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Abstract: Mechanosensitive ion channels comprise a broad group of proteins that sense mechanical
extracellular and intracellular changes, translating them into cation influx to adapt and respond to
these physical cues. All cells in the organism are mechanosensitive, and these physical cues have
proven to have an important role in regulating proliferation, cell fate and differentiation, migration
and cellular stress, among other processes. Indeed, the mechanical properties of the extracellular
matrix in cancer change drastically due to high cell proliferation and modification of extracellular
protein secretion, suggesting an important contribution to tumor cell regulation. In this review, we
describe the physiological significance of mechanosensitive ion channels, emphasizing their role in
cancer and immunity, and providing compelling proof of the importance of continuing to explore
their potential as new therapeutic targets in cancer research.
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1. Introduction

Mechanosensation is the ability of cells to recognize mechanical and physical forces,
and it is essential for many physiological functions, playing a pivotal role in both health
and disease. In line with this, it has been shown that there are dramatic intratumoral
mechanical changes at the onset of many types of cancer [1]. Cancer cells are constrained by
high mechanical cues due to the increased extracellular matrix (ECM) stiffness and the high
interstitial pressure of the tumor. Such forces can stimulate the proliferation, migration,
and even invasion of cancer cells through mechanosensitive ion channels, thus playing an
important role in both the onset and progression of the tumor [2,3].

Mechanosensitive ion channels are a family of pore-forming proteins crucial for de-
tecting intra- and extracellular mechanical cues (e.g., pressure, stretch or shear flow). These
channels then translate mechanical cues into biochemical signals in a process termed
mechanotransduction, allowing the cell to adapt and respond to mechanical forces [4,5].
Upon mechanical stimuli, the cation influx into the cytoplasm can mediate a myriad of cell
responses such as cell growth, migration, adhesion, morphogenesis, gene expression, fluid
homeostasis and vesicular transport [6].

Understanding the role of mechanoreceptors in the different cancer types, as well as
in the immune system and cancer immunity, is vital to fully uncovering the importance of
the mechanical properties of the tumor environment.
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2. Classification of Mechanoreceptors and Their Physiological Importance

Árnadottir and Chalfie defined the criteria for ion channels to act as mechanorecep-
tors [7]. First, the channel must be expressed in a mechanosensory organ. Second, the
loss of the channel is necessary but insufficient to end the signal transduction. Third,
the genetic modification of the channel should change the mechanical response. Lastly,
channel heterologous expression must reveal that it can be physically gated. However, new
evidence about mechanosensitive ion channels has redefined these criteria and established
four different families of mechanoreceptor channels in mammals [8]: epithelial sodium
channel/degenerin (ENaC/DEG), transient receptor potential channel (TRP), two-pore
domain potassium channel (K2P) and PIEZO channels.

2.1. The Epithelial Sodium Channel/Degenerin Superfamily

The ENaC/DEG family represents a class of ion channels that are present in ani-
mals with specialized organ functions and have functional heterogeneity depending on
their tissue distribution. In humans, ENaC and acid-sensing ion channels (ASIC) can
be found inside this family [9]. Both have a trimeric structure with two transmembrane
segments and a large extracellular region [10] (Figure 1A), but they display different gating
mechanisms [10,11].

ENaC channels are encoded by four paralogous genes (SCNN1A, SCNN1B, SCNN1D
and SCNN1G) that encode the subunits α, β, γ and δ, respectively [12]. These channels
are expressed on the apical plasma membrane of epithelial cells in several organs, such as
the kidney, lung, salivary glands, skin, placenta and colon, and play a central role in Na+

absorption, maintenance of water-salt homeostasis, and blood pressure control. Depending
on the tissue where ENaC is expressed, its physiological role varies. For instance, in the
kidney, filtered Na+ exits the collecting duct’s urinary space through ENaC, restricting the
amount of salt that can be reabsorbed [13]; in the colon, ENaC also participates in Na+

reabsorption [14], whereas in the lungs, ENaC is a key regulator of airway surface liquid
clearance [15].

On the other hand, ASICs are primarily proton-gated cation channels that can be
triggered by nonproton ligands at physiological pH levels and activated by a decrease in
extracellular pH below 7.0 [11]. They also have a mechanosensitive role in colon ganglia
cells, nerve terminals of the aortic arch and the bladder [16]. ASIC proteins, encoded by
four genes (ACCN1, ACCN2, ACCN3 and ACCN4), form at least six subtypes of channels.
Activation of ASICs triggers Na+ influx but also exhibits calcium permeability, acquiring
important functions in learning and memory [17].

2.2. Transient Receptor Potential Channel Family

Transient receptor potential (TRP) channels are nonselective cation channels that play
an important role in Ca2+ signaling. TRPs act as sensors of light, touch or mechanical
pain [18], leading to membrane depolarization through Ca2+ influx. They form tetrameric
cation-selective complexes of either identical or distinct subunits, each with six trans-
membrane domains with both the N- and C-termini in the intracellular compartment [19]
(Figure 1B).

In mammals, the TRP family is composed of 28 members distributed in six sub-
families [19,20]: TRPC (canonical channels), TRPV (vanilloid), TRPA (ankyrin), TRPM
(melastatin), TRPML (mucolipin) and TRPP (polycystin). The TRPC, TRPV and TRPA
subfamilies contain ankyrin repeat motifs present in tandem copies that confer elastic
properties, playing a key role in mechanosensing [21]. Most TRPs are expressed in the
plasmatic membrane, but some of them also exert their function at intracellular membranes,
playing a role in endolysosomal system regulation [22,23].

TRPC members play important roles in different tissues, including the cardiovascular
system, skeletal muscles, lung, kidneys, salivary glands, reproductive system, immune
system, and nervous system, as reviewed in [24,25].
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In mammals, a sole member (TRPA1) composes the TRPA subfamily. The expression
of this channel has been described in several cell types, such as sensory neurons, epithelial
cells, melanocytes and keratinocytes, and it can be activated not only by mechanical cues
but also by pH changes, thermal changes and different ligands, such as cholesterol or
nicotine [26].

Finally, inside the TRPV subfamily, TRPV1–4 are nonselective cation channels that are
modestly permeable to Ca2+, while TRPV5 and TRPV6 are highly selective Ca2+ channels.
All of them are widely expressed in mammals, such as neural tissue, kidneys, liver, immune
system, heart, smooth muscle, skin, lung and placenta [27].

2.3. Two-Pore-Domain Potassium Channel Family

The two-pore-domain potassium channels (K2P) are a diverse family of K+ selective
channels encoded by fifteen different genes [28] and regulated by mechanical cues as well
as other stimuli such as anesthetics and antidepressant agents [29,30], neurotransmitters,
posttranslational modifications or temperature [31]. K2Ps are classified into six different
subfamilies (TWIK, TREK, TASK, TALK, THIK and TRESK) according to their sequence
similarity and functional characteristics [32]. Plasma membrane tension, complemented by
other mechanical factors such as protein–protein interactions and cytoskeletal modulation,
directly regulates TREK subfamily members [32,33].

Their structure differs from other K+ channels, as each K2P subunit contains four trans-
membrane domains (M1–M4 domains) and two pore-forming domains (P domains), with
the N- and C-terminal sides at the cytoplasmic side (Figure 1C). They act as homodimers,
as K2P needs four P domains to constitute the K+ selective filter [32,34].

K2P channels have a key role in the nervous system, heart and muscles by controlling
membrane resting potential and excitability [35,36]. However, they exert important func-
tions in non-excitable tissues, such as the pancreas, by controlling glucagon release [37],
surfactant integrity in the lungs [38], and the proliferation and cytolytic functions of natural
killer cells [39].

2.4. PIEZO Channel Family

The PIEZO family comprises mechanoreceptors Piezo1 and Piezo2, also known as
FAM38A and FAM38B, respectively. Piezo1 was first identified and characterized in a
mouse neuroblastoma cell line by Coste and colleagues [40], and they later identified
Piezo2 by sequence homology. They are both nonselective Ca2+ channels that are highly
conserved across species and expressed in most tissues of organisms, giving an idea of their
biological importance.

PIEZO proteins have an unusually large size compared to other ion channels. They
have an overall size of over 2500 amino acids, with a large number of transmembrane
regions [40]. Mouse Piezo1 and Piezo2 channels have been structurally characterized by
cryoEM [41,42]. Both channels have a similar structure, comprising a homotrimer forming
a three-blade propeller plus an extracellular cap [41,42] (Figure 1D).

It is important to note that, while most of the mechanosensitive channels described
above exhibit multiple activation mechanisms, the only channels that are principally
activated by mechanical stimuli are the PIEZO channels [43,44]. However, it has been
shown that although their main activation cue is mechanical stimuli, PIEZO channels can
also be modulated by voltage [45].
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and 5Z10), respectively.

3. Mechanoreceptors in Cancer

It is now known how crucial the mechanical properties of tissues are in both health
and disease. Indeed, the mechanical environment of tumors is different from that of healthy
tissue [49]. Solid tumors become more rigid, mainly due to an increase in the structural
elements of the tumor, such as the number of cancer cells, stromal cells, and components of
the ECM, all of which lead to stiffening of the tissue [50]. Furthermore, this characteristic
helps the tumor displace the surrounding healthy tissue, allowing it to enlarge and infiltrate
the organ [51].

The mechanical environment of tumors can affect their aggressiveness and organ-
otropism. High tumor stiffness is closely related to tumor progression and can drive
invasion by modulating the CNN1/β-catenin/N-cadherin pathway, contributing to the
binding of cancer cells to blood vessels [52]. There are several cancers that can metastasize
to other organs with different mechanical properties, such as breast [53,54], lung [55,56]
and prostate cancer [57,58], but it has been shown that the tropism can depend on the
mechanical properties of the cancer cells themselves [59].

There are a myriad of mechanisms and molecules involved in the whole process of
mechanosensation and tumor progression [60]. However, mechanosensitive ion channels
are pivotal players in these processes [2,61]. Here, we review the role of PIEZO channels
and some TRPs in cancer, as they are the two most distinctive mechanosensitive ion
channel families.

3.1. TRPM7

TRPM7 is a TRP mechanosensitive ion channel that mediates the transport of Ca2+ and
other divalent cations (i.e., Zn2+ and Mg2+) through the plasma membrane, and it is able to
autophosphorylate and phosphorylate different protein substrates through its C-terminal
serine/threonine kinase domain [62].

The expression of TRPM7 is altered in several cancers (Table 1). High levels of TRPM7
are correlated with upregulation of the epithelial-mesenchymal transition (EMT) pathway
and poor disease-free and overall survival in ovarian cancer cells [63]. Liu and colleagues
also described that TRPM7 inhibition reduces intracellular Ca2+ levels and attenuates EMT,
migration and invasion via PI3K/Akt inhibition [63], and its silencing impairs glycolysis
and proliferation [64], suggesting TRPM7 as a valuable marker for ovarian metastasis and
a possible therapeutic marker, as well as having been described as a potential prognostic
marker for this cancer type [65,66].

In breast cancer, TRPM7 is associated with poor prognosis, cell migration and metas-
tasis [67,68], and its high methylation profile is associated with a good prognosis [69].
However, its role in cell proliferation is not completely clear, as it seems to highly contribute
to the proliferation of the adenocarcinoma cell line MCF7 [70] but not the triple-negative
breast cancer cell line MDA-MB-231 [71].
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TRPM7 is also highly expressed in bladder cancer tissues and cell lines [72], and
it is associated with poor clinical outcomes because it is involved in cell proliferation,
migration and invasion [72]. The key role of this channel in bladder cancer malignancy
can be reverted by its downregulation, which leads to mitochondrial-dependent apoptosis
via ERK1/2 signaling and a reduction in metastasis markers such as phospho-FAK and
MMP2/9 [73]. The downregulation of TRPM7 can lead to phosphorylation of ERK1/2,
promoting the induction of mitochondrial Cytochrome C release or caspase-8 activation,
as well as autophagic vacuolization and permanent cell cycle arrest [74]. Other pathways
regulated by TRPM7 in bladder cancer cells are the Src, Akt and JNK pathways [75].

In cervical cancer cells, TRPM7 mediates necrotic cell death dependent on acidic pH.
As the vagina has an acidic physiological pH, TRPM7 expression activates necrotic death
pathways, leading to an inflammatory response in the surrounding tissue. However, after
progesterone treatment, TRPM7 expression and activity are inhibited, preventing cervical
cancer cell growth and switching cell death from acidotoxic necrosis to apoptosis [76].
There are two microRNAs (miRNAs) able to downregulate TRPM7 in cervical cancer.
Both miRNAs, miR-543 [77] and miR-192-5p [78], directly target TRPM7, inhibiting tumor
growth, migration and invasion driven by this channel in cervical cancer.

Additionally, TRPM7 also seems to play an essential role in glioblastoma. This channel
is highly expressed in human glioblastoma tissues and controls proliferation, migration
and invasion in glioblastoma cells [79,80]. TRPM7 activates the JAK2/STAT3 signaling
pathway leading to glioma aggravation [79,81], as there is crosstalk between this pathway
and ALDH1 and CD133, two glioma stemness markers, suggesting a role of TRPM7 in
glioma stem cells [81]. In neuroblastoma, another CNS tumor, TRPM7 promotes a stem-like
phenotype and promotes metastasis [82]. Additionally, the evidence suggests that this
mechanoreceptor contributes to matrix protein remodeling in neuroblastoma [83].

In prostate cancer, it has been described that TRPM7 expression is much higher in
metastatic prostate cancer than in benign prostatic hyperplasia [84]. An increase in Ca2+

via TRPM7 drives cell proliferation and migration via Akt and ERK phosphorylation [85].
Under hypoxia, the TRPM7-HIF1α-Annexin A1 signaling axis is essential for the EMT,
cell migration and invasion of prostate cancer cells [86]. In this line, TGFβ stimulates the
expression of TRPM7, further enhancing EMT in prostate cancer cells [87].

It has been demonstrated that TRPM7 plays a role in other cancers, including gas-
trointestinal [88–90], lung [91], leukemia [92], head and neck carcinoma [93] and neuroblas-
toma [82,83]. In most cases, TRPM7 leads to the regulation of the PI3K/Akt [63,75,85,94] and
MAPK signaling pathways [73,85,94], promoting cell growth, migration and/or invasion.

Table 1. Clinical importance and functional analysis of TRPM7 in different tumors.

Cancer Type Expression Function Clinical Features Molecular
Mechanism References

Ovarian Upregulated
Proliferation,
migration,
invasion.

Poor disease-free
survival and poor
overall survival.

EMT factors upregulation.
PI3K/Akt signaling activation.
Indirect HIF-1α regulation.

[63–66]

Breast Upregulated
Proliferation,
migration,
invasion.

Poor prognosis.

Proliferation mechanisms
are unclear.
High TRPM7 promoter
methylation is a good prognostic
marker in the luminal A subtype.

[67–71]

Bladder Upregulated
Proliferation,
migration,
invasion.

Poor clinical
outcomes.

Proliferation mechanisms
are unclear.
Pro-apoptotic ERK1/2 pathway
activation and metastasis markers
are downregulated in TRPM7 KD.
Src, Akt and JNK upregulation.

[69–71]

Cervical Undetermined
Proliferation,
migration,
invasion.

Undetermined.
Necrotic cell death regulation
miR-543 and miR-192-5p target
TRPM7 directly.

[76–78]
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Table 1. Cont.

Cancer Type Expression Function Clinical Features Molecular
Mechanism References

Glioblastoma Upregulated
Proliferation,
migration,
invasion.

Tumor aggravation.
JAK2/STAT3 and Notch1
signaling activation.
Glioma stem marker expression.

[79–81]

Prostate Upregulated Tumorigeneses,
migration, invasion. Undetermined.

Activation of the Akt and ERK
signaling pathways.
TRPM7-HIF1α-Annexin A1
axis activation.

[84–86,94,95]

3.2. TRPV4

TRPV4 belongs to the TRPV family and is a nonselective Ca2+, Mg2+ and Na+ per-
meable channel. Its structure is quite similar to that of other TRP channels, with a ho-
motetramer with a variety of functional domains [96]. Similar to other mechanosensitive
channels, TRPV4 has been reported to be involved in different types of cancer.

In breast cancer, TRPV4 activation decreases the viability of two basal breast cancer
cell lines with endogenous overexpression of TRPV4. Upon activation, TRPV4 leads
to cell death through apoptosis (PARP-1 cleavage) and oncosis (ATP decrease), and this
oncosuppressor mechanism has also been shown in vivo [97]. In contrast, TRPV4 was found
to be indispensable for breast cancer cell invasion and migration, as its overexpression
promoted vesicle formation and actin reorganization in breast cancer tumor cells [98].

TRPV4 is also overexpressed in hepatocellular carcinoma tissues compared to non-
tumorous liver tissues. Indeed, Fang and colleagues described that TRPV4 inhibition
in vitro depleted cell proliferation, reduced EMT, and led to apoptosis via downregulation
of p-ERK while also suppressing tumor growth in xenograft models in vivo [99].

Likewise, TRPV4 is upregulated in colon cancer and associated with a poor progno-
sis [100]. TRPV4 elicits cancer progression through inhibition of the tumor suppressor PTEN
and upregulation of Akt-ZEB1 signaling, which modulates EMT and aggressiveness [101],
while its inhibition leads to cell cycle arrest and induction of apoptosis/autophagy [100].

Increased lymph node metastasis, deeper tumor invasion, a higher TNM stage, poor
overall survival and poor disease-free survival have been linked to TRPV4 overexpres-
sion [102]. Patients with gastric cancer who have hypercalcemia typically have a poor
prognosis. Xie and colleagues showed that calcium-sensitive receptor (CasR) activation
triggered TRPV4-mediated Ca2+ entry, followed by Akt and β-catenin phosphorylation
and tumor progression [103]. It has been demonstrated that activating VPAC1 by VIP sig-
nificantly increased Ca2+ entry through TRPV4, triggering several migration and invasion
signaling cascades and, in turn, promoting the expression and secretion of VIP [104].

Thus, TRPV4 plays a role in several tumor-related mechanisms, such as proliferation,
apoptosis, angiogenesis, migration and invasion. Due to the diverse functions in which
TRPV4 intervenes in cancer progression as well as its overexpression compared to healthy
tissue, TRPV4 could be a potential pharmacological target with therapeutic benefits in
different types of cancer.

3.3. Piezo1

Piezo1 belongs to the family of PIEZO channels. It has a homotrimeric structure,
where the blades detect cell membrane deformation and generate a force that is transmitted
to the intracellular beams, opening the cap and allowing the influx of Ca2+ [41].

Since Piezo1 was discovered and characterized, it has been described as playing a role
in a myriad of cancers. For instance, malignant breast cancer cell lines had a more aggres-
sive behavior in response to compressive stress, and this phenotype is related to Piezo1
function [105]. Piezo1 acts as a critical sensor of compression stress in these cells, increasing
migration and invasion of breast cancer cells by modulating the invadopodium formation
and degradation of ECM through metalloproteinases [106] by actin protrusion formation



Int. J. Mol. Sci. 2023, 24, 13710 7 of 19

via Src signaling [107]. On the other hand, it has also been shown that Piezo1 activation can
attenuate the blebbing mechanism in breast cancer cells, this type of migration is observed
in some other cancers [108].

In glioma, Chen and colleagues have shown that Piezo1 can trigger glioma aggres-
siveness in D. melanogaster [109]. Furthermore, Piezo1 overexpression in glioblastoma is
correlated with the degree of peritumoral brain edema, a glioblastoma-associated condition
that aggravates the patient’s symptoms [110]. Likewise, it seems that Piezo1 expression is
positively correlated with ECM organization, cell adhesion, angiogenesis, cell migration
and proliferation, making it a predictive marker of poor prognosis [111].

Similarly, Piezo1 is also overexpressed in prostate cancer cells compared to normal
tissue, and its upregulation leads to Akt/mTOR activation, promoting cell cycle progression
and, subsequently, prostate tumor growth [112]. Shear stress enhances Piezo1 activity in
prostatic cancer cells, leading to Src/YAP signaling activation and prostate tumor progres-
sion [113].

Piezo1 is also highly expressed in gastric cancer, especially when there is peritoneal
metastasis [114]. Piezo1 directly interacts with the trefoil factor family 1 (TFF1) protein,
enhancing gastric cancer cell migration in vitro [115]. Loss-of-function assays shed some
light on the molecular mechanisms in gastric cancer in which Piezo1 is involved. Piezo1
defects significantly inhibit the oncogenic behavior of gastric cancer cells by downregulating
cell proliferation, migration and invasion and enhancing drug sensitivity. Its oncogenic
mechanisms may be related to direct activation of the Rho family GTPase members RhoA
and Rac1 [116]. Furthermore, Piezo1 upregulates HIF-1α, inducing cell migration via
calpain1/2, whereas Piezo1 knockdown inhibits tumor growth and blocks both EMT and
angiogenesis in peritoneal metastatic gastric cancer in vivo [114].

In liver cancer, Piezo1 is directly correlated with poor clinical outcomes. Piezo1 recruits
Rab5c, a small GTPase, promoting hepatocellular carcinoma via TGF-β signaling [117].
Additionally, Piezo1 is necessary for MAPK and YAP activation and translocation in hepa-
tocellular carcinoma through an independent Hippo signaling mechanism [118]. Recently,
Li and colleagues observed that increased matrix stiffness significantly upregulated Piezo1
expression, suppressing HIF-1α ubiquitination, and promoting angiogenesis [119].

However, there are many other cancer types in which Piezo1 is usually upregulated.
For instance, Piezo1 upregulation has been shown to trigger ovarian cancer metastasis
via Hippo/YAP signaling [120]. Piezo1 mRNA is overexpressed in bladder cancer [121]
and colorectal cancer [122], promoting cell growth and invasion. High expression of
Piezo1 in pancreatic cancer is associated with poor disease-free survival, and a noninvasive
treatment strategy based on ultrasound stimulation of microbubbles induces mitochondrial
dysfunction and apoptosis via Piezo1 [123]. However, in contrast to all the other cancer
types described, in non-small cell lung cancer patients, Piezo1 is expressed at low levels,
and this low expression is linked to poor overall survival due to an increase in cell migration
and tumor growth [124].

Thus, Piezo1 seems to be mostly protumoral, acting through diverse mechanisms (Table 2)
and playing a key role in certain hallmarks of cancer: migration, invasion and angiogenesis.

Table 2. Clinical importance and functional analysis of Piezo1 in different cancer types.

Cancer Type Expression Function Clinical Features Molecular
Mechanism References

Breast Upregulated Migration,
invasion. Poor overall survival.

Mechanical stress sensor.
Actin protrusion formation
via Src.
Bleb-driven cell
migration attenuation.

[101–104]

Glioma Upregulated

Proliferation,
migration,
invasion,
angiogenesis.

Glioblastoma
aggravation, poor
prognosis.

ECM remodeling. [105–107]



Int. J. Mol. Sci. 2023, 24, 13710 8 of 19

Table 2. Cont.

Cancer Type Expression Function Clinical Features Molecular
Mechanism References

Prostate Upregulated
Proliferation,
migration,
invasion.

Poor overall survival. Akt/mTOR signaling activation.
Src/YAP signaling activation. [108,109]

Gastric Upregulated

Proliferation,
migration,
invasion,
angiogenesis.

Poor overall survival.

TFF1 inhibition.
RhoA and Rac1 activation
Calpain1/2 activation via
HIF-1α upregulation.

[110–112]

Liver Upregulated
Migration,
invasion,
angiogenesis.

Poor clinical
outcomes.

TGF-β activation via Rac5c.
YAP activation in a
Hippo-independent signaling
mechanism.
Mechanical stress sensor.

[113,114]

3.4. Piezo2

Piezo2 is the other member of the PIEZO family, alongside Piezo1, and their structures
are similar [42]. Piezo2 also senses mechanical forces on cell membranes, leading to
an influx of Ca2+. Among its physiological functions, Piezo2 has an excitatory effect in
neurons, depolarizing the membrane and causing action potential firing [125]. However,
the involvement of Piezo2 in different types of cancer has not yet been widely described.

It has been recently reported that knockout of Piezo2 in SOX2+ medulloblastoma cells
reduces local tissue stiffness, improves drug delivery across the blood-tumor barrier, and
increases survival by altering WNT/β-catenin signaling between tumor and endothelial
cells [126]. Likewise, Piezo2 was found to be upregulated in a glioma xenograft model, and
its depletion reduced glioma angiogenesis [127].

In lung cancer, similar to its homolog Piezo1, Piezo2 is negatively correlated with over-
all survival in non-small cell lung cancer patients [128]. Interestingly, Piezo2 expression is
also downregulated in breast cancer cell lines and patient tissue, and it negatively correlates
with breast cancer progression. Lou and colleagues found five onco-miRNAs that target
PIEZO2, which caused a decrease in CDON expression and activation of the Hedgehog
pathway [129]. In contrast, Piezo2 is necessary for breast cancer cells to metastasize to the
brain, as in the case of MDA-MB-231-BrM2 cells, because it acts as an upstream regulator
of the RhoA-mDia pathway associated with invadosome functions [130]. Additionally,
Piezo2 is overexpressed in triple-negative breast cancer, and its high expression seems to
be correlated with a worse prognosis [131].

Last year, an extensive in silico analysis of Piezo2 expression, genetic relationships
with immunological markers, and predictive functions in pan-cancer was performed. This
study indicated that Piezo2 expression is cell- and tissue-dependent in different cancer
types and is related to prognosis in several tumors [132].

Thus, despite its potential role in multiple cancer types, more research is required to
fully understand the roles played by Piezo2 in tumors and the underlying mechanisms
through which this mechanosensitive ion influences cancer.

4. Mechanosensation of the Immune System and Immune Response to Cancer

It is now clear that mechanosensitive ion channels are essential for physiological
tissue functions. Indeed, the immune system is one of the most mechanosensitive tissues
in all organisms, as immune cells encounter a wide range of environmental biophysical
conditions depending on the tissue in which they are located [133]. Mechanical stimuli
acting on immune cells are generated by both the hemodynamic forces and the ECM
composition of tissues and can be classified as follows: (i) mechanical stretch by shape
changes during cell passage through narrow capillary segments, (ii) shear stress acting
on circulating or adherent immune cells such as blood flow, and (iii) changes in the ECM
stiffness induced by inflammation.
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The immune system response to cancer has proven to be of extreme importance and
is indeed one of the most promising arms of treatment in the current panorama, with the
development of immunotherapy for cancer treatment. Moreover, pathological conditions
such as infection or cancer cause a change in the stiffness of tissues [134,135], affecting the
immune response. In recent years, it has been shown that mechanosensitive ion channels
play essential roles in the immune system and that they are important for proliferation [136],
activation [136,137], migration [138] and cytokine production [137] of immune cells.

4.1. TRPA1

TRPA1 is the only member of the TPRA family in mammals and is a nonselective
cation channel permeable to Ca2+, Na+ and K+. Similar to other TRP channels, it is a
homotetramer [139] and can be activated not only by mechanical stimuli but also by chemi-
cal [140,141] and thermal [142,143] cues. Additionally, different agents associated with an
inflammatory context seem to modulate TRPA1, such as bacterial lipopolysaccharide [144],
reactive oxygen species (ROS) or nitric oxide [145], among others.

TRPA1 expression has been detected in a wide range of immune cells. Some stud-
ies have linked the activation of TRPA1 in neutrophils to arthritis [146]. TRPA1 has also
been detected in mast cells, where it could play a role in degranulation [147] and anaphy-
laxis [148], although it is not the only key player, as there are also other TRPA1-independent
mechanisms involved.

In macrophages, TRPA1 activation leads to an anti-inflammatory effect [149]. Accord-
ing to Wang et al., this effect is due to the fact that TRPA1 promotes the polarization of
macrophages toward the M2 phenotype through an epigenetic mechanism that promotes
H3K27 tri-methylation [150].

As the Ca2+ response is critical for T-cell activation and cell fate [150,151], TRPA1
plays a key role in the biology of these cells. In a melanoma orthotopic mouse model,
Trpa1−/− mice showed higher CD8+ T-cell activation and tumor infiltration as well as lower
tumor progression than Trpa1+/+ animals [152], indicating that TRPA1 diminishes CD8+
T-cell cytotoxicity. Likewise, a recent publication highlights that Trpa1−/− mice show a
lower CD4+/CD8+ T-cell ratio and higher CD8+ cell activation than WT mice, and this
TRPA1 deficiency also reduced the percentage of peripheral blood CD19+ B cells [153]. On
the other hand, the role of TRPA1 in CD4+ T-cell biology is controversial. While some
studies report that TRPA1 restrains CD4+ T-cell activation by a crosstalk mechanism that
implies the inhibition of TRPV1 [154], others indicate that its inhibition is correlated with
the reduction of CD4+ T-cell activation markers such as CD69 [137,153], thus requiring
further research to fully understand the role of TRPA1 in CD4+ T-cell biology.

4.2. TRPV4

Apart from having key roles in cancer cells, TRPV4 is also involved in the immune
response, with special implications for innate immune cell function.

Some studies have reported that this channel plays a key role in neutrophil responses
to proinflammatory stimuli such as migration, adhesion or ROS production [138]. In this
regard, genetic and pharmacological inhibition of TRPV4 results in marked protection from
acute lung injury [155], as pulmonary function is affected by neutrophil activation and
infiltration into the injured lung.

In macrophages, TRPV4 plays a dual role, mediating both proinflammatory (phagocy-
tosis, adhesion and ROS production) [156] and anti-inflammatory (proresolution cytokines
and bacterial clearance) functions [157]. In addition, TRPV4 activation has been shown
to result in nuclear translocation of YAP/TAZ, a transcriptional coactivator that regulates
macrophage polarization toward a proinflammatory phenotype in response to substrate
stiffness [158]. Likewise, in a matrix stiffness-dependent manner, TRPV4 also modulates
macrophage phagocytosis, promoting a switch in the MAPK signaling pathway [159]. Thus,
it should be borne in mind that the therapeutic target of TRPV4 could have effects not only
on the cancer cells themselves but also on the innate response against the tumor.
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4.3. Piezo1

Piezo1 is involved in multiple functions of innate and adaptive immune cells, mainly
in the activation of immune cells. For instance, the activation of Piezo1 modulates the polar-
ization of macrophages to an M1 phenotype, and it is involved in the sensing of substrate
stiffness, bacterial clearance and proinflammatory cytokine production [136]. According
to Geng and colleagues, Piezo1 interacts with TLR4 to coax macrophages to achieve the
functions necessary for host defense by remodeling F-actin organization and augmenting
phagocytosis [160], proving that Piezo1 can play a role in immunity by interacting with
other canonical receptors such as TLR4. In the context of macrophage polarization, Piezo1
silencing in macrophages has been associated with increased expression of different inte-
grins, such as CD11b (αM), β1, β2 and β3 [161], all of which are involved in polarization
toward the M2 phenotype. This suggests that Piezo1 can promote macrophage-driven
inflammation not only directly but also indirectly by promoting the downregulation of
certain integrins needed for M2 polarization, thus inhibiting the pro-healing M2 phenotype.

Dendritic cells are also highly mechanosensitive. Environmental stiffness affects
their metabolism and function, as dendritic cells show significantly higher proliferation,
activation, cytokine production and upregulation of glucose metabolism on stiff substrates
compared to physiological resting stiffness. Although the molecular mechanism underlying
this sensing is not yet fully clear, it has been proposed that Piezo1 is one of the key
mechanosensors responsible for these processes [162].

Piezo1 is also relevant for the adaptive response, especially for T-cells. Recent stud-
ies have shown that Piezo1 plays a major role in T-cell activation, as stretching during
immune synapse formation triggers the activation of this channel, leading to Ca2+ influx,
which in turn activates calpain and results in cytoskeletal rearrangement to optimize TCR
signaling [163]. Additionally, some studies have shown that Piezo1 is involved in T-cell
differentiation as well. According to Jairaman and colleagues, activation of Piezo1 in CD4+
T-cells selectively restrains Treg cell generation without affecting effector Th1 and Th17 cell
polarization [164]. In this line, it has also been reported that Piezo1 signaling in dendritic
cells during antigen presentation activates the production of the proinflammatory cytokine
IL-12 and promotes Th1 polarization, inhibiting the Treg lineage [165].

All these studies suggest a proinflammatory role for Piezo1. Nevertheless, a recent
investigation has shown that targeting Piezo1 confers protection against pancreatic ductal
carcinoma (PDAC) and multi-microbial sepsis, as this channel is essential for myeloid-
derived suppressor cell (MDSC) infiltration and immunosuppressive functions [166]. Thus,
it seems that the role of Piezo1 in the immune system is variable and depends on the
physiological and pathological context, illustrating the need for further research to fully
understand its precise role in the immune response.

5. Discussion

Through this review, we have observed the importance of mechanosensation in both
physiology and pathology. In addition to adhesion molecules such as integrins and se-
lectins or specialized surface proteins such as CD197, mechanosensitive ion channels
have an essential role in detecting and responding to mechanical cues and adapting to
their environment.

Most pathological processes are associated with significant changes in the mechan-
ical properties of tissues. One of the most dramatic is cancer, when, as a consequence of
excessive cell proliferation and extracellular matrix remodeling, tissue stiffness greatly
increases [135,167]. Therefore, mechanosensation is essential in the onset and develop-
ment of multiple types of tumors. The upregulation of mechanosensitive ion channels
is commonly associated with increased proliferation, migration and invasion of tumor
cells, which postulates these channels as potential therapeutic targets in these cancers.
Nevertheless, a pro-tumoral or anti-tumoral effect of a specific channel depends on the
type of cancer [97,108,128] (Figure 2), and the molecular mechanism underlying most of
these processes still needs further investigation.
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The anti-tumoral immune response is one of the most relevant cancer-related investi-
gations in the current panorama. The balance between the immune response against cancer
cells and the immune-evasion mechanisms of the tumor is critical for cancer development,
and current work is focused on modulating these processes as a therapeutic approach.
Immune cells are constantly subjected to mechanical stimuli, which is critical to their
function as they are highly mechanosensitive cells [168]. Indeed, we have observed that
mechanosensitive ion channels, particularly the TRP and PIEZO families, are especially
important in regulating the immune response. The activation of these channels in immune
cells can trigger a plethora of responses leading to a pro- or anti-inflammatory phenotype
depending on the cell type, the channel, the stimuli and the environmental conditions.

Targeting mechanosensitive ion channels could thus have a great impact in the clinic, as
they play a role in both cancer cells and the immune system. How the different mechanore-
ceptors can trigger or regulate the immune response against cancer is still not fully un-
derstood. Some studies associate the inhibition of these channels with an increase in the
anti-tumor response. According to Aykut and colleagues, inhibition of Piezo1 unleashes
innate immunity against pancreatic ductal carcinoma since Piezo1 is essential for MSDC
immunosuppressive functions [166]. In this line, another study reports that mice with
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TRPA1 ubiquitous deletion show an increased cytotoxic lymphocyte response against
melanoma cells and, consequently, lower tumor progression [152]. However, other studies
have concluded that it is the activation of mechanosensitive ion channels that enhances the
immune response against cancer. For instance, it has been observed that genetic ablation of
Piezo1 in dendritic cells inhibits the generation of Th1 cells and drives the development
of Treg cells, promoting cancer growth in mice [165]. All this taken together proves the
potential of mechanoreceptors for targeting and modulating the immune system not only
for cancer but for all pathological situations as well.

6. Challenges and Future Perspectives

Despite the great advances in the past few years in understanding the role of mechanosen-
sitive ion channels in cancer and immunity, this field is still in its infancy. Although the
different families of mechanoreceptors may share some common hallmarks, they are also
very different among them, and thinking of mechanosensation as a global cue in cancer
may lead to a mistake. Furthermore, there can be possible compensating mechanisms when
one of the receptors sensing is disturbed, which has not been studied in the literature yet.

When researching mechanoreceptors in vitro, one of the main challenges encountered
can be the limitations of 2D cell culturing. Most experiments are performed in this canonical
way, and their results are widely accepted. However, we must bear in mind that 2D
culturing adds an extra and uncontrollable variable: the spontaneous activation of different
mechanosensitive ion channels and the lack of the physiological mechanical characteristics
of the tissue studied. That is why optimizing 3D cultures with similar mechanical properties
to the physiological tissue for the study of mechanoreceptors would be ideal. Organoids
are an excellent example of 3D culture. Indeed, cancer-derived organoids have proven
to be very useful in the field, as they are a better model than animals and allow the
study of the heterogenicity of the tumors while maintaining the mutational profile and
the phenotypic characteristics of the original patient. Moreover, these cultures represent
a much better model to investigate the biophysics of the tumor and the contribution of
mechanoreceptors compared to the classical 2D cell culture. However, the use of organoids
still faces important challenges, such as high intra- and intertumoral variability depending
on the biopsy recession and the culturing methods.

In conclusion, mechanosensitive ion channels can influence a myriad of different
cellular pathways, depending on the cell context. As such, their role in cancer and immunity
is complex, changing with the type of stimulus, the cell lineage, the interaction with other
proteins, and much more. There is still a gap in knowledge regarding the existence and
function of splice variants, unknown mutations, heterotetramer configuration, and crosstalk
between the different mechanoreceptors. However, their potential to be therapeutically
exploited in cancer is undeniable and promising, and it has turned mechanoreceptors into
a hot topic molecule not only in cancer research but also in all fields of biology.
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