea TI, Bologa CG, Brunak S, Campbell A, Gan GN, Gaulton A, Gomez SM, Guha R, Hersey 
A, Holmes J, et al. (2018). Unexplored therapeutic opportunities in the human genome. Nat. Rev. 
Drug Discov 17, 377.

23. UniProt Consortium (2021). UniProt: the universal protein knowledgebase in 2021. Nucleic Acids 
Res 49, D480–D489. [PubMed: 33237286] 

Liao et al. Page 14

Cell Syst. Author manuscript; available in PMC 2024 September 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



24. Sondka Z, Bamford S, Cole CG, Ward SA, Dunham I, and Forbes SA (2018). The COSMIC 
Cancer Gene Census: describing genetic dysfunction across all human cancers. Nat. Rev. Cancer 
18, 696–705. [PubMed: 30293088] 

25. Oppikofer M, Bai T, Gan Y, Haley B, Liu P, Sandoval W, Ciferri C, and Cochran AG (2017). 
Expansion of the ISWI chromatin remodeler family with new active complexes. EMBO Rep 18, 
1697–1706. [PubMed: 28801535] 

26. Gilkes DM, Semenza GL, and Wirtz D (2014). Hypoxia and the extracellular matrix: drivers of 
tumour metastasis. Nat. Rev. Cancer 14, 430–439. [PubMed: 24827502] 

27. Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, Fong SFT, Csiszar K, Giaccia A, 
Weninger W, et al. (2009). Matrix crosslinking forces tumor progression by enhancing integrin 
signaling. Cell 139, 891–906. [PubMed: 19931152] 

28. Provenzano PP, Inman DR, Eliceiri KW, Knittel JG, Yan L, Rueden CT, White JG, and Keely PJ 
(2008). Collagen density promotes mammary tumor initiation and progression. BMC Med 6, 11. 
[PubMed: 18442412] 

29. Benada J, Burdová K, Lidak T, von Morgen P, and Macurek L (2015). Polo-like kinase 1 inhibits 
DNA damage response during mitosis. Cell Cycle 14, 219–231. [PubMed: 25607646] 

30. Wang T, Birsoy K, Hughes NW, Krupczak KM, Post Y, Wei JJ, Lander ES, and Sabatini DM 
(2015). Identification and characterization of essential genes in the human genome. Science 350, 
1096–1101. [PubMed: 26472758] 

31. Hornbeck PV, Kornhauser JM, Tkachev S, Zhang B, Skrzypek E, Murray B, Latham V, and 
Sullivan M (2012). PhosphoSitePlus: a comprehensive resource for investigating the structure and 
function of experimentally determined post-translational modifications in man and mouse. Nucleic 
Acids Res 40, D261–D270. [PubMed: 22135298] 

32. Frankish A, Diekhans M, Ferreira A-M, Johnson R, Jungreis I, Loveland J, Mudge JM, Sisu C, 
Wright J, Armstrong J, et al. (2019). GENCODE reference annotation for the human and mouse 
genomes. Nucleic Acids Res 47, D766–D773. [PubMed: 30357393] 

33. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda 
Z, et al. (2018). DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids 
Res 46, D1074–D1082. [PubMed: 29126136] 

34. Harding SD, Armstrong JF, Faccenda E, Southan C, Alexander SPH, Davenport AP, 
Pawson AJ, Spedding M, Davies JA, and NC-IUPHAR (2022). The IUPHAR/BPS guide to 
PHARMACOLOGY in 2022: curating pharmacology for COVID-19, malaria and antibacterials. 
Nucleic Acids Res 50, D1282–D1294. [PubMed: 34718737] 

35. Bausch-Fluck D, Hofmann A, Bock T, Frei AP, Cerciello F, Jacobs A, Moest H, Omasits U, 
Gundry RL, Yoon C, et al. (2015). A mass spectrometric-derived cell surface protein atlas. PLoS 
One 10, e0121314. [PubMed: 25894527] 

36. Freshour SL, Kiwala S, Cotto KC, Coffman AC, McMichael JF, Song JJ, Griffith M, Griffith OL, 
and Wagner AH (2021). Integration of the Drug-Gene Interaction Database (DGIdb 4.0) with open 
crowdsource efforts. Nucleic Acids Res 49, D1144–D1151. [PubMed: 33237278] 

37. Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM, Bindal N, Boutselakis H, Cole CG, Creatore 
C, Dawson E, et al. (2019). COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic 
Acids Res. 47, D941–D947. [PubMed: 30371878] 

38. Bailey MH, Tokheim C, Porta-Pardo E, Sengupta S, Bertrand D, Weerasinghe A, Colaprico A, 
Wendl MC, Kim J, Reardon B, et al. (2018). Comprehensive Characterization of Cancer Driver 
Genes and Mutations. Cell 173, 371–385.e18. [PubMed: 29625053] 

39. Tokheim CJ, Papadopoulos N, Kinzler KW, Vogelstein B, and Karchin R (2016). Evaluating the 
evaluation of cancer driver genes. Proc. Natl. Acad. Sci. U. S. A 113, 14330–14335. [PubMed: 
27911828] 

40. Krug K, Mertins P, Zhang B, Hornbeck P, Raju R, Ahmad R, Szucs M, Mundt F, Forestier D, 
Jane-Valbuena J, et al. (2019). A Curated Resource for Phosphosite-specific Signature Analysis. 
Mol. Cell. Proteomics 18, 576–593. [PubMed: 30563849] 

41. Manning G, Whyte DB, Martinez R, Hunter T, and Sudarsanam S (2002). The protein kinase 
complement of the human genome. Science 298, 1912–1934. [PubMed: 12471243] 

Liao et al. Page 15

Cell Syst. Author manuscript; available in PMC 2024 September 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



42. Damle NP, and Köhn M (2019). The human DEPhOsphorylation Database DEPOD: 2019 update. 
Database 2019. 10.1093/database/baz133.

43. Shao X, Liao J, Li C, Lu X, Cheng J, and Fan X (2021). CellTalkDB: a manually curated database 
of ligand-receptor interactions in humans and mice. Brief. Bioinform 22. 10.1093/bib/bbaa269.

44. Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, Chen X, Taipale J, Hughes TR, and 
Weirauch MT (2018). The Human Transcription Factors. Cell 172, 650–665. [PubMed: 29425488] 

45. Dempster JM, Pacini C, Pantel S, Behan FM, Green T, Krill-Burger J, Beaver CM, Younger ST, 
Zhivich V, Najgebauer H, et al. (2019). Agreement between two large pan-cancer CRISPR-Cas9 
gene dependency data sets. Nat. Commun 10, 5817. [PubMed: 31862961] 

46. Dewey M (2022). metap: meta-analysis of significance values.

47. Mermel CH, Schumacher SE, Hill B, Meyerson ML, Beroukhim R, and Getz G (2011). GISTIC2.0 
facilitates sensitive and confident localization of the targets of focal somatic copy-number 
alteration in human cancers. Genome Biol 12, R41. [PubMed: 21527027] 

48. Kim S, Scheffler K, Halpern AL, Bekritsky MA, Noh E, Källberg M, Chen X, Kim Y, Beyter D, 
Krusche P, et al. (2018). Strelka2: fast and accurate calling of germline and somatic variants. Nat. 
Methods 15, 591–594. [PubMed: 30013048] 

49. Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C, Gabriel S, Meyerson 
M, Lander ES, and Getz G (2013). Sensitive detection of somatic point mutations in impure and 
heterogeneous cancer samples. Nat. Biotechnol 31, 213–219. [PubMed: 23396013] 

50. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, Miller CA, Mardis ER, Ding 
L, and Wilson RK (2012). VarScan 2: somatic mutation and copy number alteration discovery in 
cancer by exome sequencing. Genome Res 22, 568–576. [PubMed: 22300766] 

51. Ye K, Schulz MH, Long Q, Apweiler R, and Ning Z (2009). Pindel: a pattern growth approach 
to detect break points of large deletions and medium sized insertions from paired-end short reads. 
Bioinformatics 25, 2865–2871. [PubMed: 19561018] 

52. Zhao H, Sun Z, Wang J, Huang H, Kocher J-P, and Wang L (2014). CrossMap: a versatile tool 
for coordinate conversion between genome assemblies. Bioinformatics 30, 1006–1007. [PubMed: 
24351709] 

53. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, Carter SL, Stewart 
C, Mermel CH, Roberts SA, et al. (2013). Mutational heterogeneity in cancer and the search for 
new cancer-associated genes. Nature 499, 214–218. [PubMed: 23770567] 

54. Wang K, Li M, and Hakonarson H (2010). ANNOVAR: functional annotation of genetic variants 
from high-throughput sequencing data. Nucleic Acids Res 38, e164. [PubMed: 20601685] 

55. Kuilman T, Velds A, Kemper K, Ranzani M, Bombardelli L, Hoogstraat M, Nevedomskaya E, 
Xu G, de Ruiter J, Lolkema MP, et al. (2015). CopywriteR: DNA copy number detection from 
off-target sequence data. Genome Biol 16, 49. [PubMed: 25887352] 

56. Gao Y, Wang J, and Zhao F (2015). CIRI: an efficient and unbiased algorithm for de novo circular 
RNA identification. Genome Biol 16, 4. [PubMed: 25583365] 

57. Li H, and Durbin R (2009). Fast and accurate short read alignment with Burrows-Wheeler 
transform. Bioinformatics 25, 1754–1760. [PubMed: 19451168] 

58. Li B, and Dewey CN (2011). RSEM: accurate transcript quantification from RNA-Seq data with or 
without a reference genome. BMC Bioinformatics 12, 323. [PubMed: 21816040] 

59. Langmead B, and Salzberg SL (2012). Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 
357–359. [PubMed: 22388286] 

60. Kong AT, Leprevost FV, Avtonomov DM, Mellacheruvu D, and Nesvizhskii AI (2017). 
MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based 
proteomics. Nat. Methods 14, 513–520. [PubMed: 28394336] 

61. da Veiga Leprevost F, Haynes SE, Avtonomov DM, Chang H-Y, Shanmugam AK, Mellacheruvu D, 
Kong AT, and Nesvizhskii AI (2020). Philosopher: a versatile toolkit for shotgun proteomics data 
analysis. Nat. Methods 17, 869–870. [PubMed: 32669682] 

62. Djomehri SI, Gonzalez ME, da Veiga Leprevost F, Tekula SR, Chang H-Y, White MJ, Cimino-
Mathews A, Burman B, Basrur V, Argani P, et al. (2020). Quantitative proteomic landscape of 
metaplastic breast carcinoma pathological subtypes and their relationship to triple-negative tumors. 
Nat. Commun 11, 1723. [PubMed: 32265444] 

Liao et al. Page 16

Cell Syst. Author manuscript; available in PMC 2024 September 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



63. Mayakonda A, Lin D-C, Assenov Y, Plass C, and Koeffler HP (2018). Maftools: efficient and 
comprehensive analysis of somatic variants in cancer. Genome Res 28, 1747–1756. [PubMed: 
30341162] 

64. Sturm G, Finotello F, Petitprez F, Zhang JD, Baumbach J, Fridman WH, List M, and Aneichyk 
T (2019). Comprehensive evaluation of transcriptome-based cell-type quantification methods for 
immuno-oncology. Bioinformatics 35, i436–i445. [PubMed: 31510660] 

65. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, Hoang CD, Diehn M, and Alizadeh 
AA (2015). Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12, 
453–457. [PubMed: 25822800] 

66. Aran D, Hu Z, and Butte AJ (2017). xCell: digitally portraying the tissue cellular heterogeneity 
landscape. Genome Biol 18, 220. [PubMed: 29141660] 

67. Yoshihara K, Shahmoradgoli M, Martínez E, Vegesna R, Kim H, Torres-Garcia W, Treviño V, 
Shen H, Laird PW, Levine DA, et al. (2013). Inferring tumour purity and stromal and immune cell 
admixture from expression data. Nat. Commun 4, 2612. [PubMed: 24113773] 

68. Schubert M, Klinger B, Klünemann M, Sieber A, Uhlitz F, Sauer S, Garnett MJ, Blüthgen N, and 
Saez-Rodriguez J (2018). Perturbation-response genes reveal signaling footprints in cancer gene 
expression. Nat. Commun 9, 20. [PubMed: 29295995] 

69. Bergstrom EN, Huang MN, Mahto U, Barnes M, Stratton MR, Rozen SG, and Alexandrov 
LB (2019). SigProfilerMatrixGenerator: a tool for visualizing and exploring patterns of small 
mutational events. BMC Genomics 20, 685. [PubMed: 31470794] 

70. Wang S, Zhang J, He Z, Wu K, and Liu X-S (2019). The predictive power of tumor mutational 
burden in lung cancer immunotherapy response is influenced by patients’ sex. Int. J. Cancer 145, 
2840–2849. [PubMed: 30972745] 

71. Carter SL, Cibulskis K, Helman E, McKenna A, Shen H, Zack T, Laird PW, Onofrio RC, Winckler 
W, Weir BA, et al. (2012). Absolute quantification of somatic DNA alterations in human cancer. 
Nat. Biotechnol 30, 413–421. [PubMed: 22544022] 

72. Hu Y, Pan J, Shah P, Ao M, Thomas SN, Liu Y, Chen L, Schnaubelt M, Clark DJ, Rodriguez H, 
et al. (2020). Integrated Proteomic and Glycoproteomic Characterization of Human High-Grade 
Serous Ovarian Carcinoma. Cell Rep 33, 108276. [PubMed: 33086064] 

73. Venkatraman ES, and Olshen AB (2007). A faster circular binary segmentation algorithm for the 
analysis of array CGH data. Bioinformatics 23, 657–663. [PubMed: 17234643] 

74. Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, and Tamayo P (2015). The 
Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst 1, 417–425. 
[PubMed: 26771021] 

Liao et al. Page 17

Cell Syst. Author manuscript; available in PMC 2024 September 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



HIGHLIGHTS

• CPTAC proteogenomics data from 1,043 cancer patients across 10 cancer 

types

• 40,000 web pages dedicated to genes, proteins, mutations, and phenotypes

• User-friendly visualization tools for efficient data exploration and analysis

• Practical utility demonstrated through three informative case studies

Liao et al. Page 18

Cell Syst. Author manuscript; available in PMC 2024 September 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Overview of the LinkedOmicsKB pipeline.
(a) Overview of the pan-cancer proteogenomics data in LinkedOmicsKB, including 

numbers of patients for each cancer type and total feature numbers of different omics 

data types. BRCA: breast cancer, CCRCC: clear cell renal cell carcinoma, COAD: 

colon adenocarcinoma, GBM: glioblastoma, HNSCC: head and neck squamous cell 

carcinoma, LSCC: lung squamous cell carcinoma, LUAD: lung adenocarcinoma, OV: 

ovarian cancer, PDAC: pancreatic ductal adenocarcinoma, and UCEC: uterine corpus 

endometrial carcinoma. (b) Summary of precomputed molecular phenotype scores and 

associations stored in the MongoDB. (c) The home page of the web portal allows querying 

with gene, phenotype, or mutation and browsing tumor-normal comparison results.
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Figure 2. Visualizations to facilitate efficient exploration and reasoning of pan-cancer, multi-
omics data.
(a) Manhattan plot summarizing associations between a gene and all clinical phenotypes, 

molecular phenotypes, and somatic mutations across all cancer types at copy number, 

mRNA, and protein levels, respectively. Significant phenotypes or mutations (p<1.0e-6) 

can be shown with mouse hovering. (b) Detailed association results are presented in 

an interactive table that can be switched between protein, mRNA, and copy number 

views, with columns corresponding to individual cancer types or pan-cancer, primary rows 

corresponding to associations between a phenotype/mutation and the omics data type of the 

primary view, expandable rows displaying associations at other omics levels for multi-omics 

comparison, and pop-up windows with appropriate statistical plots supporting the signed 

p-values displayed in the table, such as scatter plot, box plot or Kaplan-Meier plot. (c) 

Heatmap summarizing associations between a phenotype or mutation and measurements of 

a gene at copy number, mRNA, and protein levels. Red and blue colors indicate positive 

and negative associations, respectively. (d) Correlogram visualizing pairwise cis-associations 

between protein, mRNA, copy number, and methylation levels of a gene. (e) Correlogram 

visualizing pairwise cis-associations between individual phosphosites and measurements 

at protein, mRNA, copy number and methylation levels, respectively. (f) Experimentally 

identified phosphosites of a protein are visualized on interactive protein structures and 

in a zoomable lollipop plot showing detected sample number or cohort number in 
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the context of protein domains. Neighboring sequence and quantified cohorts for each 

phosphosite can be shown with mouse hovering in the lollipop plot. The zoom-in structure 

shows spatial proximity of sequentially distant phosphosites. (g) Scatter plot highlighting 

highly significant phosphosite associations that are independent of corresponding protein 

associations. (h) Pathway diagram highlighting genes contributing to the enrichment signal.
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Figure 3. Proteogenomics insights into CALHM5.
(a) Manhattan plot showing p-values of phenotype and mutation associations of CALHM5 at 

copy number, mRNA, and protein levels, respectively. The stroma, TGFbeta and epithelial-

mesenchymal transition (EMT) scores are labeled in pan-cancer analysis at the mRNA level. 

(b) P-value heatmap summary of CALHM5 associations with the TGFbeta perturbation 

signature score computed by the PROGENy algorithm. (c) P-value heatmap summary of 

CALHM5 associations with the EMT pathway activity score computed by applying single 

sample gene set enrichment analysis (ssGSEA) to MSigDB Hallmark gene sets. (d) Boxplots 

depicting tumor and NAT difference of RNA data. (e) Boxplots depicting tumor and NAT 

difference of protein data. (f) Tumor and NAT difference of CALHM5 S238 phosphosite 

abundance. S238 phosphorylation abundance is significantly higher in LSCC and LUAD 

tumors despite significantly decreased mRNA and protein level shown in d and e. (g) 

Lollipop plot showing phosphosite S328 with high occurrence in samples and its sequence 

domain location. (h) Experimental structure of the CALHM5 homo-oligomer forming a 

channel with S238 highlighted (PDB: 7D60). (i) Kinase PRKG1 protein level is significantly 

positively correlated with S238 in LSCC with a Spearman correlation coefficient of 0.56 and 

p-value of 1.4e-9. ns: p ≥ 0.05; *p < 0.05; **p< 0.01; ***p < 0.001; ****p < 0.0001.
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Figure 4. Proteogenomics insights into clinical phenotypes.
(a) The top 10 overexpressed proteins in tumors sorted by meta p-values. (b) Scatter 

plots highlighting tumor-associated protein abundance changes that are independent of 

mRNA abundance changes. (c) Cis-correlation between protein, mRNA, copy number, and 

methylation levels of SMARCA5, showing low correlation between protein and mRNA 

abundance in all cancer cohorts. (d) Scatter plot showing the low correlation between the 

mRNA and protein abundance of SMARCA in BRCA as an example. (e) Scatter plot 

showing the correlation between the protein abundance of SMARCA5 and BAZ1B in BRCA 

as an example. (f) Heatmap summarizing p-values of associations between SMARCA5 

and BAZ1B at mRNA, and protein levels. (g) Manhattan plot summarizing p-values of 

SMARCA5 associations with phenotypes and mutations at copy number, mRNA, and 

protein levels, respectively. The G2M checkpoint signature score, E2F targets signature 

score, MYC targets signature score, and chromosomal instability score are labeled in pan-
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cancer analysis at the protein level. (h) Heatmap summarizing p-values of associations 

between SMARCA5 and G2M checkpoint signature score and chromosomal instability 

score, respectively. The SMARCA5 protein levels show stronger associations than mRNA. 

(i-j) Kaplan-Meier plots of PLOD2 and PLOD1 protein, respectively, in the CCRCC cohort. 

Hazard ratio from Cox proportional hazards regression model and p-value from logrank test 

are shown on the top. (k) Heatmap summarizing associations of PLOD1 and PLOD2 with 

EMT signature score, respectively, at protein, mRNA, copy number levels.
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Figure 5. Proteogenomics insights into TP53 mutations.
(a) Heatmap showing TP53 mutation is highly associated with TP53 protein but not 

with mRNA abundance. (b) TP53 mutation is highly associated with the abundance of 

multiple phosphosites on TP53BP1 but is not significantly associated with TP53BP1 

protein abundance. (c) Lollipop plot showing TP53BP1 with the sequence locations and 

sample numbers of 198 phosphorylation sites identified in the CPTAC pan-cancer data. (d) 

Correlogram for the TP53 mutation-associated TP53BP1 phosphosites showing moderate 

or negative associations between these phosphosites and TP53BP1 protein and RNA 

measurements in all cohorts. (e) Scatter plots showing negative correlation between S1618 

phosphorylation and TP53BP1 protein and RNA abundance in breast cancer, respectively. 

(f) Scatter plot showing significant association between S1618 phosphorylation and G2M 

checkpoint signature score in breast cancer with a Spearman correlation coefficient of 0.67 

and p-value smaller than 2.2e-16. (g) Scatter plot showing negative association between 

TP53BP1 protein and G2M checkpoint signature score in breast cancer. (h) The top kinase 

associations for TP53BP1 S1758 p

Liao et al. Page 25

Cell Syst. Author manuscript; available in PMC 2024 September 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Liao et al. Page 26

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

CPTAC Pan-Cancer Data used in this study Li et al, 
accepted, Cancer 
Cell, CANCER-
CELL-D-22–00603

https://kb.linkedomics.org/download

GENCODE V34 basic (CHR) 32 https://www.gencodegenes.org/human/release_34.html

DrugBank version 5.1.9 33 https://go.drugbank.com

Guide to Pharmacology version 2022.2 34 https://www.guidetopharmacology.org

Cell Surface Protein Atlas 35 https://wlab.ethz.ch/cspa/

PhosphoSitePlus 31 https://phosphosite.org

Drug Gene Interaction Database version 2022-Feb 36 https://www.dgidb.org

Cancer Gene Census 37 https://cancer.sanger.ac.uk/cosmic/download

Tumor suppressor genes from Bailey et al 38 Table S1

Tumor suppressor genes from Tokheim et al 39 Table S1

PTMsigDB v1.9 40 https://github.com/broadinstitute/ssGSEA2.0/tree/master/db/
ptmsigdb

KinBase 41 http://kinase.com/web/current/

DEPOD 42 http://www.depod.bioss.uni-freiburg.de/download.php

CellTalkDB v1.0 43 https://github.com/ZJUFanLab/CellTalkDB

Transcription factor database 44 http://humantfs.ccbr.utoronto.ca

DepMap: Pan-cancer essential genes 45 https://depmap.org/portal/download/

Software and algorithms

Metap v1.4 46 https://cran.r-project.org/web/packages/metap/index.html

WebGestalt 19 https://www.webgestalt.org

GISTIC2.0 47 ftp://ftp.broadinstitute.org/pub/GISTIC2.0/
GISTIC_2_0_23.tar.gz

ssGSEA 2.0 40 https://github.com/broadinstitute/ssGSEA2.0

Strelka v2 48 https://github.com/Illumina/strelka

MUTECT v1.7 49 https://software.broadinstitute.org/cancer/cga/mutect_download

VarScan v2.3.8 50 http://dkoboldt.github.io/varscan/

Pindel v0.2.5 51 https://github.com/genome/pindel

CrossMap v0.5.3 52 https://crossmap.sourceforge.net/

MutSigCV v1.41 53 https://software.broadinstitute.org/cancer/cga/mutsig

ANNOVAR v04.16.2018 54 https://annovar.openbioinformatics.org/en/latest/

CopywriteR v2.0.6 55 https://www.bioconductor.org/packages/release/bioc/html/
CopywriteR.html

CIRI v2.0.6 56 https://sourceforge.net/projects/ciri/

BWA v0.7.17-r1188 57 https://bio-bwa.sourceforge.net/

RSEM v1.3.1 58 http://deweylab.github.io/RSEM/
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REAGENT or RESOURCE SOURCE IDENTIFIER

Bowtie2 v2.3.3 59 https://bowtie-bio.sourceforge.net/bowtie2/index.shtml

MSFragger v3.4 60 https://github.com/Nesvilab/MSFragger

Philosopher v4.0.1 61 https://github.com/Nesvilab/philosopher

TMT-Integrator v1.0.0 62 https://github.com/huiyinc/TMT-Integrator

genomicWidgets 10 https://github.com/bzhanglab/genomicWidgets

maftools R package v2.10.0 63 https://bioconductor.org/packages/release/bioc/html/
maftools.html

Immunedeconv v2.0.4 64 https://github.com/omnideconv/immunedeconv

CIBERSORT 65 https://cibersortx.stanford.edu/

xCell 66 https://github.com/dviraran/xCell

ESTIMATE 67 https://bioinformatics.mdanderson.org/public-software/estimate/

PROGENy v1.10.0 68 https://www.bioconductor.org/packages/release/bioc/html/
progeny.html

SigProfilerMatrixGeneratorR v1.0 69 https://github.com/AlexandrovLab/
SigProfilerMatrixGeneratorR

DoAbsolute v2.2 70 https://github.com/ShixiangWang/DoAbsolute

ABSOLUTE v1.0.6 71 http://www.broadinstitute.org/cancer/cga/ABSOLUTE

CNVEX 16 https://github.com/mctp/cnvex

Custom R scripts This paper https://doi.org/10.6084/m9.figshare.c.6690756
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